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Abstract— A learning framework with a bidirectional com-
munication channel is proposed, where a human performs sev-
eral demonstrations of a task using a haptic device (providing
him/her with force-torque feedback) while a robot captures
these executions using only its force-based perceptive system.
Our work departs from the usual approaches to learning
by demonstration in that the robot has to execute the task
blindly, relying only on force-torque perceptions, and, more
essential, we address goal-driven manipulation tasks with mul-
tiple solution trajectories, whereas most works tackle tasks
that can be learned by just finding a generalization at the
trajectory level. To cope with these multiple-solution tasks, in
our framework demonstrations are represented by means of a
Hidden Markov Model (HMM) and the robot reproduction of
the task is performed using a modified version of Gaussian
Mixture Regression that incorporates temporal information
(GMRa) through the forward variable of the HMM. Also, we
exploit the haptic device as a teaching and communication
tool in a human-robot interaction context, as an alternative
to kinesthetic-based teaching systems. Results show that the
robot is able to learn a container-emptying task relying only
on force-based perceptions and to achieve the goal from several
non-trained initial conditions.

I. INTRODUCTION

During the last two decades robotics science has focused
on creating robots able to carry out complex tasks in human
environments under very dynamic conditions [1]. For achiev-
ing this ambitious goal, it is necessary to provide robots
with learning capabilities allowing them to acquire new
knowledge, to correct or refine their actions and to reason
about their perception-action relationships [2]. Learning from
demonstration (LbD) (also known as robot programming
by demonstration or imitation learning) stands out as a
promising way of providing a robot with learning skills.
Such framework is based on an interactive student-teacher
structure that allows humans to teach robots as they would
teach other humans, thus exploiting skills that humans al-
ready possess [3], [4].

Several learning settings have been proposed that may
be classified according to either the perception system used
(e.g. vision or motionsensors) or the level at which the task
is learned (i.e. at symbolic or trajectory level). Researchers
work at the symbolic level when it is necessary to learn
a very complex task that can be carried out through a
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Fig. 1. Learning and reproduction phases

sequence of actions-states, where a state can represent the
accomplishment of a given previous subgoal [5], [6]. Another
research branch deals with learning at trajectory level where
the main idea is to extract relevant information from given
demonstrations (movements) with the aim of reproducing a
generalized motion under new conditions [7], [8]. These two
levels complement each other for creating structures able
to learn very complex tasks. More specifically, learning at
trajectory level can be used to encode task primitives that
constitute the basis for a framework working at symbolic
level [3].

On the other hand, most of the state of the art has
used vision as perception system arguing that this is the
most natural and effective way in which humans capture
information from demonstrations given by an expert [9], [10],
[11], while other works have used motion sensors attached to
the teacher’s body [12], [13]. Although vision and/or motion
sensors provide information which is essential and enough
for many tasks, there are also whole families of scenar-
ios where these data are clearly insufficient, like opening
doors, pulling drawers, cutting slices of bread, or emptying
deformable bags. Such type of tasks demands to use other
information sources allowing to get more knowledge about
the task, like force/torque data.

Forces and torques can be considered either as a com-



plementary information for speeding up the learning stage
by providing additional information missed by vision or
motion sensors, or as main data for being able to learn a
task successfully. Based on the former considerations, recent
works have focused their efforts on exploiting this new
data source in LbD. [14] proposed a learning framework
based on Gaussian Mixture Model (GMM) and Gaussian
Mixture Regression (GMR) for endowing a humanoid robot
with the ability to perform a collaborative manipulation task
with a human operator using a haptic device and working
at trajectory level (just a simple vertical movement was
learned). An extension of this research [15], combines LbD
and adaptive control for teaching the task, which endows
the robot with variable inertia and an adaptive algorithm to
generate different reference kinematic profiles depending on
the perceived force. Finally, other recent work [16] presents
a framework that allows a robotic manipulator to learn to
perform tasks which require exerting forces on external
objects by interacting with a human operator. We contribute
with a complete F/T data-based learning framework that
includes filtering processes, high fidelity haptic feedback, and
handling of perceptual aliases (multi-valued function). This
structure can be used for applications where F/T information
is necessary to learn/carry out a task, like opening a door with
a key, where F/T patterns corresponding to unlocking effects
have to be felt. Our task is characterized by similar features,
as the fact of being based on F/T information, and the need of
using temporal coherence to discriminate between different
states associated to the same perceptions.

In the proposed learning framework, a human shows
several demonstrations of the task using a haptic device
(providing him/her force-torque feedback) while a robot ob-
serves these executions just using its force-based perceptive
system (refer to Fig. 1). The learning process of the task
is not based merely on finding a generalization at trajectory
level, since the task can be carried out by executing different
trajectories that accomplish the goal in a successful way.
Thus, demonstrations are represented by a HMM through a
sequence of states, and the reproduction stage is implemented
through a modified version of GMR that uses temporal
information of the task given by the forward variable of the
HMM [17] that relies on transitions between states.

The obtained results show that this encapsulated temporal
information is relevant for learning multi-solution tasks based
on force data and without including time as an input variable,
which improves approaches followed by [18] and [7], re-
spectively. Moreover, the proposed framework shows how AI
learning techniques embedded in a human-robot interaction
setting can rapidly increase the manipulation competences of
a robot beyond teleoperation, thus widening their range of
application.

The remainder of this paper is organized as follows:
Section II describes the experimental setting and the task to
be learned, while Sections III and IV explain how demonstra-
tions are codified by a HMM and how the robot reproduces
the task using the modified version of GMR. The obtained
results are discussed in Section V and finally Section VI is

Fig. 2. Experimental setting and initial positions of the ball for the training
phase (at the bottom right corner)

devoted to conclusions and future work.

II. EXPERIMENTAL SETTING

One of the main goals of this work is to show how it
is possible to learn a given task based on force/torque data
successfully. For achieving this objective we have proposed
an experimental setting with a bidirectional communication
channel between the human teacher and the robotic student
constructed from a teleoperated robotic arm through a 6-DOF
haptic device which allows to reflect forces/torques (F/T) on
the user’s hand (see Figure 2). In our experimental setup, we
aim at teaching a robot to extract a metallic ball from inside
a box-like container, which has a hole on its base. The robot
has to orient the box in such a way that the ball is forced
to roll towards the hole. The task is exclusively based on
force/torque feedback, which means that the robot does only
sense the forces and torques exerted on its wrist by the box
and the ball, which change with the orientation of the box
and the position of the ball. The teacher has an additional
source of information by watching the scene. In addition, the
user holds the end-effector of the haptic device which allows
him to feel the forces and torques sensed at the robotic wrist.

Despite the task to be learned seems simple at first sight,
the entire process implies to solve several technical and
research issues. Regarding to the acquisition of suitable
training data from teacher demonstrations, first it is necessary
to take into account that the box is not a rigid structure,
it vibrates when the robot moves. Here, the solution is to
implement a digital low-pass filter to reduce the effects on the
sensor readings caused by vibrations. Second, it is important
that the teacher can feel F/T generated in the box as real as
possible without distracting him/her from task executions.
For solving this, we propose to feedback only the ball’s dy-
namics inside the structure without reflecting F/T generated



by the box’s mass, this is achieved by compensating this
mass dynamically while executions are realized.

On the other hand, once the teacher has carried out several
different samples of the task, it is necessary to determine
which learning framework is appropriate for this kind of
settings. As it is shown in Figure 1, all demonstrations
composing the training data are analyzed with the aim of
selecting the most relevant variables of the task at the same
time as the What to Imitate? problem is solved based on the
approach given in [18] where Mutual Information(MI)-based
feature selection was applied. After that, demonstrations
are encoded statistically by a HMM which also captures
their temporal information (more details in Section III).
The reproduction phase is carried out once the HMM has
been trained, where the first step is to acquire a suitable
perception, which means to filter and compensate sensor
readings. Next, the resulting data are provided to the trained
HMM as an observation of the system with the aim of
finding the weights of the GMR, which rely on the temporal
information contained in the HMM and used in the prediction
step through GMR (details in Section IV).

Although the teacher can watch the scene directly, we
propose to get the human more involved in the teaching
process by making the robots perceptions during demonstra-
tions available to him/her. This bidirectional communication
channel has been very little exploited as a human-robot inter-
action tool in LbD in contrast to kinesthetic-based teaching.
Filtering processes and dynamic compensation are necessary,
as confirmed by testing our framework with several people.
They were fed back with: a) box and ball dynamics or b) just
ball dynamics. Every participant argued that the presence of
the container’s mass while demonstrating the strategy was a
very distracting factor making the task harder.

III. ROBOT LEARNING BASED ON HIDDEN MARKOV
MODELS

The teacher’s demonstrations given as training data start
with the ball placed at different positions inside the box,
which means that the goal can be achieved from several
initial conditions relying on teacher executions1. This implies
that the learning framework’s goal is not to learn merely a
trajectory [14] or a task with predefined states as in assembly
processes [19] that can be represented at a symbolic level.
For endowing the robot with a suitable learning structure for
this kind of tasks and avoiding to assume some aspects about
the task to be learned, we propose to use a HMM to encode
the teacher demonstrations using an ergodic topology, similar
to the approach followed in [17].

Given our experimental setting described in Section II
and following the notation of [20], let us denote a training
datapoint as dm

p ∈ ℜD, with m = 1, 2, . . . ,M and p =
1, 2, . . . , P , where M is the number of demonstrations, P
is the number of datapoints collected along demonstration
m, and D is the total number of input and output variables.

1Demonstrations were carried out executing a predefined motion strategy
that consisted in taking the ball to the wall adjacent to the hole, and then
rolling the ball along this wall to the hole.

For our current task, inputs correspond to F/T sensed at the
robotic wrist and outputs are the velocity commands ωl at
each robot joint ql with l = 1, . . . , 6. However, thanks to
the MI process we concluded that just torques along x and
y axes (i.e. Tx and Ty) are necessary as inputs to learn the
task successfully because these describe the position of the
ball inside the box entirely. Thus, each training datapoint is
defined as dm

p = (Tx, Ty, ω1, ω2, . . . , ω6).
With all demonstrations we can encode the joint distri-

bution P (T, ω) through an ergodic HMM defined as λ =
(A,B, π), where:

• A = {aij} is the state transition probability matrix, with
1 ≤ i, j ≤ N .

• B = {bj(k)} is the observation symbol probability
matrix, with 1 ≤ k ≤ (M ∗P ) and assuming continuous
observation densities defined as normal distributions
η(O;µj ,Σj).

• π = {πi} is the initial state probability vector, with
1 ≤ i ≤ N .

• N is the number of states Si of the model.
The main idea is to adjust the model λ to maxi-

mize P (O|λ) where O is an observation sequence O =
O1O2 . . . OT with each Ot corresponding to a training dat-
apoint dm

p . To achieve this objective, an iterative procedure
such as the Baum-Welch method is used (more details in
[20]). In order to describe the procedure for re-estimation
of HMM parameters, it is necessary to define the following
variables:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

(1)

γt(i) =
N∑
j=1

ξt(i, j) (2)

where α and β are called forward and backward variables,
respectively, and defined as:

α1(i) = πibi(O1) (3)

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1) (4)

βT (i) = 1 (5)

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j) (6)

From equations 1 and 2, it is possible to estimate the HMM
parameters iteratively as follows:

πi = γ1(i)

aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

µjk =

∑T
t=1 γt(j, k)Ot∑T
t=1 γt(j, k)∑

jk
=

∑T
t=1 γt(j, k)(Ot − µjk)(Ot − µjk)

′∑T
t=1 γt(j, k)



Fig. 3. Resulting 3-states HMM trained with demonstrations starting at
positions {1,2,3,4}. Top: Input space composed of the most relevant inputs
{Tx,Ty}. Bottom: Output space composed of robot joint velocities playing
the most important role for the given task.

These equations permit obtaining a suitable trained
HMM that represents the teacher demonstrations statistically
through a states model capturing the velocity commands for
given sensed torques and taking temporal coherence into
account from the resulting matrix A. This may be better
understood by observing Figure 3, where the resulting HMM
is displayed after the training phase with demonstrations
sharing similar trajectories. This model was initialized with
an ergodic topology through the initial values in matrix
A. However, the final values of A show that the hidden
structure in training data is a left-to-right model, where the
resulting vector π gives as initial state the blue Gaussian. It is
also important to highlight that blue and red states intersect
each other in input space, covering the same segments of
trajectories. In this case, the temporal information is essential
to determine which velocity command has to be provided,
which is not clear using a GMM/GMR approach.

On the other hand, since the task is neither strictly learned
as a sequence of discrete actions nor as a simple trajectory,
it is necessary to find a suitable way to reconstruct the
velocity commands, given a perception and the resulting
trained HMM. To achieve this goal, a modified version of
GMR (here named GMRa) is used for computing the velocity
commands to be sent to the robot controller as desired joint
velocities, as described next.

IV. REPRODUCTION OF THE TASK USING TEMPORAL
INFORMATION

Once the learning stage has been carried out and the HMM
has been trained, it is necessary to devise a suitable tool for
synthesizing the desired velocity commands when the robot
is executing the task under known and unknown conditions
(e.g. non-trained initial positions of the ball inside the box).
Using the statistical representation given by the resulting

HMM, a modified version of Gaussian Mixture Regression
(GMRa) that uses the temporal information captured by
the HMM [17] is implemented for obtaining the velocity
commands to be sent to each robot joint. The idea of using
this temporal information (from HMM variable α) is to
predict the desired velocity command as a function of the
given perception (i.e. torques sensed at the robotic wrist)
and sequential information probabilistically encapsulated in
the HMM.

Recent works propose to use a framework based on
GMM/GMR for learning tasks at trajectory level, where the
main idea is to model data from a mixture of Gaussians
and compute predictions for a given set of queries through
regression by applying the original version of GMR. In this
approach, standard GMR averages the different observations,
even if they have been observed at different parts of the
skill. Formally, for each Gaussian component i, both input
and output data are separated by expressing the mean and
covariance matrix as:

µi = {µT,i, µω,i} , Σi =

(
ΣTT,i ΣTω,i

ΣωT,i Σωω,i

)
Then, the conditional expectation ω̂ given T , for a mixture

of N Gaussians is:

ω̂ =
N∑
i=1

βi

[
µω,i +ΣωT,i(ΣTT,i)

−1(T − µT,i)
]

(7)

where βi =
p(i)p(T |i)∑N

l=1
p(l)p(T |l)

is a weight based on given input

variables (i.e. force/torque data ).
HMM/GMRa can provide a better estimation by using a

weight that takes into consideration both F/T and sequential
information instead of the GMM/GMR weights, that would
take only F/T into account. Now, the process of estimating
the weights is not only based on the actual values of the
inputs, but takes also into account the previous values of
them, which is done implicitly through transition proba-
bilities using the HMM forward variable. Thus, the new
definition for GMR based on temporal information is given
by:

ω̂ =

N∑
i=1

α(i)
[
µω,i +ΣωT,i(ΣTT,i)

−1(T − µT,i)
]

(8)

where α(i) is the forward variable for the i-th Gaussian2

in the HMM. This variable expresses the probability of
observing the partial sequence, O = O1O2 . . . Ot and of
being in state Si at time t. Now, for a given F/T perception,
the predicted velocity command is based on current and past
observations, which makes sense for those tasks where more
than one output exists for a given input pattern3.

2Assuming continuous observation densities defined as normal distribu-
tions, in other words, each HMM state is represented by a Gaussian.

3For our task, torques equal to zero mean that the ball is close to the
sensor’s frame origin or that the ball is out from the box. In the first case,
the robot has to orient the box in such a way the ball moves closer to the
goal, while the robot does not have to execute any movement in the second
case.



Fig. 4. Top: Input torques {Tx,Ty} during a demonstration starting from
position number 3. Middle: Robot joint trajectories corresponding to the
teacher’s demonstration and the robot’s execution using the HMM/GMRa
approach. Bottom: Robot joint velocity profiles obtained from teacher and
robot executions, these later computed through GMRa

We used the HMM/GMRa approach proposed by Calinon
et al. because this allows us to encode the demonstrations
taking the implicit temporal information into account. Our
work differs from theirs and other approaches in: a) only
F/T are considered, b) we do not use time as an additional
input variable, c) our task behaves as a multi-valued function
where taking temporal coherence does really make sense,
and d) our task can be solved by executing two different
sets of movements. For instance, in Figure 4, the robot
joint trajectories for q5 and q6 are shown. These trajectories
are obtained from the velocity commands predicted through
GMRa using the resulting HMM shown in Figure 3. Here,
it is possible to observe how the robot’s execution is similar
to the teacher’s one for a given input pattern. Moreover,
the learning framework performs successfully when input
data lie simultaneously on two HMM states, because it uses
the temporal information encapsulated in variable αk for
deciding in which state the system is in.

V. RESULTS

For evaluating the performance of the learning framework
proposed, the teacher carried out three demonstrations for
ten initial positions placed along the box edges. Every
demonstration was executed by teleoperating the robotic arm
through the 6-DOF haptic device (as shown in Figure 2)
and following the motion strategy explained in Section IV.
From these demonstrations, the resulting training dataset
consisted of all datapoints dm

p = (Tx, Ty, ω1, ω2, . . . , ω6),
with which a 4-states HMM was trained by applying the
Baum-Welch method until convergence (Figure 5 shows the
resulting HMM).

Observing the HMM obtained, it is interesting to highlight
how HMM states are distributed in both input and output
spaces. For instance, the red state in input space covers the
beginning of all demonstrations whose initial positions are
placed on the wall opposite to where the hole is. At these

Fig. 5. Resulting 4-states HMM trained with demonstrations starting at
every position inside the box. Top: Input space composed of the most
relevant inputs {Tx,Ty}. Bottom: Output space composed of robot joint
velocities playing the most important role for the given task.

starting positions, a larger velocity command is required
to draw the ball out of its resting configuration (Figure
5, bottom). On the other hand, the blue state covers the
trajectory segments corresponding to the end of the task
(i.e. when the ball is getting out of the box) in input space.
For these torque data, the robot should not carry out any
movement (small blue ellipse at (0,0) in output space).

As for the prediction phase, one teacher’s demonstration
for each initial position was removed from the training
examples and used as “query data” for evaluating the learning
framework performance by comparing its results with teacher
executions. All robot joint trajectories obtained from velocity
commands synthesized by our HMM/GMRa approach are
smoother than the teacher’s samples (as shown for initial
position 3 in Figure 4). In addition, all synthesized trajecto-
ries follow the same motion pattern as that of the teacher’s
executions, which indicates that the strategy applied by the
human user was learned successfully.

Finally, once computational results were sufficiently good,
the prediction phase was validated experimentally. In a first
set of experiments, the ball was placed at the same initial
positions shown in Figure 2. For all different positions of
the ball, the robot was able to take the ball out of the
box. Afterwards we placed the ball at random positions,
and the robot executions achieved the final goal as well.
In these cases, the robot executes the motions learned for
the closest initial position, by identifying the corresponding
HMM state. It was observed that in some executions the ball
reached and surpassed the hole, without falling through it.
However, the robot was always able to take the ball out of
the box after some more executions, as it correctly identified
the HMM state corresponding to the current and past input
patterns (taking into account the temporal information). This



means that the robot predicts its actions as a function of its
current and past perceptions, following the teached motion
strategy. If the robot fails to reach the goal, the ball goes to
another position inside the box, providing new perceptions
from which the robot can predict new movements [21].

VI. CONCLUSIONS AND FUTURE WORK

This work presents a framework suitable to learn tasks
where force/torque data are essential. AI techniques to en-
code perception-action sequences (HMM) and to generalize
them to deal with new situations (GMRa) were embedded
in a learning-by-demonstration setting allowing a robot to
accomplish a taught task from a variety of initial condi-
tions. Unlike common approaches (i.e. symbolic or trajec-
tory learning), our work proposes a more general structure
able to encode force-based tasks with multiple solution
trajectories. Moreover, our framework performs efficiently
when the teacher’s demonstrations exhibit a multi-valued
function behavior, which means there may be more than one
action – velocity command – for the same perception (i.e.
force/torque input pattern). This was achieved by means of
a GMRa tool using temporal information encapsulated by a
HMM without considering time as another input variable,
which can be viewed as redundant information already
present implicitly along the teacher’s demonstrations.

In the past we had addressed our task as learning at
trajectory level using GMM/GMR, F/T as inputs and robot
joint values as outputs [18]. We measured the robot per-
formance through the MSE between the desired trajectory
and the predicted one. When executing the predictions in
the real setting, we realized that failures could arise when
the same F/T pattern corresponds to two (or more) possible
outputs, and therefore, temporal coherence should be taken
into account. This is why we changed from GMM/GMR
to HMM/GMRa. Low MSEs do not guarantee successful
completion of the task because the relevant issue is not to
follow exactly a trained trajectory but to orient the container
in the correct direction. Thus we changed outputs from joint
values to velocity commands. Moreover, we evaluated the
robot success directly in the execution phase as described.

Note that both computational and robot execution results
yielded smooth trajectories, that eventually took the ball out
of the box even if the robot missed the hole at previous
attempts. This was possible because our learning framework
identifies which state the ball is in, and then predicts a
suitable velocity command by taking into account the cur-
rent state and previous ones through the learned transition
probabilities. This allows the robot to try to solve the task
by changing the strategy (i.e., with different movements or
trajectories) if it failed before, which is a natural behavior
observed in humans trying to achieve a given goal.

As future work, we plan to take the learning framework
to more realistic settings where force/torque feedback is
relevant: opening doors, pulling drawers or emptying de-
formable bags. Moreover, we would like to apply force-
based skill learning to compliant robots in an active learning
environment as a refinement or correction phase. In addition,

this type of robots would allow us to extend our approach
to human-robot collaborative tasks by taking advantage of
their compliance features, from a impedance control-based
perspective.
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