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Abstract

The exact position analysis of a planar mechanism reduces to compute the
roots of its characteristic polynomial. Obtaining this polynomial almost invariably
involves, as a first step, obtaining a system of equations derived from the indepen-
dent kinematic loops of the mechanism. The use of kinematic loops to this end has
seldom been questioned despite deriving the characteristic polynomial from them
requires complex variable eliminations and, in most cases, trigonometric substitu-
tions. As an alternative, the bilateration method has recently been used to obtain
the characteristic polynomials of the three-loop Baranov trusses without relying
on variable eliminations nor trigonometric substitutions, and using no other tools
than elementary algebra. This paper shows how this technique can be applied to
members of a family of Baranov trusses resulting from the circular concatenation
of the Watt mechanism irrespective of the resulting number of kinematic loops. To
our knowledge, this is the first time that the characteristic polynomial of a Baranov
truss with more that five loops has been obtained and, hence, its position analysis
solved in closed form.

Keywords: Baranov trusses, Assur kinematic chains, position analysis, bilateration,
distance-based formulations.

1 Introduction

The position analysis of planar linkages has been dominated by resultant elimination
and tangent-half-angle substitution techniques applied to sets of kinematic loop equa-
tions. This analysis is thus reduced to finding the roots of a polynomial in one variable,
the characteristic polynomial of the linkage. When this polynomial is obtained, it is
said that the problem is solved in closed form. This approach is usually preferred to
numerical approaches because the degree of the polynomial specifies the greatest possi-
ble number of assembly configurations of the linkage and modern software of personal
computers provides guaranteed and fast computation of all real roots of a polynomial
equation and hence of all assembly configurations of the analyzed linkage.
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A non-overconstrained linkage with zero-mobility from which an Assur group can be
obtained by removing any of its links is defined as an Assur kinematic chain, basic truss
[1, 2], or Baranov1 truss when no slider joints are considered [3]. Hence, a Baranov
truss, named after the Russian kinematician G.G. Baranov [4] who first stated it in
1952 [5], corresponds to multiple Assur groups. The relevance of the Baranov trusses
derive from the fact that, if the position analysis of a Baranov truss is solved, the same
process can be applied to solve the position analysis of all its corresponding Assur
groups. Curiously enough, despite this importance, it is commonly accepted that the
Baranov trusses with more than 9 links have not been properly catalogued yet while
all Assur groups with up to 12 links have been identified (see Table 1) [3]. It is worth
mentioning here that Yang and Yao found that the number of Baranov trusses with 11
links is 239 using an algorithm that certainly requires further attention [6].

While the standard closed-form position analysis leads to complex systems of non-
linear equations derived from independent kinematic loop equations, the bilateration
method avoids the computation of loop equations as usually understood. It has recently
been shown to be a powerful technique by obtaining the characteristic polynomial of
the three 3-loop Baranov trusses without relying on variable eliminations nor half-angle
tangent substitutions [7].

Table 1: Number of Baranov trusses as a function of the number of links (alternatively,
number of loops), and number of different Assur groups resulting from eliminating one
link from the Baranov trusses in each class [3, 6].

Links Loops Baranov Resulting
trusses Assur groups

3 1 1 1
5 2 1 2
7 3 3 10
9 4 28 173
11 5 239 5442
13 6 unknown 251638

At the end of the XIX century, it was known that there were only two six-link
single-dof planar hinged linkages. At a suggestion of Burmester [8], these two linkages
were called the Watt linkage and the Stephenson linkage. Several Stephenson linkages
can be concatenated leading to what in [9] was called a Stephenson pattern. Likewise,
several Watt linkages can be concatenated to obtain what can be called, for the same
reason, a Watt pattern (see [10] for their motion simulations). If these concatenations
are circular, the results are Baranov trusses which will be called Stepheson-Baranov
and Watt-Baranov trusses, respectively (Fig. 1).

The position analysis of the Stepheson-Baranov truss of 4 loops has been solved in
closed form at least in [11, 12, 13, 14], and more recently by K. Wohlhart in [15] thus

1Some authors misspell it as Barranov.
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reaching what the author considers to be the limit of Sylvester’s elimination method.
The position analysis of the Watt-Baranov truss of 4 loops was solved in closed form
by L. Han et. al. in [16] and more recently by J. Borràs and R. Di Gregorio [17].
Elimination methods seem to reach their limit with the analysis of Baranov trusses
with four, or five loops, depending on their topology. Actually, the closed-form position
analysis of a Baranov truss with more than five loops has not been reported to the best
of our knowledge, and only the closed-form position analysis of one five-loop Baranov
truss has been obtained [12, 18]. In this paper, we address this challenge and we push
the loop limit further by solving the closed-form position analysis of Watt-Baranov
trusses, with up to six loops, using the bilateration method.

Figure 1: Left column: The Stephenson linkage, the Stephenson pattern resulting from
concatenating four Stephenson linkages, and the Stephenson-Baranov truss resulting
form the circular concatenation of four Stephenson linkages. Right colum: The Watt
linkage, the Watt pattern resulting from concatenating four Watt linkages, and the
Watt-Baranov truss resulting form the circular concatenation of four Watt linkages.

This paper is organized as follows. In Section 2, the basic formula required to apply
the bilateration method is briefly reviewed. Then, in section 3, it is shown how the
bilateration method can be applied to obtain the characteristic polynomial of a Watt-
Baranov truss with an arbitrary number of kinematic loops. To this end, it is first
shown how to derive a single scalar radical equation which is satisfied if, an only if,
the truss can be assemble and, then, how the characteristic polynomial is derived by
simply clearing radicals. This last step is actually the only costly step in the whole
process. Two examples are analyzed in Section 4, including a 6-loop Watt-Baranov
truss –whose characteristic polynomial is of degree 126– with 76 assembly modes.
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Figure 2: The bilateration problem in R
2.

2 Bilateration

The bilateration problem consists of finding the feasible locations of a point, say Pk,
given its distances to two other points, say Pi and Pj , whose locations are known. Then,
according to Fig. 2, the result, in matrix form, can be expressed as:

pik = Zi,j,k pij (1)

where

Zi,j,k =
1

D(i, j)

[

D(i, j; i, k) ∓
√

D(i, j, k)

±
√

D(i, j, k) D(i, j; i, k)

]

, (2)

is called a bilateration matrix, and

D(i1, . . . , in; j1, . . . , jn) = 2

(

−1

2

)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 . . . 1
1 si1,j1 . . . si1,jn
...

...
. . .

...
1 sin,j1 . . . sin,jn

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3)

with si,j = d2i,j = ‖pij‖
2, where pij = pj−pi =

−−→
PiPj . This determinant is known as the

Cayley-Menger bi-determinant of the point sequences Pi1 , . . . , Pin , and Pj1 , . . . , Pjn and
its geometric interpretation plays a fundamental role in the so-called Distance Geome-
try, the analytical study of Euclidean geometry in terms of invariants [19]. When the
two point sequences are the same, it is convenient to abbreviate D(i1, . . . , in; i1, . . . , in)
by D(i1, . . . , in), which is simply called the Cayley-Menger determinant of the involved
points.

Now, it is important to observe that this kind of matrices constitute an Abelian
group under product and addition and if v = Zw, where Z is a bilateration matrix,
then ‖v‖2 = det(Z) ‖w‖2. The interested reader is addressed to [7] for a more detailed
treatment of bilateration matrices and some basic geometric operations that can be
performed with them.
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Figure 3: The general n-link Watt-Baranov truss has k = n−1

2
loops and v = 3

2
(n− 1)

revolute joints. pv−1,v can be expressed as a function of p1,3 by computing 3 k − 2
bilaterations.

3 Position analysis of the general n-link Watt-Baranov

truss

Fig. 3 shows the general n-link Watt-Baranov truss, a structure with k = n−1

2
loops

and v = 3

2
(n − 1) revolute joints. The k-ary link is defined by P1P4P7 . . . Pv−5Pv−2,

and the k ternary links by the triangles P1PvP2, P4P3P5, P7P6P8,. . ., Pv−5Pv−6Pv−4

and Pv−2Pv−3Pv−1. The position analysis problem for this structure consists in, given
the dimensions of all links, calculating all relative possible transformations between
them all. To solve this problem, instead of directly computing the relative Cartesian
poses of all links through loop-closure equations, we will compute the set of values of
s1,3 compatible with all binary and ternary links side lengths. Thus, this procedure is
entirely posed in terms of distances.

On the one hand, according to Fig. 3, p1,4, p1,7, . . . , p1,v−5, p1,v−2 can be expressed
as a function of p1,3 using bilaterations as follows:

p1,4 = Z1,3,4 p1,3 (4)

p1,7 = Z1,4,7 p1,4 = Z1,4,7 Z1,3,4 p1,3 (5)

p1,10 = Z1,7,10 p1,7 = Z1,7,10Z1,4,7,Z1,3,4 p1,3 (6)

...

p1,v−5 = Z1,v−8,v−5 Z1,v−11,v−8 . . . Z1,4,7,Z1,3,4 p1,3 (7)

p1,v−2 = Z1,v−5,v−2 Z1,v−8,v−5 . . . Z1,4,7,Z1,3,4 p1,3. (8)
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On the other hand, for the ternary link P4P3P5, we have

p4,5 = Z4,3,5 p4,3

p4,1 + p1,5 = Z4,3,5 (p4,1 + p1,3)

p1,5 = p1,4 + Z4,3,5 (p1,3 − p1,4) . (9)

Likewise, for the ternary links P7P6P8, . . ., Pv−5Pv−6Pv−4 and Pv−2Pv−3Pv−1, we obtain

p1,6 = p1,7 + Z7,5,6 (p1,5 − p1,7) (10)

p1,8 = p1,7 + Z7,6,8 (p1,6 − p1,7) (11)

...

p1,v−3 = p1,v−2 + Zv−2,v−4,v−3 (p1,v−4 − p1,v−2) (12)

p1,v−1 = p1,v−2 + Zv−2,v−3,v−1 (p1,v−3 − p1,v−2) . (13)

Now, substituting (4)-(8) in (9)-(13) and then replacing the resulting expression for
p1,5 in that for p1,6, and the resulting expression for p1,6 after this substitution in that
for p1,8, and so on till an expression is obtained for p1,v−1, we get

p1,v−1 = Qn p1,3. (14)

Moreover, for the ternary link P1PvP2, we have

p1,v = Z1,2,v Z1,3,2 p1,3. (15)

Finally, using equations (14) and (15), we get

pv−1,v = pv−1,1 + p1,v = (−Qn + Z1,2,v Z1,3,2)p1,3. (16)

Therefore,

det(−Qn + Z1,2,v Z1,3,2) =
sv−1,v

s1,3
. (17)

The left hand side of the above equation is a function of the k − 1 unknown squared
distances s1,3 and s5,7, s8,10, . . ., sv−7,v−5, sv−4,v−2.

Since, using the same procedure to obtain (16), allows us to obtain

p5,7 = −p1,5 + p1,7 = Dn1
p1,3 (18)

p8,10 = −p1,8 + p1,10 = Dn2
p1,3 (19)

...

pv−7,v−5 = −p1,v−7 + p1,v−5 = Dnk−3
p1,3 (20)

pv−4,v−2 = −p1,v−4 + p1,v−2 = Dnk−2
p1,3. (21)
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Therefore,

s5,7 = det(Dn1
) s1,3 (22)

s8,10 = det(Dn2
) s1,3 (23)

...

sv−7,v−5 = det(Dnk−3
) s1,3 (24)

sv−4,v−2 = det(Dnk−2
) s1,3. (25)

The substitution of (22) - (25) into (17) yields a scalar equation in a single variable:
s1,3. The roots of this equation, in the range in which the signed areas of the triangles
P1P2P3 and P1P3P4 are real, that is, the range

[

max{(d1,2 − d2,3)
2
, (d1,4 − d3,4)

2},min{(d1,2 + d2,3)
2
, (d1,4 + d3,4)

2}
]

,

determine the assembly modes of the general n-link Watt-Baranov truss. These roots
can be readily obtained using, for example, an interval Newton method for the 2k

possible combinations for the signs of the signed areas of the triangles P1P2P3, P1P3P4,
and P7P5P6, P10P8P9, . . ., Pv−5Pv−7Pv−6, Pv−2Pv−4Pv−3.

In order to obtain the characteristic polynomial it just remains to clear all square
roots in the obtained scalar equation by isolating one at a time and squaring the result
till no square root remains. Using a computer algebra system, it can be seen that this
clearing process leads to

s2
k−1

1,3 s2
k−2

5,7 s2
k−3

8,10 . . . s4v−7,v−5 s
2
v−4,v−2 ∆n = 0 (26)

where ∆n is a polynomial in s1,3 of degree 2k+1 − 2. The extraneous roots at s1,3 = 0,
. . . , sv−4,v−2 = 0 were introduced when clearing denominators, so they can be dropped.
For each of the real roots of polynomial ∆n, we can determine the Cartesian position of
the v−k revolute pair centers of the ternary links, with respect to the n-ary link, using
equations (9)-(13), equation (15), and the equation p1,3 = Z1,4,3p1,4. This process
leads up to 2k combinations of locations for Pv−1 and Pv , and at least one of them
must satisfy the distance imposed by the binary link connecting them.

4 Examples

4.1 5-loop Watt-Baranov truss

Consider a 11-link Watt-Baranov truss. Since, in this case k = 5, v = 15, equation (17)
reduces to

det(−Q11 + Z1,2,15 Z1,3,2) =
s14,15

s1,3
, (27)
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where

Q11 = Z1,10,13 Z1,7,10Z1,4,7Z1,3,4 + Z13,12,14 Z13,11,12

(

Z1,7,10 Z1,4,7Z1,3,4

+ Z10,9,11 Z10,8,9

(

Z1,4,7Z1,3,4Z7,6,8Z7,5,6

(

Z1,3,4 + Z4,3,5 +
(

I− Z1,3,4

)

− Z1,4,7Z1,3,4

)

− Z1,7,10Z1,4,7 Z1,3,4

)

− Z1,10,13 Z1,7,10 Z1,4,7Z1,3,4

)

,

and equations (22)-(25) reduce to

s5,7 = det(D111) s1,3 (28)

s8,10 = det(D112) s1,3 (29)

s11,13 = det(D113) s1,3. (30)

where

D111 = −Z1,3,4 − Z4,3,5 (I− Z1,3,4) + Z1,4,7Z1,3,4

D112 = −Z1,4,7Z1,3,4 − Z7,6,8 Z7,5,6

(

Z1,3,4 + Z4,3,5

(

I− Z1,3,4

)

− Z1,4,7 Z1,3,4

)

+ Z1,7,10 Z1,4,7Z1,3,4

D113 = −Z1,7,10Z1,4,7 Z1,3,4 − Z10,9,11 Z10,8,9

(

Z1,4,7Z1,3,4 + Z7,6,8 Z7,5,6

(

Z1,3,4

+ Z4,3,5

(

I− Z1,3,4

)

− Z1,4,7Z1,3,4

)

− Z1,7,10Z1,4,7Z1,3,4

)

+ Z1,10,13 Z1,7,10Z1,4,7 Z1,3,4

By expanding all the Cayley-Menger determinants involved in equations (28)-(30),
we get

s5,7 =
1Λ1 +

1Λ2 A1,3,4 (31)

s8,10 =
1

s5,7

(

2Λ1 +
2Λ2 A1,3,4 +

2Λ3 A7,5,6 +
2Λ4A1,3,4 A7,5,6

)

(32)

s11,13 =
1

s5,7 s8,10

(

3Λ1 +
3Λ2A1,3,4 +

3Λ3 A7,5,6 +
3Λ4 A10,8,9 +

3Λ5 A1,3,4A7,5,6

+ 3Λ6 A1,3,4 A10,8,9 +
3Λ7A7,5,6 A10,8,9 +

3Λ8 A1,3,4A7,5,6 A10,8,9

)

(33)

where

A1,3,4 = ±
1

2

√

[

s1,3 − (d4,3 − d4,1)
2
] [

(d4,3 + d4,1)
2 − s1,3

]

,

A7,5,6 = ±
1

2

√

[

s5,7 − (d6,5 − d6,7)
2
] [

(d6,5 + d6,7)
2 − s5,7

]

,

A10,8,9 = ±
1

2

√

[

s8,10 − (d9,8 − d9,10)
2
] [

(d9,8 + d9,10)
2 − s8,10

]

are the unknown areas of the triangles P1P3P4, P7P5P6, and P10P8P9, respectively,
1Λ1,

1Λ2 are polynomials in s1,3,
2Λi, i = 1, . . . , 4 are polynomials in s1,3 and s5,7, and

3Λi,
i = 1, . . . , 8 are polynomials in s1,3, s5,7, and s8,10.
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Similarly, by expanding all the Cayley-Menger determinants in equation (27), we
get

1

s1,32 s5,7 s8,10 s11,13
Ψ =

s14,15

s1,3
, (34)

that is,
Ψ = s1,3 s5,7 s8,10 s11,13 s14,15, (35)

where

Ψ = Ψ1 +Ψ2A1,2,3 +Ψ3A1,3,4 +Ψ4 A7,5,6 +Ψ5A10,8,9

+Ψ6 A13,11,12 +Ψ7A1,2,3 A1,3,4 +Ψ8 A1,2,3A7,5,6

+Ψ9 A1,2,3A10,8,9 +Ψ10 A1,2,3A13,11,12 +Ψ11A1,3,4 A7,5,6

+Ψ12 A1,3,4 A10,8,9 + . . . +Ψ31A1,3,4 A7,5,6A10,8,9 A13,11,12

+Ψ32 A1,2,3 A1,3,4A7,5,6 A10,8,9A13,11,12,

with Ψi, i = 1, . . . , 25, polynomials in s1,3, s5,7, s8,10, and s11,13.
Now, by expressing equation (35) as a linear equation in A13,11,12 —i.e., a +

bA13,11,12 = 0, properly squaring it —i.e., a2 − b2A2
13,11,12 = 0, and replacing equation

(33) in the result, a radical equation in s1,3, s5,7, and s8,10 is obtained. Repeating this
process for A10,8,9 and then for A7,5,6, we get the scalar radical equation

Φ1 +Φ2A1,2,3 +Φ3A1,3,4 +Φ4A1,2,3 A1,3,4 = 0, (36)

where Φ1, Φ2, Φ3 and Φ4 are polynomials in a single variable: s1,3. If the last procedure
is applied to equations (31), (32), and (33), we get polynomials in s1,3 and s5,7, say
P1(s1,3, s5,7), s1,3 and s8,10, say P2(s1,3, s8,10), and s1,3 and s11,13, say P3(s1,3, s11,13),
respectively.

Finally, the square roots in (36) can be eliminated by properly twice squaring it.
This operation yields

− Φ4
4A

4
1,2,3A

4
1,3,4 + 2Φ2

4Φ
2
2A

4
1,2,3A

2
1,3,4 + 2Φ2

4Φ
2
3A

2
1,2,3A

4
1,3,4 − Φ4

2A
4
1,2,3 − Φ4

3A
4
1,3,4 − Φ4

1

+
(

2Φ2
2Φ

2
3 − 8Φ2Φ3Φ4Φ1 + 2Φ2

4Φ
2
1

)

A2
1,2,3A

2
1,3,4 + 2Φ2

1Φ
2
2A

2
1,2,3 + 2Φ2

1Φ
2
3A

2
1,3,4 = 0

(37)

which, when fully expanded, leads to

s161,3 P1(s1,3, 0)
8 P2(s1,3, 0)

4 P3(s1,3, 0)
2 ∆11 = 0

s161,3 s
8
5,7 s

4
8,10 s

2
11,13∆11 = 0 (38)

where ∆11 is a polynomial in s1,3 of degree 62. The extraneous roots at s5,7 = 0,
s8,10 = 0, and s11,13 = 0 were introduced when clearing denominators to obtain equation
(35), so they can be dropped.

Finally, let us suppose that s1,2 = 40, s1,4 = 13, s1,7 = 26, s1,10 = 34, s1,13 = 17,
s1,15 = 13, s2,3 = 50, s2,15 = 17, s3,4 = 81, s3,5 = 9, s4,5 = 90, s4,7 = 13, s4,10 = 49,
s4,13 = 52, s5,6 = 125, s6,7 = 40, s6,8 = 9, s7,8 = 37, s7,10 = 20, s7,13 = 45, s8,9 = 136,
s9,10 = 53, s9,11 = 9, s10,11 = 50, s10,13 = 17, s11,12 = 181, s12,13 = 50, s12,14 = 9,
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s13,14 = 65, and s14,15 = 29. Then, proceeding as explained above, we obtain the
characteristic polynomial

s1,3
62 − 4091.5078 s1,3

61 + 8.3074 106 s1,3
60 − 1.1186 1010 s1,3

59 + 1.1260 1013 s1,3
58

− 9.0519 1015 s1,3
57 + 6.0604 1018 s1,3

56 − 3.4776 1021 s1,3
55 + 1.7461 1024 s1,3

54

− 7.7894 1026 s1,3
53 + 3.1238 1029 s1,3

52 − 1.1363 1032 s1,3
51 + 3.7751 1034 s1,3

50

− 1.1513 1037 s1,3
49 + 3.2360 1039 s1,3

48 − 8.4044 1041 s1,3
47 + 2.0208 1044 s1,3

46

− 4.5040 1046 s1,3
45 + 9.3129 1048 s1,3

44 − 1.7874 1051 s1,3
43 + 3.1855 1053 s1,3

42

− 5.2730 1055 s1,3
41 + 8.1092 1057 s1,3

40 − 1.1589 1060 s1,3
39 + 1.5391 1062 s1,3

38

− 1.9002 1064 s1,3
37 + 2.1807 1066 s1,3

36 − 2.3265 1068 s1,3
35 + 2.3073 1070 s1,3

34

− 2.1267 1072 s1,3
33 + 1.8215 1074 s1,3

32 − 1.4492 1076 s1,3
31 + 1.0704 1078 s1,3

30

− 7.3366 1079 s1,3
29 + 4.6623 1081 s1,3

28 − 2.7447 1083 s1,3
27 + 1.4952 1085 s1,3

26

− 7.5291 1086 s1,3
25 + 3.4992 1088 s1,3

24 − 1.4987 1090 s1,3
23 + 5.9041 1091 s1,3

22

− 2.1353 1093 s1,3
21 + 7.0731 1094 s1,3

20 − 2.1407 1096 s1,3
19 + 5.9032 1097 s1,3

18

− 1.4791 1099 s1,3
17 + 3.357 10100 s1,3

16 − 6.8819 10101 s1,3
15 + 1.271 10103 s1,3

14

− 2.111 10104 s1,3
13 + 3.149 10105 s1,3

12 − 4.2226 10106 s1,3
11 + 5.0997 10107 s1,3

10

− 5.5526 10108 s1,3
9 + 5.4328 10109 s1,3

8 − 4.7166 10110 s1,3
7 + 3.5398 10111 s1,3

6

− 2.2029 10112 s1,3
5 + 1.0721 10113 s1,3

4 − 3.7586 10113 s1,3
3 + 8.4177 10113 s1,3

2

− 1.0258 10114 s1,3 + 7.3862 10113 = 0.

This polynomial has 16 real roots. The values of these roots as well as the cor-
responding assembly modes, for the case in which P1 = (12, 10)T , P4 = (10, 13)T ,
P7 = (13, 15)T , P10 = (17, 13)T , and P13 = (16, 9)T , appear in Fig. 4.

The coefficients of the above polynomial have to be computed in rational arith-
metic. Otherwise, numerical problems make impracticable the correct computation of
its roots. Although these coefficients are given here in floating point arithmetic for
space limitation reasons, they could be of interest for comparison with other possible
methods.

4.2 6-loop Watt-Baranov truss

Let us consider a 13-link Watt-Baranov truss where s1,2 = 58, s1,4 = 18, s1,7 = 40,
s1,10 = 53, s1,13 = 50, s1,16 = 20, s1,18 = 41, s2,3 = 52, s2,18 = 13, s3,4 = 64, s3,5 = 18,
s4,5 = 34, s4,7 = 10, s4,10 = 41, s4,13 = 68, s4,16 = 50, s5,6 = 50, s6,7 = 74, s6,8 = 10,
s7,8 = 68, s7,10 = 17, s7,13 = 50, s7,16 = 52, s8,9 = 65, s9,10 = 68, s9,11 = 9, s10,11 = 89,
s10,13 = 13, s10,16 = 29, s11,12 = 61, s12,13 = 65, s12,14 = 26, s13,14 = 65, s13,16 = 10,
s14,15 = 113, s15,16 = 40, s15,17 = 13, s16,17 = 81, and s17,18 = 68. Then, proceeding as
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s1,3 = 30.6486 s1,3 = 39.0249 s1,3 = 47.1860 s1,3 = 48.6406

s1,3 = 69.9863 s1,3 = 77.3161 s1,3 = 90.1506 s1,3 = 130.0000

s1,3 = 132.2178 s1,3 = 134.2206 s1,3 = 134.9836 s1,3 = 140.6611

s1,3 = 142.9286 s1,3 = 143.7773 s1,3 = 148.1286 s1,3 = 151.6614

Figure 4: The assembly modes of the analyzed 11-link Watt-Baranov truss
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explained in the previous example, the following characteristic polynomial is obtained

s1,3
126 − 9.4336 103 s1,3

125 + 4.3965 107 s1,3
124 − 1.3499 1011 s1,3

123 + 3.0727 1014 s1,3
122

− 5.5326 1017 s1,3
121 + 8.2112 1020 s1,3

120 − 1.0335 1024 s1,3
119 + 1.1265 1027 s1,3

118

− 1.0804 1030 s1,3
117 + 9.2339 1032 s1,3

116 − 7.1053 1035 s1,3
115 + 4.9645 1038 s1,3

114

− 3.1727 1041 s1,3
113 + 1.8663 1044 s1,3

112 − 1.0162 1047 s1,3
111 + 5.1482 1049 s1,3

110

− 2.4382 1052 s1,3
109 + 1.0843 1055 s1,3

108 − 4.5474 1057 s1,3
107 + 1.8055 1060 s1,3

106

− 6.8124 1062 s1,3
105 + 2.4508 1065 s1,3

104 − 8.4319 1067 s1,3
103 + 2.7813 1070 s1,3

102

− 8.8139 1072 s1,3
101 + 2.6874 1075 s1,3

100 − 7.8923 1077 s1,3
99 + 2.2337 1080 s1,3

98

− 6.0942 1082 s1,3
97 + 1.6026 1085 s1,3

96 − 4.0606 1087 s1,3
95 + 9.9090 1089 s1,3

94

− 2.3274 1092 s1,3
93 + 5.2579 1094 s1,3

92 − 1.1418 1097 s1,3
91 + 2.3816 1099 s1,3

90

− 4.7688 10101 s1,3
89 + 9.1613 10103 s1,3

88 − 1.6877 10106 s1,3
87 + 2.9804 10108 s1,3

86

− 5.0434 10110 s1,3
85 + 8.1760 10112 s1,3

84 − 1.2695 10115 s1,3
83 + 1.8879 10117 s1,3

82

− 2.6886 10119 s1,3
81 + 3.6665 10121 s1,3

80 − 4.7884 10123 s1,3
79 + 5.9887 10125 s1,3

78

− 7.1733 10127 s1,3
77 + 8.2296 10129 s1,3

76 − 9.0435 10131 s1,3
75 + 9.5199 10133 s1,3

74

− 9.6005 10135 s1,3
73 + 9.2758 10137 s1,3

72 − 8.5868 10139 s1,3
71 + 7.6163 10141 s1,3

70

− 6.4729 10143 s1,3
69 + 5.2711 10145 s1,3

68 − 4.1128 10147 s1,3
67 + 3.0746 10149 s1,3

66

− 2.2020 10151 s1,3
65 + 1.5107 10153 s1,3

64 − 9.9266 10154 s1,3
63 + 6.2462 10156 s1,3

62

− 3.7628 10158 s1,3
61 + 2.1696 10160 s1,3

60 − 1.1969 10162 s1,3
59 + 6.3154 10163 s1,3

58

− 3.1856 10165 s1,3
57 + 1.5353 10167 s1,3

56 − 7.0650 10168 s1,3
55 + 3.1020 10170 s1,3

54

− 1.2984 10172 s1,3
53 + 5.1748 10173 s1,3

52 − 1.9615 10175 s1,3
51 + 7.0595 10176 s1,3

50

− 2.4079 10178 s1,3
49 + 7.7641 10179 s1,3

48 − 2.3591 10181 s1,3
47 + 6.7261 10182 s1,3

46

− 1.7886 10184 s1,3
45 + 4.3961 10185 s1,3

44 − 9.8442 10186 s1,3
43 + 1.9561 10188 s1,3

42

− 3.2556 10189 s1,3
41 + 3.7746 10190 s1,3

40 + 3.7789 10190 s1,3
39 − 1.9038 10193 s1,3

38

+ 7.1734 10194 s1,3
37 − 1.8751 10196 s1,3

36 + 3.8834 10197 s1,3
35 − 6.3099 10198 s1,3

34

+ 6.6906 10199 s1,3
33 + 2.0383 10200 s1,3

32 − 3.5351 10202 s1,3
31 + 1.2135 10204 s1,3

30

− 3.0316 10205 s1,3
29 + 6.3595 10206 s1,3

28 − 1.1749 10208 s1,3
27 + 1.9535 10209 s1,3

26

− 2.9560 10210 s1,3
25 + 4.0962 10211 s1,3

24 − 5.2162 10212 s1,3
23 + 6.1146 10213 s1,3

22

− 6.6023 10214 s1,3
21 + 6.5653 10215 s1,3

20 − 6.0073 10216 s1,3
19 + 5.0514 10217 s1,3

18

− 3.8970 10218 s1,3
17 + 2.7528 10219 s1,3

16 − 1.7765 10220 s1,3
15 + 1.0450 10221 s1,3

14

− 5.5886 10221 s1,3
13 + 2.7106 10222 s1,3

12 − 1.1893 10223 s1,3
11 + 4.7079 10223 s1,3

10

− 1.6757 10224 s1,3
9 + 5.3402 10224 s1,3

8 − 1.5139 10225 s1,3
7 + 3.7811 10225 s1,3

6

− 8.2030 10225 s1,3
5 + 1.5138 10226 s1,3

4 − 2.3010 10226 s1,3
3 + 2.7265 10226 s1,3

2

− 2.2556 10226 s1,3 + 9.7893 10225 = 0.

This polynomial, that was computed using exact rational arithmetic and is pre-
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sented here only for comparison purposes of eventual future works, has 76 real roots.
The values of these roots as well as the corresponding configurations, for the case in
which P1 = (12, 8)T , P4 = (9, 11)T , P7 = (10, 14)T , P10 = (14, 15)T , P13 = (17, 13)T ,
and P16 = (16, 10)T , appear in Figs. 5, 6, and 7.

5 Conclusion

Given a Watt-Baranov truss, it has been shown how a scalar radical equation —which
is satisfied if, and only if, it is assemblable— can be straightforwardly derived using bi-
laterations, independently of the number of its kinematic loops. Clearing radicals from
this equation leads to the characteristic polynomial of the corresponding Watt-Baranov
truss. Although conceptually simple, this clearing operation is computationally costly
as it yields an exponential number of terms with the number of involved bilaterations.
The whole process has been carried out for Watt-Baranov trusses with up to six loops
and two examples have been presented. Obtaining the characteristic polynomial of
a Watt-Baranov truss with more than six loops becomes a huge task. This suggest
the convenience of working with the compact expression including radicals whenever
possible, depending on the application.
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