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Abstract

In this paper, the robust fault detection problem for non-linear systems considering both bounded parametric modelling errors
and measurement noises is addressed. The non-linear system is monitored by using a state estimator with bounded modelling
uncertainty and bounded process and measurement noises. Additionally, time-variant and time-invariant system models are taken
into account. Fault detection is formulated as a set-membership state estimation problem, which is implemented by means of
constraint satisfaction techniques. Two solutions are presented: the first one solves the general case while the second solves the
time-variant case, being this latter a relaxed solution of the first one. The performance of the time-variant approach is tested in two
applications: the well-known quadruple-tank benchmark and the dynamic model of a representative portion of the Barcelona’s sewer
network. In both applications, different scenarios are presented: a faultless situation and some faulty situations. All considered
scenarios are intended to show the effectiveness of the presented approach.

Keywords: Fault detection, robustness, intervals, set-membership estimation, constraints satisfaction.

1. Introduction

Model-based fault detection methods rely on the concept
of analytical redundancy. The simplest analytical redundancy
scheme consists in the comparison of system output measure-
ments with the corresponding analytically computed values, ob-
tained from measurements of other variables and/or from pre-
vious measurements of the same variable by means of a model.
In the general case, different estimations of a same variable,
measured or not, can be compared. The resultant differences
are calledresiduals, which are indicative of faults in the sys-
tem. Under ideal conditions, residuals are zero in the absence
of faults and non-zero when a fault is present. However, mod-
elling errors, disturbances and noises in complex engineering
systems are inevitable, and hence appears the necessity of de-
veloping robust fault detection algorithms. The robustness of
a fault detection system indicates its ability to distinguish be-
tween faults and model-reality differences [5].

Classical approaches facing disturbances and modelling er-
rors employ the disturbance decoupling principle for obtaining
a residual sensitive to faults but not to these errors. Techniques
such as unknown input observers [6], eigenstructure assignment
[5] or structured parity equations [8], among others, can be
found in the literature. On the other hand, process and mea-
surement noises are usually stochastically modelled (the typi-
cal assumption is a zero mean white noise) and their effect is
considered by using statistical decision methods [2].

However, such approaches present several drawbacks. First,
decoupling from modelling errors (specially for non-linear mod-
els) is difficult to solve since the distribution matrix is normally
unknown, time varying and therefore should be estimated. More-
over, the number of decoupled disturbances/modelling errors is
limited by the degree of freedom in the residual generation pro-
cedure [8]. As an alternative strategy, disturbances/model er-
rors are assumed to be bounded and its effect is propagated to
the residual using, for example, interval methods [19]. Second,
in many practical situations it is not realistic to assume a prob-
ability distribution for the noise, being more natural to assume
that only bounds on the noise signals are available. In this case,
the so calledset-membership approach [16] can be used in the
context of fault detection as suggested in [24]. In both cases,
the advantage of the bounded description of uncertainty is that
it does not require restrictive assumptions (e.g., a small number
of unknown disturbances/parameters, a known probability dis-
tribution, etc.). However, a limitation is that faults which pro-
duce a residual deviation smaller than the residual uncertainty
due to model uncertainty will be missed (missed alarms).

In this paper, the robust fault detection problem for non-
linear systems considering both bounded parametric modelling
errors and measurement noises is addressed. Fault detection
is formulated as a set-membership estimation problem, being
this fact one of the main contributions. A state estimator that
describes the set of all the states consistent with modelling un-
certainty, measured data and noise bounds is presented. Several



works such as in [3], [11], [14] and [22], among others, have ad-
dressed this issue. Unfortunately, the set obtained through this
way might become extremely complex due to the non-linear
nature of the model [14]. In [24], a state estimator based on
enclosing the set of states by the smallest ellipsoid is proposed
following the algorithms proposed by [15]. However, in this
approach only additive uncertainty is considered, but not the
multiplicative uncertainty introduced by unknown parameters.
The implementation of the state estimator based on constraint
satisfaction techniques discussed in [12] is presented. The ob-
tained fault detection algorithm can be considered as an im-
provement of the approach to robust fault detection proposed
by [21], which only considers system trajectories obtained from
the uncertain parameter interval vertices, assuming that the mono-
tonicity property holds.

The paper is organized as follows: InSection 2, the prob-
lem of fault detection for non-linear time-varying systems us-
ing set-membership estimation is presented.Section 3 reviews
the constraint satisfaction background.Section 4 addresses the
implementation of set-membership state estimation in fault de-
tection using constraints satisfaction.Section 5 and 6 illustrate
the performance of the proposed approach using two case stud-
ies: the well-known multivariable control benchmark based on
the four tank system and a representative piece of the Barce-
lona’s sewer network. Finally,Section 7 summarizes the main
conclusions of the paper.

Notation
In the sequel, for a given variablex, its minimum value is

denoted asx while its maximum value is denoted asx̄. More-
over,IRn is the set of all interval vectors (boxes) inRn.

2. Set-Membership State Estimation applied to Fault De-
tection

2.1. System model
Consider the following discrete-time non-linear dynamical

model describing the behaviour of the system to be monitored:

xk+1 = g(xk, uk, θk, wk), (1a)

yk = h(xk, uk, θk) + vk, (1b)

where:

• x ∈ X ⊆ Rn is the vector of system states,u ∈ Rm is
the vector of system inputs andy ∈ Rp is the vector of
system outputs.

• wk ∈ Rn andvk ∈ Rp are process and measurement
noises, which are considered unknown but bounded, i.e.,
vk ∈ V andwk ∈ W, whereV andW are the interval
boxes

V = {v ∈ R
p | v ≤ v ≤ v̄} , (2)

W = {w ∈ R
n | w ≤ w ≤ w̄} . (3)

• g : Rn 7→ R
n andh : Rn 7→ R

p are the state-space and
measurement non-linear functions, respectively.

• X0 describes the set of initial states as

X0 = {x ∈ R
n | x0 ≤ x ≤ x̄0} . (4)

• θk ∈ Rq is a vector of uncertain parameters with their
values bounded by a compact setθk ∈ Θ of box type

Θ =
{
θ ∈ R

q | θ ≤ θ ≤ θ̄
}
. (5)

Parameter uncertainty comes from physical modelling or
from the set-membership parameter estimation algorithms ap-
plied in a non-faulty situation [16]. Depending of the knowl-
edge about parameter variance, the following additional equa-
tion can be added to the system description (1a)-(1b):

θk+1 = θk + pk, (6)

with pk ∈ P, whereP is an interval box

P =
{
p ∈ R

q | p ≤ p ≤ p̄
}
. (7)

Here, two different cases can be considered:

• time-invariant case, what impliespk = 0, and

• time-varying case, what impliespk ∈ P.

In the first case, the parameter is unknown withinΘ but it
is known that it will not vary. In the second case, the parameter
variation is specifically bounded by the interval boxP.

The first case might represent situations where an initial
variance comes from component specifications that are known
only with a mean and variance in the beginning of the fault de-
tection task. The second case might represent a system that
has been identified over a number of operation conditions, each
with a differentθ ∈ Θ, but with the inter-sample variance
bounded byP.

2.2. Fault detection using set-membership estimation
Let ũk andỹk denote respectively the sequence of measured

input/output variables from the initial time to the time instantk,
i.e., {uj}kj=0 and {yj}kj=0. Also, w̃k, ṽk, θ̃k and p̃k denote
a sequence of unknown but bounded (inside their respective
sets) process and measurement noises, parameter uncertainty
and parameter variations, that is,{wj}kj=0, {vj}kj=0, {θj}kj=0

and{pj}kj=0. When time-invariant systems are considered, then
p̃k = {0}.

Definition 2.1 (Set-membership state estimation).Given the
system described by (1a)-1b, an initial compact set X0 and a
sequence of measured inputs ũk and outputs ỹk taken from the
real system, the set of estimated states at time k using the set-
membershipapproach is expressed as

Xk =
{
xk | ∃w̃k, ṽk, θ̃k, p̃k, x0 ∈ X0,

(xj = g(xj−1, uj−1, θj−1, wj−1))
k

j=1
,

(yj = h(xj , uj , θj) + vj)
k

j=0
,

(θj = θj−1 + pj−1)
k

j=0

}
.
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Definition 2.2 (Fault detection). Given a sequence of measured
inputs ũk and outputs ỹk of the real system, a fault is said to be
detected at time k if there does not exist a set of sequences ṽk,
w̃k , θ̃k and p̃k which satisfy the nominal system (1a) with ini-
tial condition X0 and noise, disturbances and parameters that
belongs to V,W, Θ and P, respectively.

According to Definition 2.2, a fault can be detected using
a set-membership estimator when the set of estimated states in
Definition 2.1 is the empty, i.e.,Xk = ∅.

3. Constraints Satisfaction Background

Fault detection based on set-membership state estimate pre-
sented in Definition 2.2 can be naturally handled asConstraint
Satisfaction Problem (CSP). Thus, the definition of a CSP is in-
troduced and background related to this approach is presented
and discussed. Then, the proposed approach is applied to the
fault detection problem.

3.1. Constraints Satisfaction Problem
A CSP on sets can be formulated as a 3-tupleH = (Z,D,C)

[12], where

• Z = {z1, · · · , zn} is a finite set of variables,

• D = {D1, · · · ,Dn} is the set of their domains repre-
sented by closed sets, and

• C = {c1, · · · , cm} is a finite set of constraints relating
variables ofZ.

A solution point ofH is ann-tuple(z̃1, · · · , z̃n) ∈ D such that
all constraints inC are satisfied. The set of all solution points of
H is denoted byS(H). This set is called theglobal solution set.
The variablezi ∈ Z is consistent in H if and only if ∀z̃i ∈ Di

∃ (z̃1 ∈ D1, · · · , z̃i−1 ∈ Di−1, z̃i+1 ∈ Di+1, · · · , z̃n ∈ Dn)

such as(z̃1, · · · , z̃n) ∈ S(H).
The solution of a CSP is said to beglobally consistent if and

only if every variable is consistent. A variable islocally con-
sistent if and only if it is consistent with respect to all directly
connected constraints. Thus, the solution of the CSP is said to
be locally consistent if all variables are locally consistent. An
algorithm for finding an approximation of the solution set of a
CSP can be found in [12].

It is well known that the solution of CSPs involving sets has
a high complexity [12]. A first relaxation consists in approxi-
mating the variable domains by means of intervals and finding
the solution through solving anInterval Constraints Satisfac-
tion Problem (ICSP) [10]. The determination of the intervals
that approximate in a more fitted form the sets that define the
variable domains requiresglobal consistency, what demands a
high computational cost [10]. A second relaxation consists in
solving the ICSP by means oflocal consistency techniques, de-
riving on conservative intervals. Interval constraint satisfaction
algorithms have polynomial-time worst case complexity since
they implement local reasoning on constraints to remove incon-
sistent values from variable domains [12].

3.2. Real Paver
In this paper, the CSP problem derived from the set-member-

ship state estimation problem is relaxed to an ICSP problem
that is solved using a tool based oninterval constraint propa-
gation, known asReal Paver. This tool has been designed and
developed by research team of Professor Granvilliers [9]. The
goal of this software is to determine the solution of an ICSP in
the case that its domains are represented by closed real inter-
vals. The approach consists in iterating two main operations:
domain contraction andpropagation, which can be combined
with an additional operation known asbisection, if necessary.
The solution provides refined interval domains consistent with
the set of ICSP constraints.

3.2.1. Contraction
A contractor is an operator that reduces domains. Applied

to the solutionH of a CSP, an operatorCH : IRn → IR
n is a

contractor if it satisfies

∀[z] ∈ D :

{
CH([z]) ⊂ [z]
CH([z]) ∩ S(H) = [z] ∩ S(H).

(8)

The purpose of a contractor is to reduce any box[z] without
loosing any solution point inS(H). In [12], a number of con-
tractors for a variety of sets are given. They are algorithms of
polynomial complexity that reduce the interval domains of vari-
ables which comply with a set of constraints. The application
of contractor operators is therefore known ascontraction.

3.2.2. Propagation
When several constraints are involved, the contractions are

sequentially performed until no more significant contraction can
be observed. This procedure is known aspropagation. The in-
terval propagation method converges to a box which contains
all solution vectors of the constraint set. If this box is empty,
it means that there is no solution. It can be shown that the box
to which the method converges does not depend on the order
to which the contractors are applied [12], but the computation
time is highly sensitive to this order. There is no optimal order
in general, but in practice, one of the most efficient is called
forward-backward propagation.

3.2.3. Bisection
The combined use of contraction and propagation leads only

to obtain alocal consistent solution. The locality problem is due
to the strategy for reducing domains processes every constraint
projection independently. To escape from local consistency, ev-
ery resultant box from the application of contraction and propa-
gation should be bisected in two sub-boxes, sharing all variable
domains of the original box, except the one with largest width,
which is split by its mid point. Then, contractors and propaga-
tion are applied on the new resultant sub-boxes. This process,
called bisection, is iterated until no refinement of those sub-
boxes below to a pre-established amount is achieved.
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4. Fault Detection using Set-membership State Estimation
based on Constraint Satisfaction

4.1. Fault detection using CSP: the general case
The fault detection procedure described inDefinition 2.2

requires the computation of the set of estimated statesXk in
Definition 2.1. It can be noticed that this problem corresponds
naturally to a CSP on sets by introducing the following defini-
tions:

• Z = {x̃k, w̃k, ṽk, θ̃k, p̃k},

• D = {X̃k, W̃k, Ṽk, Θ̃k, P̃k}, whereX̃k = {Xj}kj=0,

W̃k = {Wj}kj=0, Ṽk = {Vj}kj=0, Θ̃k = {Θj}kj=0

and P̃k = {Pj}kj=0, that means the domain of all the
variables, and

• C = C1

⋃
C2

⋃
C3, where

– C1 = {xj+1 = f(xj , uj, θj , wj)}kj=0,

– C2 = {yj = g(xj , uj, θj) + vj}kj=0,

– C3 = {θj+1 = θj + pj}kj=0.

Algorithm 1 allows to solve the set-membership state es-
timate by solving, at each time iteration, the associated CSP
defined above, the process/measurement noise bounds, the set
of parameters and the initial state uncertainty.

Algorithm 1 Fault Detection using CSP
1: X0 ⇐ X

2: Θ0 ⇐ Θ
3: for k = 0 toN do
4: obtain {uk, yk}
5: Xk+1 ⇐ X

6: Wk ⇐ W

7: Vk ⇐ V

8: Θk+1 ⇐ Θ
9: Pk ⇐ P

10: Zk ⇐ {
x̃︷ ︸︸ ︷

x0, · · · , xk,

w̃︷ ︸︸ ︷
w0, · · · , wk,

ṽ︷ ︸︸ ︷
v0, · · · , vk,

θ̃︷ ︸︸ ︷
θ0, · · · , θk,

p̃︷ ︸︸ ︷
p0, · · · , pk}

11: Dk ⇐ {X0, · · · ,Xk,W0, · · · ,Wk,V0, · · · ,
Vk,Θ0, · · · ,Θk,P0, · · · ,Pk}

12: Ck ⇐
{
(xj+1 = g(xj , uj, θj , wj))

k

j=0
,

(yj = h(xj , uj, θj) + vj)
k

j=0
,

(θj+1 = θj + pj)
k

j=0

}

13: Hk = (Zk,Dk,Ck)
14: Sk = solve(Hk)
15: if Sk = ∅ then
16: fault detected
17: else
18: no fault detected
19: end if
20: end for

It is well known that the solution of CSP over sets has a
high computational complexity. This complexity comes from
the fact that to represent the solution sets accurately, they need
to be decomposed using subpavings (union of boxes) and to use
set computations that involves bisections, which implies expo-
nential growing of the computation times [11].

A possible relaxation in order to reduce computational com-
plexity associated withAlgorithm 1 consists in approximating
the variable domain sets by means of their interval hulls1. Then,
this approximation leads to a CSP over intervals, named ICSP
[11] and the new set of domains forHk = (Vk,Dk,Ck) is ex-
pressed as follows2 :

Dk = {�X0, , · · · ,�Xk,�V0, · · · ,�Vk,

�W0, · · · ,�Wk,�Θ0, · · · ,�Θk,�P0, · · · ,�Pk} .

Moreover, this relaxation allows the use of interval meth-
ods, which have efficient operators (contractors) to find the so-
lution of an ICSP [10]. However, the exact interval hull de-
termination of the sets which define the variable domains (i.e.,
the interval box that approximates in a more fitted form these
sets) requires global consistency. This kind of consistency is
achieved when all constraints in the ICSP are consistent simul-
taneously but demands a high computational burden because
implies bisections [10]. To further reduce computational com-
plexity, an ICSP can be solved by means of using only contrac-
tors. The price is that local consistency is achieved, i.e., every
constraint in the ICSP is consistent independently from each
other [11]. This leads to the resultant interval hull of the vari-
able domain sets are not the most adjusted but no point solution
is lost. Using such relaxations, if the interval hull of the ad-
missible solution setXk returned byAlgorithm 1 is empty, then
Xk is an empty set as well and the fault is detected. Otherwise,
nothing can be stated since�X 6= ∅ does not implyX = ∅.

Another drawback ofAlgorithm 1 is the increase of com-
putational complexity of the CSP since at each iteration an ad-
ditional restriction is added. So, the amount of computation
burden increases with time, being impossible to operate over
a large time interval. This problem can be solved by using a
time-sliding window of lengthL [20].

4.2. Fault detection using CSP: the time-varying case
For the case that uncertain parameters are considered to be

time-varying (that is,pk 6= 0), an alternative approach to solve
the CSP proposed inAlgorithm 1 can be used. This alterna-
tive approach consists in admitting the rupture of the existing
relations between variables for consecutive time instants given
the time-varying assumption of uncertain parameters. This fact
makes possible to determinate the interval hull of the set of fea-
sible solutions step by step [7]. In this case, it is only necessary

1Giving a variablez and its domainZ, its interval hull is given by

�Z0 = {z ∈ R
nz | z0 ≤ z ≤ z̄0} .

2Throughout this paper and as notation, the symbol� (square box) denotes
the interval hull of a given set.
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to propagate the set of estimated statesXk from the current it-
eration to the next.

Summarizing,Algorithm 1 can be approximated as presented
in Algorithm 2 under the following considerations:

• a CSP over sets will be relaxed to a CSP over intervals,

• local consistency is used instead of global consistency,
and

• domains of variables are computed iteratively from pre-
viously computed domains.

However, the problem of uncertainty propagation (wrap-
ping effect) could appear when the CSP is solved in this way.
This problem does not appear inisotone systems [7] (see also,
monotone systems [1]), which are the systems whose state func-
tion is isotone. The monotonicity assumption is also used in the
robust fault detection algorithm proposed in [21]. To avoid the
wrapping effect due to the approximation of the set of estimated
states by its interval hull, a more complex approximation is pro-
posed in [17].

Algorithm 2 Fault detection using CSP on Intervals (ICSP)
1: �X0 ⇐ �X

2: for k = 1 toN do
3: obtain {uk, yk}
4: �Xk ⇐ �X

5: �Wk−1 ⇐ �W

6: �Vk−1 ⇐ �V

7: �Θk−1 ⇐ �Θ
8: Z ⇐ {xk, xk−1, wk−1, vk−1, θk−1}
9: D ⇐ {�Xk,�Xk−1,�Wk−1,�Vk−1,�Θk−1}

10: C1 ⇐ {xk = g(xk−1, uk−1, θk−1, wk−1)}
11: C2 ⇐ {yk = h(xk, uk, θk) + vk}
12: C ⇐ {C1,C2}
13: Hk = (Z,D,C)
14: �S = solve(Hk)
15: end for
16: if �S = ∅ then
17: fault detected
18: else
19: no fault detected
20: end if

5. Application Example 1: Quadruple-Tank Process

As an application example to illustrate the fault detection
and state estimation algorithms proposed in this paper, the four
tanks system proposed in [13] is used. This is a multivariable
laboratory process proposed as a control benchmark.

5.1. System description
A schematic diagram of the process is shown in Figure 1.

The components of the system are tanksT1, T2, T3 andT4, by-
pass valvesV1 andV2, and pumpsP1 andP2. The inputs vari-
ables are voltages to the pumps (i.e.,u1 = v1 andu2 = v2).

Figure 1: Quadruple-tank process

The by-pass valveV1 derives a proportional part,γ1, of the flow
through pumpP1 to T1 and the other part,1 − γ1, to T4. Sim-
ilarly, the flow through pumpP2 is diverted toT2 andT3 as a
function of the value ofγ2.

To implement the proposed fault detection approach, the
model of the four tank system should be expressed in discrete-
time as in (1). From the continuous-time non-linear equations
presented in [13], the following non-linear discrete-time model
can be obtained by using the Euler discretisation with a sam-
pling time of 1s:

x1k+1 = x1k − ξ1k +
a3

A1

√

2gx3k +
γ1k1

A1

u1k, (9a)

x2k+1 = x2k − ξ2k +
a4

A2

√

2gx4k +
γ2k2

A2

u2k, (9b)

x3k+1 = x3k − ξ3k +
(1− γ2)k2

A3

u2k, (9c)

x4k+1 = x4k − ξ4k +
(1− γ1)k1

A4

u1k, (9d)

yjk = xjk, for j ∈ {1, 2}, (9e)

where:

• The state variables are the tank levels (i.e.,xi = hi,
i = 1, . . . , 4).

• The measured variables are the levels in tanksT1 andT2

(i.e.,y1 = h1 andy2 = h2).

• The measurement noise (vi, i = 1, . . . , 2) is assumed to
be unknown but bounded and its bound is0.1.

• ξi = ai

Ai

√
2gxik, for i ∈ {1, . . . , 4}, withA1 = A3 =

28 cm2, A2 = A4 = 32 cm2 (cross-sections of tanks),
a1 = a3 = 0.071 cm2, a2 = a4 = 0.057 cm2 (cross-
sections of outlet holes) andg = 981 cm/s2 (gravity
constant).
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• Parametersk1, k2 (pump constants),γ1 andγ2 are as-
sumed to belong to the intervalsk1 ∈ [3.2250, 3.2450],
k2 ∈ [3.2600, 3.2800], γ1 ∈ [0.5150, 0.6150] andγ2 ∈
[0.4200, 0.5200]. Uncertain parameters are considered
time varying.

5.2. Fault scenarios
From the continuous-time non-linear equations presented in

[13], a simulator has been implemented in Matlab/Simulink. In
the simulations, three different types of faults have been con-
sidered to test the proposed fault detection approach:

• Faults in the pumps:fP1
andfP2

are faults in the pumps
P1 andP2, respectively. In these faulty situations, pump
gains (k1, k2) are reduced to the80% of their nominal
value.

• Leaks in tanks:fT1
, fT2

, fT3
andfT4

are faults corre-
sponding to leaks in tanksT1, T2, T3 andT4, respectively.
These leaks are assumed to be produced by holes of size
ai/2 at the bottom of the tanks (such that the outflow is
lost).

• Faults in the level sensors:fy1
andfy2

are the faults in
level sensorsy1 andy2, respectively. These faults have
been simulated by reducing the sensor gains to the50%
of their nominal value.

5.3. Results
The results corresponding to three of the previous fault sce-

narios are presented: a faultless scenario and two faulty situa-
tions. In all of them, results are obtained by using theAlgorithm
2. As discussed in the background section, several approaches
can be used to solve the ICSP enunciated inAlgorithm 2, in-
cluding Waltz’s local filtering algorithm [23] and Hyvönen’s
tolerance propagation algorithm [10]. The first approach only
ensures locally consistent solutions while the second can guar-
antee global consistent solutions but with high computational
complexity. In this paper, the constraint satisfaction algorithm
embedded in the ICSP toolReal Paver [9], that efficiently com-
bines local and global consistency techniques, will be used to
implementAlgorithm 2.

5.3.1. Scenario 1 (faultless)
This scenario is used to test the set-membership state esti-

mator in faultless situation. Results, obtained by usingAlgo-
rithm 2, are presented in Figure 2. Top graphs of this figure
show the lower and upper state estimate bounds forh3 andh4

respectively. Middle graphs show the temporal evolution of the
measured levelsy1 andy2 with each lower and upper state es-
timate bounds (h1, h2). Finally, the bottom graph shows the
value of the fault detection (FD) decision indicator. This in-
dicator takes ’0’ value when no fault is detected and takes ’1’
value when a fault is detected. It can be noticed that in this case
the FD decision indicator is not activated since it is a faultless
scenario. Notice also that the predicted interval for the tank lev-
els ofT1 andT2 (i.e.,h1 andh2) is very tight, while the interval

for the tank levels ofT3 andT4 (i.e.,h3 andh4) is wider. The
reason is due to the levels ofT1 andT2 are measured and the
only uncertainty is due to the measurement noise. On the other
hand,h3 andh4 are estimated by using the model that is af-
fected by parameter uncertainty. Although, they are indirectly
refined by the level measurementsh1 andh2.

5.3.2. Scenario 2 (fault fP1
)

In this scenario, a fault in pumpP1 is introduced at time
10min. Figure 3 shows the same variables as in Figure 2. It
can be observed that when the faultfP1

appears, it is detected
and the FD decision indicator changes from ’0’ to ’1’. Once the
fault has been detected, the state estimation algorithm continues
without correcting the estimation provided by the model using
the measurements. This is a post-fault strategy that avoids the
use of potentially faulty sensors. As a consequence, in both
variablesy1 andy2, the obtanied envelopes are wider, although
the measurements still remain outside them.

5.3.3. Scenario 3 (fault fT3
)

Now, a leak in tankT3 is introduced at time10min. Figure 4
shows the state estimate results. It can be noticed that whenfT3

appears, the FD decision indicator changes form ’0’ to ’1’, what
means that the fault is detected. The detection of this fault has
a particular importance since it only appears in tankT3, whose
level is not measured. However, since it is estimated using the
proposed state estimate approach, the fault could be detected.

Notice that, compared with the previous fault scenario, the
inconsistency between the model output and the corresponding
measurements only appears in the variabley1. This information
can be used for fault isolation.

5.3.4. Scenario 4 (fault fy1
)

Finally, a fault in the sensor that measures the levelh1 is
introduced at time10min. Figure 5 shows the state estimation
results obtained usingAlgorithm 2. It can be noticed that when
fy1

appears, the fault is indicated. As in the previous fault sce-
narios, once the inconsistency is detected usingAlgorithm 2 the
state estimation algorithm continues without correcting the es-
tate estimation by using the measurements. In this scenario, the
measurements remain outside the envelopes just for some time
instants. However, the FD decision is maintained assuming that
once a fault appears it remains present.

6. Application Example 2: Sewer network

The second application example used to show the effective-
ness of the proposed fault detection set-membership approach
is based on the sewer network of Barcelona.

6.1. System description
The portion of sewer network of Barcelona considered in

this paper is shown in Figure 6. This portion contain a real
retention tank and two virtual tanks, which represent two net-
work catchments [4]. The following non-linear model can be

6
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Figure 2: Results for the Quadruple-Tank process in the faultless scenario. Solid blue, upper bound estimated level. Dashed blue, lower bound estimated level.
Dashed green, measured levels.
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Figure 3: Results for the Quadruple-Tank process in the faulty scenariofP1
. Solid blue, upper bound estimated level. Dashed blue, lower bound estimated level.

Dashed green, measured levels.
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Figure 4: Results for the Quadruple-Tank process in the faulty scenariofT3
. Solid blue, upper bound estimated level. Dashed blue, lower bound estimated level.

Dashed green, measured levels.
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Figure 5: Results for the Quadruple-Tank process in the faulty scenariofy1 . Solid blue, upper bound estimated level. Dashed blue, lower bound estimated level.
Dashed green, measured levels.
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obtained by using the conservation of mass in tanks, assum-
ing that the position of gatesC1 andC2 are fixed to avoid the
sewage flow through linksq1 andq2, and that gateC3 is com-
pletely open:

x1k+1 = x1k + T [u1k + u2k − β1x1k] ,

x2k+1 = x2k + T [β1x1k − β2

√
x2k] ,

x3k+1 = x3k + T [β2

√
x2k + u3k − β3x3k] ,

yk = β2

√
x2k + vk,

where

• xi is the water volume in thei-th virtual/real tank Ti.

• ui = di + wi corresponds to the rain inflow measured
employing rain gauges (P19, P16 andP20, according to
Figure 6), beingui the real inflow andwi the measured
noise such thatwik ∈ Wi = [0, 0.1].

• yk is the sewage level in the output sewer of the tankT2,
measured by using the limnimeterL47.

• vk is the associated noise defined byVi = [−5, 5].

• βi, i ∈ {1, 2, 3}, corresponds with a proportional factor
for the volume-flow conversion.

• The model parameters and associated uncertainty have
been estimated from real data using the procedure de-
scribed in [18]. The obtained values areβ1 ∈ [4.8 ×
10−4, 6.8× 10−4], β2 ∈ [1.99× 10−2, 2.01× 10−2] and
β3 ∈ [9.9× 10−4, 10.1× 10−4].

• The system initial conditions that correspond with the
initial sewer volume of the tanks are:x10 = 167m3,
x20 = 0m3 andx30 = 333m3.

• T = 300s is the sampling time.

6.2. Results
The presented results are obtained from data recorded by

the telemetry system of Barcelona sewer network in a real rain
scenario occurred on September 14, 1999.Algorithm 2 has
been applied in faultless and faulty scenarios.

6.2.1. Scenario 1 (faultless)
Figure 7 shows the results obtained in a faultless scenario.

Top graphs show the lower and upper state estimate bounds for
the non-measured statesx1 andx3. Middle graphs show the
temporal evolution of the statex2 estimated with the measured
variabley1 and the lower and upper state estimate bound. Fi-
nally, in the bottom graph, the value of the FD decision indi-
cator is shown. From Figure 7, it can be noticed that the state
estimation algorithm is working properly. It can also be seen
that the fault indicator is not activated.
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Figure 6: Case study: Portion of Barcelona’s sewer network

6.2.2. Scenario 2 (sensor fault)
In this scenario, based on the same rain used in Scenario

1, an additive sensor faultfy = 100 has been artificially intro-
duced fromk = 40 (i.e., 200 min). Figure 8 shows the same
cases as in Figure 7. The FD decision indicator is activated just
after the fault apparition. In this case, the estimated interval for
state variablex2 is empty, indicating the inconsistency between
the model and the available measurements.

7. Conclusions

In this paper, robust fault detection using set-membership
state estimation is presented. This state estimation is based on
interval models that include parametric uncertainty. Addition-
ally, process and measurement noise are considered to be un-
known but bounded. First, the problem of set-membership state
estimation implemented using constraints satisfaction techniques
is presented. Then, the application of set-membership state es-
timation to fault detection is analysed. The main contribution
of this paper involves the consideration of both modelling un-
certainty and measurement noise in an unified way using the
set-membership state estimation framework. Another impor-
tant contribution is to show that constraints satisfaction may be
an useful tool applied on fault detection.

Finally, two application examples have been used to show
the effectiveness of the proposed approach: the well-known
quadruple-tanks benchmark and a representative piece of Bar-
celona sewer network. The fault detection results obtained us-
ing the proposed approach show good performance in the con-
sidered scenarios. As further research, the algorithm is being
extended to address the fault isolation, the second stage after
fault detection in a fault diagnosis system.
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Figure 7: Results of the sewer network case study in the faultless scenario. Solid blue, upper bound estimated level. Dashed blue, lower bound estimated level.
Dashed green, measured levels.
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