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Abstract. Segmentation is an important preprocessing step in many ap-
plications. Compared to colour segmentation, fusion of colour and depth
greatly improves the segmentation result. Such a fusion is easy to do by
stacking measurements in different value dimensions, but there are better
ways. In this paper we perform fusion using the channel representation,
and demonstrate how a state-of-the-art segmentation algorithm can be
modified to use channel values as inputs. We evaluate segmentation re-
sults on data collected using the Microsoft Kinect peripheral for Xbox
360, using the superparamagnetic clustering algorithm. Our experiments
show that depth gradients are more useful than depth values for segmen-
tation, and that channel coding both colour and depth gradients makes
tuned parameter settings generalise better to novel images.

1 Introduction

Segmentation of a colour image into semantically meaningful regions is one of
the oldest problems in computer vision. Purely colour-based segmentation is of-
ten problematic, due to colour changes on the surfaces of textured objects. It
is thus often argued that without auxiliary information (such as prior knowl-
edge obtained e.g. using object appearance learning) bottom up, image based
segmentation is an ill-posed problem [15, 11].

In contrast to colour regions, homogeneous regions obtained from depth seg-
mentation are more likely to correspond to what we intuitively perceive as ob-
jects. The reason for this is that we categorise objects, mainly according to what
actions we can perform on them [14, 11]. An entity that is defined in 3D is more
likely to be acted upon separately, than one that is defined only by colour. By
fusing colour and depth we can however obtain an even better result, and here
we investigate how to do so.

Our intended application is segmentation of individual leaves on growing
plants, and we use data from the recently introduced Microsoft Kinect sensor3.
As an operational problem definition, we make use of a set of hand-labelled
images, where individual leaves have been assigned different labels.
3 http://www.xbox.com/Kinect



1.1 Related Work

Much work on fusion of colour and depth has been done over the years. Such
work has either used custom made sensors, as e.g. in [4], or more recently, time-
of-flight sensors [7, 3, 5]. Another large body of similar work is stereo rig segmen-
tation [1, 20]. Stereo rig research is however of a different nature, as the input is
two RGB images, and thus best results are obtained when jointly estimating a
segmentation and a depth map [20].

We use depth from structured light (the Kinect output), which gives us quasi-
dense depth maps; values almost everywhere, but with thin missing-data shadows
near occlusion boundaries.

Currently there exists no standard evaluation set for RGB+depth segmenta-
tion, instead only qualitative examples of success are shown, see e.g. [4, 1, 7, 3].
In [20, 5] only the depth map quality is evaluated. In colour image segmentation,
good evaluation datasets exist, see e.g. [16], and these are of great use when
selecting algorithms for particular applications. We have assembled a dataset
with hand-labelled ground truth, and we use it to thoroughly verify the relative
contributions of colour and depth, as well as the improvement offered by channel
coding.

Our application is inspection and measurement of growing plants. As the
scene is static, we cannot exploit either background modelling [7] or tracking
[3]. Furthermore, purely colour-based segmentation is particularly brittle here,
due to small reflectance variations, shadows, and in particular occlusions [6].
Segmentation for plant model registration is considered to be a hard problem
that requires manual interaction even if colour and depth information is used [17].

We improve fusion of colour and spatial derivatives of depth, by using the
channel representation [12]. By feeding the fused channel vectors to a state-of-
the-art colour segmentation algorithm [2] we obtain a method that once tuned,
will generalise well to new data.

2 Methods and Materials

2.1 The Microsoft Kinect

The Microsoft Kinect1 is a peripheral device for the Xbox 360. It is used to obtain
dense depth estimates using a structured light pattern. The device contains a
colour camera, a near-infrared (NIR) camera and a laser projector, offset by a
narrow baseline, see Fig. 1, a, b.

A structured light pattern is projected onto the scene, using a laser projector
with a characteristic wavelength of 830 nm4. The structured light pattern is
designed to have a negligible auto-correlation, and is imaged by the NIR camera.
The displacement of the NIR camera relative to the laser projector allows the
distance to objects in the scene to be computed using triangulation [18]. The
device is capable of outputting RGB, NIR and depth images with 640 × 480

4 http://openkinect.org/wiki
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Fig. 1. The Kinect device: a, b (A) – laser projector, (B) – colour camera, (C) –
NIR camera; Images from the Kinect: c – RGB image from colour camera; d –
light pattern as imaged by NIR camera; e – resulting depth map.

pixels at 30 frames per second (Fig. 1, c–e). Open source drivers in the form
of the libfreenect5 library are available from the OpenKinect6 community
and can be used to interface with the Kinect device. Approximate formulae for
converting the Kinect depth map to metric distances are also available2.

We use the libfreenect3 library to control the Kinect, and receive the colour
and depth video streams. The two streams need to be aligned, since the position,
orientation and field of view (FoV) of the cameras are different. We do this by first
estimating the intrinsic camera parameters of the two cameras, using the widely
used OpenCV7 implementation of [22]. We then find the relative orientation and
translation between the cameras, by minimising the transfer error in the image
plane of the colour image, using manually selected corresponding points in the
colour and NIR images. We do this using the non-linear least squares solver
lsqnonlin in Matlab.

Note that, as the Kinect cameras are rigidly mounted, the calibration de-
scribed here only has to be performed once for each unit. In the following, we
thus consider the RGB image f(x, y), and the depth map h(x, y), transferred to
the RGB camera as the input.

2.2 Fused Feature Vectors

The depth image h(x, y) delivered by the Kinect is a) quantised and b) the
quantisation levels are proportional to the absolute depth. This implies that
segmentation based on the depth becomes more difficult if the respective part of

5 https://github.com/OpenKinect/libfreenect
6 http://openkinect.org
7 http://opencv.willowgarage.com



the scene is located further away from the camera. Due to the constant spatial
accuracy in the NIR camera, this behaviour is sensible. However, for leaves that
touch each other and which are at distances of approximately one meter, the
segmentation will bleed out between neighbouring leaves if the segmentation is
based on regularising the gradient of the depth image:

Esmooth = ρ(|∇h(x, y)|2) , (1)

where Esmooth is the regularising term and ρ() is a monotonic function.
Touching leaves are unlikely to have identical surface normals. Therefore, we

choose to regularise the differences in the gradients of the depth map instead:

Esmooth = ρ(|∇hx(x, y)|2 + |∇hy(x, y)|2) , (2)

where hx(x, y) = ∂
∂xh(x, y) and hy(x, y) = ∂

∂yh(x, y).
Thus, we have three requirements for assigning image points to the same seg-

ment: similar colour (f(x, y)), similar x-derivative of the depth image (hx(x, y)),
and similar y-derivative of the depth image (hy(x, y)). In the ideal case, the fea-
ture vector used for segmentation, called g(x, y) in what follows, should represent
f(x, y), hx(x, y), and hy(x, y). In the experiments below, five different variants
of the feature vector will be used:

g(x, y) = f(x, y) (3)

g(x, y) = h(x, y) (4)
g(x, y) =

 hx(x, y)
hy(x, y)√

hx(x, y)2 + hy(x, y)2

 (5)

g(x, y) =

(1−λ)w(f(x, y); b1)
λw(hx(x, y); b2)
λw(hy(x, y); b2)

 (6) g(x, y) =


(1− λ)f(x, y)
λhx(x, y)
λhy(x, y)

λ
√
hx(x, y)2 + hy(x, y)2

 (7)

where λ > 0 is a weight factor between colour and depth and w is the channel
vector computed using the basis function bj , cf. sect. 2.4. The respective feature
vector g(x, y) is then spatially clustered using superparamagnetic clustering.

2.3 Superparamagnetic Clustering

In the image, each pixel is characterised by a feature vector g(x, y). Our goal
is to to group the image pixels into spatially connected areas of similar feature
values. This defines a pixel labelling problem, where a label has to be assigned
to every pixel i, which we call li. To find this label configuration, we use the
method of superparamagnetic clustering of data [2]. In this method, each pixel
i is assigned a spin variable σi (not to be confused with the label li), which
can take q different states. The spins interact with each other such that spins
having a similar feature value have the tendency to align. Here, we only consider
nearest neighbour coupling, i.e., two pixels are i and j with coordinates (xi, yi)
and (xj , yj) are only interacting if |(xi − xj)| ≤ 1 and |(yi − yj)| ≤ 1.



The spin states configuration is then determined by a Potts energy function

E = −
∑

〈ij〉Jijδ(σi, σj) , (8)

with Jij = 1−4/4̄ and 4ij = |gi−gj |, where gi and gj are the feature vectors
of the pixels i and j, respectively. The mean distance 4̄ is obtained by averaging
over all bonds and scaling with a factor h. The Kronecker δ function is defined
as δ(a, b) = 1 if a = b and zero otherwise.

The model is a statistical model, so the probability P (S) of a spin configura-
tion S is determined by the Boltzmann distribution through P (S) ∝ exp(−E/T ),
where T is the temperature of the system. This implies that the energy is the
logarithm of the probability of the spin configuration and can thus also be viewed
as the log likelihood of the posterior distribution of a Markov Random Field [10].

The grouping problem is then solved by finding clusters of correlated spins in
the low temperature equilibrium states of the energy function E, using a sigmoid
of E as the link strength. The total number M of segments is then determined
by counting the computed segments. It is usually different from the total number
q of spin states, which is a parameter of the algorithm (here q = 30).

We solve this task by implementing a clustering algorithm. In a first step,
“satisfied” bonds, i.e. bonds connecting pixels of identical spins σi = σj , are
identified. Then, in a second step, the satisfied bonds are “frozen” with some
probability Pij . Pixels connected by frozen bonds define a cluster, which are
updated by assigning the same value to all spins inside a cluster [19]. In the
method of superparamagnetic clustering proposed by Blatt et al. [2] this is done
independently for each cluster. The algorithm is controlled by the “temperature”
parameter, and has been shown to deliver robust results over a large temperature
range. After 100 iterations, clusters are used to define segments with labels li.
As a consequence, two spins which are in the same spin state can carry different
segment labels. This allows testing new spin combinations in the next iteration,
while stabilising segments having similar feature values.

2.4 Channel Coding

Adding depth derivatives, hx(x, y), hy(x, y), and colour, f(x, y), as different com-
ponents of a vector space (7) is not sensible due the different respective physical
units. Instead, we will use smooth basis functions to generate probabilistic repre-
sentations of colour and depth derivatives and combine those (6). The generated
representations, called channel representations [12], are a special case of soft
histograms, with the additional property that modes of the underlying density
can be extracted with sub-bin accuracy [9].

Channel representations are also known as population codes [21]. They differ
from GMMs and Parzen window (or kernel density) estimators, because posi-
tions of the basis functions are spread regularly across the domain. This has
the advantage that signal processing methods can be used for manipulation, see
e.g. [13] for the use of basis functions in the colour channels.
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Fig. 2. Illustration of basis functions for N = 8. The basis functions are spaced with
distance d and have a width of 3d. The encoded values may lie between gmin and gmax.

Given a feature component g, the basis functions are located on a grid with
spacing d. The used kernel function b(g) are compact and overlapping. Through-
out this paper they have a support of size 3d, see Fig. 2. In the remainder of this
paper, cos2 kernel functions [12] are used:

b(g) ,
2
3d

{
cos2(πg3d ) |g| < 3d

2

0 |g| ≥ 3d
2

. (9)

The range of g together with d determine the number of basis functions N =
(gmax − gmin)/d + 2. The grid index is n ∈ {0 . . . N − 1}. Using (9), we obtain
the channel vector w = [w0, w1, . . . , wN−1]T from g using:

wn(g; b) = b(g − nd− d/2− gmin) . (10)

Usually, several feature components from a local neighbourhood are pooled in
each vector by local averaging of channel vectors.

The distance of channel vectors behaves like a sigmoid function of the cor-
responding feature distance: Large distances become saturated [9]. Statistically
independent channel vectors can be concatenated, as is done in (6), and still
result in sensible distance measures. The RGB vector might be interpreted as a
channel vector of the spectral density with length N = 3 and the colour match-
ing function as basis functions. Applying spatial averaging, the resolution of the
channel vector is increased [8]. Channel encoding is denoted w(f(x, y); b1) in (6).

3 Experiments

3.1 Data sets

Evaluation data consists of six pairs of images, each consisting of a colour image
(640 × 480 pixels in 8-bit RGB), and an aligned depth map of equal resolu-
tion. An example of such an image pair is shown in figure 3. These image pairs
(henceforth denoted plant1 to plant6) were chosen to illustrate the challenges
faced when performing segmentation based on colour and depth. The objective
is to segment leaves on the plant from the background, and from each other.
This causes problems when using colour-based segmentation due to the similar-
ity in colour between one leaf and another. The complex structure with many



Fig. 3. Examples of evaluation images and segmentation evaluation. From left
to right: Colour image and depth map for the plant3 images. Illustrations (a) and (b)
used to describe the segmentation evaluation procedure (see section 3.2).

occlusion boundaries where leaves overlap also causes problems for depth-based
segmentation, as do the connections of leaves to one another.

3.2 Performance Evaluation

Performance evaluation was carried out using manually segmented ground-truth
images. In these images, regions of the kind we wish to segment were manually
separated and labelled. Examples of such images are shown in figure 5, first and
third row. In [16], precision and recall measures are used to evaluate performance.
While this is readily applicable to a binary problem, its generalisation to the
multi-region segmentation case is not straightforward. We instead propose a
consensus score, s, with which to score a particular segmentation of an image.
The score s is computed as the sum of two terms, where one serves to reward
coverage of ground truth segments and penalise over-segmentation, and the other
serves to penalise under-segmentation and merging of ground-truth regions.

When calculating sY(X), X is the segment for which the score is calculated,
and Y = {Yj}J1 are overlapping segments in the result being compared to. With
regions as in figure 3(a) (with X = A and Y = {B1, B2}), A corresponds to a
ground-truth segment, and B1 and B2 correspond to overlapping segmentation
results. With S(R) denoting the area of a particular segment, sB(A) is:

sB(A) = max
i

(S(A ∩Bi)−
∑
j 6=i

S(A ∩Bj)) . (11)

For the example in figure 3(a) we get sB(A) = S(A ∩B1)− S(A ∩B2).
When all ground-truth segments in an image have been scored in this way,

the roles of ground-truth and segmentation results are reversed. With regions as
in figure 3(b), with B corresponding to a segment in the segmentation result,
and A1, A2 and A3 corresponding to ground-truth regions, sA is calculated as
in (11), which in this case means sA(B) = S(B ∩A1)−S(B ∩A2)−S(B ∩A3).

The final consensus score s is then the sum over all K ground-truth regions
and all J segments as:

s =

∑K
k=1 sB(Ak) +

∑J
j=1 sA(Bj)

2
∑K
k=1 S(Ak)

, (12)
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Fig. 4. Consensus scores on the plant data set. Images indicated with asterisks were
used for parameter tuning of all methods. Note that although RGB+∆D and channel
coded RGB+∆D have similar results on the tuning images, channel coded RGB+∆D
has a higher score on all evaluation images.

where
∑K
k=1 S(Ak) is the total area of ground-truth regions in an image (this

produces a score in the range −1 < s ≤ 1). Note that this method differs from
[16]. Since we cannot evaluate results in areas not covered by ground truth data,
these will not affect the resulting score (12). We also use the entire regions instead
of comparing boundaries as our goal is coverage, rather than precise location of
boundaries.

3.3 Tested methods

The methods we evaluate all make use of superparamagnetic clustering, as de-
scribed in section 2.3. The feature vectors used are those described in section 2.2.
The depth map gradient was estimated using finite differences. A small amount
of low-pass filtering (3× 3 Gaussian kernel with σ = 1.5 px) was applied to each
component of the feature vectors before clustering. This serves to reduce noise,
and was found to improve the results for all tested methods.

For all methods, the temperature parameter was kept constant at T = 0.05.
Scaling parameters were tuned by maximising consensus score on the plant1
and plant3 sets. For the methods using only colour or depth, the global scaling
parameter was tuned individually for each method. In the cases when both depth
and colour information was used, the global scale factor was optimised together
with the relative weight λ for each method (see section 2.2, eq. (3) to (7)). The
number of basis functions in channel coding was N = 6 for colour and N = 7
for each of hx(x, y) and hy(x, y) (resulting in a total of 20 channels).

3.4 Results

Results of the evaluation procedure are shown in figures 4 (consensus scores) and
5 (segmented images). Purely colour- and depth-based segmentation performs
worst, as can be expected given the nature of the data. Depth gradient-based
segmentation (∆depth) performs better than either of these two. The concate-
nation of RGB colour and depth gradient (RGB + ∆D) performs well overall,
but seems to show a slight tendency toward overfitting. The channel-coded vari-
ant (CC RGB +∆D) shows similar results on the training data, but generalises
better to the other image sets.
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Fig. 5. Segmentation results on the plant data set, and corresponding ground truth.

4 Conclusions

We have evaluated a method for joint colour and depth-based segmentation
using data gathered with the Kinect. The results show that it is indeed possible
to obtain better results by fusing colour and depth, than using either one in
isolation. The greater robustness of the channel-based segmentation indicates
that this is a suitable approach for fusing these measurement modalities. Our
experimental setup with consensus score tuning on two of the image pairs, and
evaluation on all pairs also demonstrates that the parameters found by tuning
generalise well to new data. Future work will include exploring the use of other
colour spaces, as well as other ways to represent the depth maps, before feeding
them to the channel encoding procedure.
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