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Abstract

In this paper, the robust fault detection problem for non-linear systems considering both bounded parametric modelling erro
and measurement noises is addressed. The non-linear system is monitored by using a state estimator with bounded model
uncertainty and bounded process and measurement noises. Additionally, time-variant and time-invariant system models are tal
into account. Fault detection is formulated as a set-membership state estimation problem, which is implemented by means
constraint satisfaction techniques. Two solutions are presented: the first one solves the general case while the second solves
time-variant case, being this latter a relaxed solution of the first one. The performance of the time-variant approach is tested in tv
applications: the well-known quadruple-tank benchmark and the dynamic model of a representative portion of the Barcelona’s sew
network. In both applications, different scenarios are presented: a faultless situation and some faulty situations. All consider
scenarios are intended to show the effectiveness of the presented approach.

Keywords: Fault detection, robustness, intervals, set-membership estimation, constraints satisfaction.

1. Introduction However, such approaches present several drawbacks. First,

. decoupling from modelling errors (specially for non-linear mod-
Model-based fault detection methods rely on the concepi|s) js difficult to solve since the distribution matrix is normally

of analytical redundancy. The simplest analytical redundancy,nknown, time varying and therefore should be estimated. More-
scheme consists in the comparison of system output measurgyer, the number of decoupled disturbances/modelling errors is
ments with the corresponding analytically computed values, obimited by the degree of freedom in the residual generation pro-
tained from measurements of other variables and/or from presgqure [8]. As an alternative strategy, disturbances/model er-
vious measurements of the same variable by means of a modedrs are assumed to be bounded and its effect is propagated to
In the general case, different estimations of a same variablgge residual using, for example, interval methods [19]. Second,
measured or not, can be compared. The resultant differencgsmany practical situations it is not realistic to assume a prob-
are calledresiduals, which are indicative of faults in the sys- apjlity distribution for the noise, being more natural to assume
tem. Under ideal conditions, residuals are zero in the absenggat only bounds on the noise signals are available. In this case,
of faults and non-zero when a fault is present. However, modge sg calledet-membership approach [16] can be used in the
elling errors, disturbances and noises in complex engineeringyntext of fault detection as suggested in [24]. In both cases,
systems are inevitable, and hence appears the necessity of e advantage of the bounded description of uncertainty is that
veloping robust fault detection algorithms. The robustness of qoes not require restrictive assumptions (e.g., a small number
a fault detection system indicates its ability to distinguish beuf ynknown disturbances/parameters, a known probability dis-
tween faults and model-reality differences [5]. tribution, etc.). However, a limitation is that faults which pro-
Classical approaches facing disturbances and modelling egyce a residual deviation smaller than the residual uncertainty
rors employ the disturbance decoupling principle for obtainingy,e to model uncertainty will be missed (missed alarms).
a residual sensitive to faults but not to these errors. Techniques | this paper, the robust fault detection problem for non-
such as unknown input observers [6], eigenstructure assignmefi{ear systems considering both bounded parametric modelling
[5] or structured parity equations [8], among others, can b&rors and measurement noises is addressed. Fault detection
found in the literature. On the other hand, process and megs formulated as a set-membership estimation problem, being
surement noises are usually stochastically modelled (the typins fact one of the main contributions. A state estimator that
cal assumption is a zero mean white noise) and their effect igescribes the set of all the states consistent with modelling un-
considered by using statistical decision methods [2]. certainty, measured data and noise bounds is presented. Several



works such asin [3], [11], [14] and [22], among others, have ad- e X, describes the set of initial states as
dressed this issue. Unfortunately, the set obtained through this
way might become extremely complex due to the non-linear
nature of the model [14]. In [24], a state estimator based on ) ) ) i
enclosing the set of states by the smallest ellipsoid is proposed ® ¢ € R? is a vector of uncertain parameters with their
following the algorithms proposed by [15]. However, in this values bounded by a compact gte © of box type
approach only additive uncertainty is considered, but not the
multiplicative uncertainty introduced by unknown parameters.
The implementation of the state estimator based on constraint . . .
satisfaction techniques discussed in [12] is presented. The ob- Parameter uncertaln_ty comes from phys_lcal mod.ellmg or
tained fault detection algorithm can be considered as an i rom t_he set-members_h|p parameter est|ma_t|on algorithms ap-
provement of the approach to robust fault detection proposeﬂ“ed in a non-faulty S|tuat|_on [16]. Depen(_dmg of t_he knowl-
by [21], which only considers system trajectories obtained frorﬁa‘_dge about parameter variance, the quI(_)wmg additional equa-
the uncertain parameter interval vertices, assuming that the mdifgt can be added to the system description (1a)-(1b):

tonicity property holds.

The paper is organized as follows: $action 2, the prob-
lem of fault detection for non-linear time-varying systems us-with p;, € P, whereP is an interval box
ing set-membership estimation is present&esion 3 reviews ~
the constraint satis?action backgro?uﬁéction 4 addresses the P={peR'|p<p<p}. ()
implementation of set-membership state estimation in fault de-  Here two different cases can be considered:
tection using constraints satisfactioSection 5 and 6 illustrate
the performance of the proposed approach using two case stud- ® time-invariant case, what impligg = 0, and
ies: the well-known multivariable control benchmark based on
the four tank system and a representative piece of the Barce-

XQ:{I‘ER"|£OS$Si‘Q}. (4)

© = {feR?|0<H<0}. (5)

Or+1 = O + pr, (6)

e time-varying case, what implies, € P.

lona’s sewer network. Finally§ection 7 summarizes the main In the first case, the parameter is unknown witBirbut it

conclusions of the paper. is known that it will not vary. In the second case, the parameter
variation is specifically bounded by the interval dbx

Notation The first case might represent situations where an initial

In the sequel, for a given variable its minimum value is  variance comes from component specifications that are known
denoted ag: while its maximum value is denoted @s More-  only with a mean and variance in the beginning of the fault de-
over,IR" is the set of all interval vectors (boxes)RY. tection task. The second case might represent a system that
has been identified over a number of operation conditions, each
with a differentd < O, but with the inter-sample variance

2. Set-Membership State Estimation applied to Fault De- bounded byP.

tection

2.1. System model 2.2. Fault detection using set-membership estimation

Consider the following discrete-time non-linear dynamical ~ L€tux andyj, denote respectively the sequence of measured
model describing the behaviour of the system to be monitorediNPUt/outputvariables from the initial time to the time instant
i.e., {u;}r_o and{y;}%_,. Also, wy, vk, 0 andp;, denote
Trt1r = 9@k, uk, O, wi), (1a)  a sequence of unknown but bounded (inside their respective
ye = h(zg,uk,0k) + v, (1b)  sets) process and measurement noises, parameter uncertainty
and parameter variations, that iay; }5_, {v;}5_,, {6;}5_,
and{p;}_,. When time-invariant systems are considered, then
e z € X C R" is the vector of system states,c R™is  pr = {0}.
the vector of system inputs ande R? is the vector of
system outputs.

where:

Definition 2.1 (Set-membership state estimation) Given the
system described by (1a)-1b, an initial compact set Xo and a
e w; € R™ andv, € RP are process and measurementsequence of measured inputs 1y, and outputs 1jj. taken from the
noises, which are considered unknown but bounded, i.ereal system, the set of estimated states at time K using the set-
v € Vandw, € W, whereV andW are the interval membershippproach is expressed as
boxes -
Xi = {on 30, i, 6o P w0 € Ko,
V = {veR|u<v <0}, (2) P k
W = {weR"|w<w<a). 3) (xg *9(933—1,%—1, ]—1,w]—1))j:1,
(yj = h(xjvujv oj) + vj)?:() )
e g: R"+— R™andh: R" — RP are the state-space and o k
: . . (0 =0;-1+pj—1) ':0} :
measurement non-linear functions, respectively. J



Definition 2.2 (Fault detection). Given a sequence of measured  3.2. Real Paver

inputs iy, and outputs yi, of the real system, a faultis said to be In this paper, the CSP problem derived from the set-member-

detected at time K if there does not exist a set of sequences U, ghip state estimation problem is relaxed to an ICSP problem

Wy, Bk and py which satisfy the nominal system (1a) with ini-  that is solved using a tool based biterval constraint propa-

tial condition Xy and noise, distur.bances and parameters that gation, known asReal Paver. This tool has been designed and

belongs 1oV, W, © and P, respectively. developed by research team of Professor Granvilliers [9]. The
goal of this software is to determine the solution of an ICSP in

g . . .

tn]e case that its domains are represented by closed real inter-

vals. The approach consists in iterating two main operations:

domain contraction andpropagation, which can be combined

_ _ ) with an additional operation known @gsection, if necessary.

3. Constraints Satisfaction Background The solution provides refined interval domains consistent with

Fault detection based on set-membership state estimate pfd® Set of ICSP constraints.
sented in Definition 2.2 can be naturally handled’asstraint )
Satisfaction Problem (CSP). Thus, the definition of a CSP is in- 3.2.1 Contractzor_q ) )
troduced and background related to this approach is presented A contractor is an operator that reduces domains. Applied
and discussed. Then, the proposed approach is applied to tHthe solutiontl of a CSP, an operatdly : IR" — IR™ is a

According to Definition 2.2, a fault can be detected usin
a set-membership estimator when the set of estimated states
Definition 2.1 is the empty, i.eX; = (.

fault detection problem. contractor if it satisfies
3.1. Constraints Satisfaction Problem V[z] €eD: { EEEEB r?S[?]]HI) — [2] N S(H). (8)
A CSP on sets can be formulated as a 3-tliple (Z,D, C)
[12], where The purpose of a contractor is to reduce any pdwithout
o Z=1{z, -z} isafinite set of variables, loosing any solut_ion point i$(H). _In [12], a number of con-
_ _ _ tractors for a variety of sets are given. They are algorithms of
oD = {Dy,---,D,} is the set of their domains repre- polynomial complexity that reduce the interval domains of vari-
sented by closed sets, and ables which comply with a set of constraints. The application
¢ C = {c1,---,cm) is afinite set of constraints relating of contractor operators is therefore knowrcastraction.
variables ofZ.

3.2.2. Propagation

A solution point of is ann-tuple (i, - - - , Z,) € D such that When several constraints are involved, the contractions are
all constraints irC are satisfied. The set of all solution points of sequentially performed until no more significant contraction can
H is denoted bys(H). This set is called thglobal solution set.  be observed. This procedure is knowrpaspagation. The in-
The variablez; € Z is consistent in H if and only if vZ; € D; terval propagation method converges to a box which contains
all solution vectors of the constraint set. If this box is empty,
it means that there is no solution. It can be shown that the box
suchagz;,---,%,) € S(H). to which the method converges does not depend on the order

The solution of a CSP is said to g&bally consistent ifand 1o which the contractors are applied [12], but the computation
only if every variable is consistent. A variablelisally con-  time is highly sensitive to this order. There is no optimal order
sistent if and only if it is consistent with respect to all directly in general, but in practice, one of the most efficient is called
connected constraints. Thus, the solution of the CSP is said forward-backward propagation.
be locally consistent if all variables are locally consistent. An
algorithm for finding an approximation of the solution set of a3.2.3. Bisection
CSP can be found in [12]. The combined use of contraction and propagation leads only

It is well known that the solution of CSPs involving sets hasto obtain &ocal consistent solution. The locality problemis due
a high complexity [12]. A first relaxation consists in approxi- to the strategy for reducing domains processes every constraint
mating the variable domains by means of intervals and findingprojection independently. To escape from local consistency, ev-
the solution through solving afterval Constraints Satisfac-  ery resultant box from the application of contraction and propa-
tion Problem (ICSP) [10]. The determination of the intervals gation should be bisected in two sub-boxes, sharing all variable
that approximate in a more fitted form the sets that define thdomains of the original box, except the one with largest width,
variable domains requiregobal consistency, what demands a which is split by its mid point. Then, contractors and propaga-
high computational cost [10]. A second relaxation consists irtion are applied on the new resultant sub-boxes. This process,
solving the ICSP by means fifcal consistency techniques, de- called bisection, is iterated until no refinement of those sub-
riving on conservative intervals. Interval constraint satisfactiorboxes below to a pre-established amount is achieved.
algorithms have polynomial-time worst case complexity since
they implement local reasoning on constraints to remove incon-
sistent values from variable domains [12].
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4. Fault Detection using Set-membership State Estimation

based on Constraint Satisfaction

4.1. Fault detection using CSP: the general case

The fault detection procedure describedDgfinition 2.2
requires the computation of the set of estimated stdje#n
Definition 2.1. It can be noticed that this problem corresponds

It is well known that the solution of CSP over sets has a
high computational complexity. This complexity comes from
the fact that to represent the solution sets accurately, they need
to be decomposed using subpavings (union of boxes) and to use
set computations that involves bisections, which implies expo-
nential growing of the computation times [11].

A possible relaxation in order to reduce computational com-

naturally to a CSP on sets by introducing the following defini-plexity associated withllgorithm I consists in approximating

tio

ns:

7 = {Fp, Wk, O, O, Pi

oD = {Xk,wk,@k,(:)k,ﬁk}, whereX, =

Wi = {Wj}?:oi g’k = {Vj}?:oi ék = {G)j}fzo
andP, = {P,;}%_,, that means the domain of all the

variables, and

e C=C;|JCo|JC3, where

= Ci = {zj41 = f(z),u5,05,w5)} i,
= Co = {y; = g(aj, u;,0;) +v;} o,
= C3 = {041 =0; +p;}i

the variable domain sets by means of their interval Aulldien,

this approximation leads to a CSP over intervals, named ICSP
[11] and the new set of domains fill, = (Vj, Dy, Cy) is ex-
pressed as follows

]D)k = {DXOv ) 7|:|Xk; Ij%7(); o aDVka
DWO; e 5DW]€7 DGO; e aDGkv DPO; T 7|:|Pk} .

Moreover, this relaxation allows the use of interval meth-
ods, which have efficient operators (contractors) to find the so-
lution of an ICSP [10]. However, the exact interval hull de-
termination of the sets which define the variable domains (i.e.,
the interval box that approximates in a more fitted form these
sets) requires global consistency. This kind of consistency is
achieved when all constraints in the ICSP are consistent simul-

Algorithm 1 allows to solve the set-membership state estaneously but demands a high computational burden because
timate by solving, at each time iteration, the associated CSEnplies bisections [10]. To further reduce computational com-
defined above, the process/measurement noise bounds, the gleixity, an ICSP can be solved by means of using only contrac-
of parameters and the initial state uncertainty.

Algorithm 1 Fault Detection using CSP

1 Xg<=X

2: )<= 06

3 for k=0to N do

4. obtain {uy,yi}

5: Xk+1 <X

6: W, < W

7 Vi<V

8 Oy <06

9: P, <P

10: Zp <= {0, Xk, W0, + Wi, Voy -+ * Uk

4 P

Bo, 0. Do, 1R}

11: ]D)k¢{X0,---,Xk,WQ,"',Wk,VQ,'-',
Vi, 00, Ok, Po, -+ . Pr}

122 Cp = {(Ij+1 = g(;,u;, 05, w;))5_g

(= hlwj,u5,05) +v;)5_g,

k
(011 =0; +Pj)j:o}

13: H; = (Zk, Dy, (Ck)
14: Sy = solve(Hy)
15:  if S, = 0 then

16: fault detected
17:  else

18: no fault detected
19:  end if

20: end for

tors. The price is that local consistency is achieved, i.e., every
constraint in the ICSP is consistent independently from each
other [11]. This leads to the resultant interval hull of the vari-
able domain sets are not the most adjusted but no point solution
is lost. Using such relaxations, if the interval hull of the ad-
missible solution seX;, returned bydigorithm 1 is empty, then

Xk is an empty set as well and the fault is detected. Otherwise,
nothing can be stated sinE&X # () does not implyX = §.

Another drawback oftlgorithm 1 is the increase of com-
putational complexity of the CSP since at each iteration an ad-
ditional restriction is added. So, the amount of computation
burden increases with time, being impossible to operate over
a large time interval. This problem can be solved by using a
time-sliding window of length [20].

4.2. Fault detection using CSP: the time-varying case

For the case that uncertain parameters are considered to be
time-varying (that isp;, # 0), an alternative approach to solve
the CSP proposed idigorithm 1 can be used. This alterna-
tive approach consists in admitting the rupture of the existing
relations between variables for consecutive time instants given
the time-varying assumption of uncertain parameters. This fact
makes possible to determinate the interval hull of the set of fea-
sible solutions step by step [7]. In this case, it is only necessary

1Giving a variablez and its domairZ, its interval hull is given by

OZo ={z € R"™* | z; <z < Zo}.

2Throughout this paper and as notation, the synib@@quare box) denotes
the interval hull of a given set.



to propagate the set of estimated stafgsfrom the current it-
eration to the next.

Summarizingdlgorithm 1 can be approximated as presented
in Algorithm 2 under the following considerations:

e a CSP over sets will be relaxed to a CSP over intervals,

e |ocal consistency is used instead of global consistency,
and

e domains of variables are computed iteratively from pre-
viously computed domains.

However, the problem of uncertainty propagatiomndp-
ping effect) could appear when the CSP is solved in this way.
This problem does not appearikotone systems [7] (See also,
monotone systems [1]), which are the systems whose state func-
tion is isotone. The monotonicity assumption is also used in the
robust fault detection algorithm proposed in [21]. To avoid the
wrapping effect due to the approximation of the set of estimated
states by its interval hull, a more complex approximation is pro-
posed in [17].

Algorithm 2 Fault detection using CSP on Intervals (ICSP)
1. OXy <« OX

[
T |
Tank 3 Tank 4
h
hs ¢
— —
Tank 1 Tank 2
Pump Pump 2
V1 ﬁ] V2
15
— —

Figure 1: Quadruple-tank process

The by-pass valvk; derives a proportional par;, of the flow
through pumpP; to 7 and the other part, — vy, to 7y. Sim-

2: for k=1to N do

3. obtain {uk, yr}

4 [OXp <« OX

5 [OW,_, <« OW

6. 0OV, <0V

7 0,1 < 16

8 7L <= {Tp, Th—1, Wk—1,Vk—1,0k—1}

9: D« {ka,DXk._l,DWk._l,DVk_l,D@k_l}
100 Cy <= {2 = g(@p—1,uk—1,0k—1,wp—1)}
11: Cy <« {yk = h(xk, Uk, ek) + Uk-}

122 C < {Cy,Cy}
13: H, = (Z,D,C)
14:  [OS = solve(Hy)
15: end for

16: if JS = () then

17:  fault detected

18: else

19:  no fault detected
20: end if

5. Application Example 1: Quadruple-Tank Process

As an application example to illustrate the fault detection

ilarly, the flow through pumpP; is diverted to7; and73; as a
function of the value ofy,.

To implement the proposed fault detection approach, the
model of the four tank system should be expressed in discrete-
time as in (1). From the continuous-time non-linear equations
presented in [13], the following non-linear discrete-time model
can be obtained by using the Euler discretisation with a sam-
pling time of 1s:

k
Trppr = T — 1y 2\ /2gaan + Ly, (9a)
A1 Al
k
Topy1 = T2 — E2p + a4 2gxa) + Eumm (9b)
Ag A2
1— k
T3p1 = Tap — &3, + (14&112167 (9¢c)
3
1— k
Tapq1 = Tap — Eap, + %ulkv (9d)
4
Yjp = Tjps fOI’j S {1,2}, (99)

where:

e The state variables are the tank levels (ie.,= h;,
i=1,...,4).

e The measured variables are the levels in tdfikandT>
(i.e.,y1 = hy andyg = hg)

and state estimation algorithms proposed in this paper, the four

tanks system proposed in [13] is used. This is a multivariable

laboratory process proposed as a control benchmark.

5.1. System description

A schematic diagram of the process is shown in Figure 1
The components of the system are taifiks7s, 73 andT}, by-
pass valve$; andV;, and pumps?, and P,. The inputs vari-
ables are voltages to the pumps (iz8., = v; andus v2).

e The measurement noise; (i = 1,...,2) is assumed to
be unknown but bounded and its boun®is.

° & = Z_IL\/29TZ’ fori € {1,,4},W|thA1 = A3 =
28 cm?, A, = A, = 32 cm? (cross-sections of tanks),
: a; = az = 0.071cn?, az = a4 = 0.057 cm? (cross-
sections of outlet holes) ang = 981 cm/s (gravity
constant).



e Parameters;, ko (pump constants)y; and~, are as-  for the tank levels of 5 andT) (i.e., hs andh,) is wider. The
sumed to belong to the intervals € [3.2250, 3.2450], reason is due to the levels @ andT, are measured and the
ko € [3.2600,3.2800],v1 € [0.5150,0.6150] andy, €  only uncertainty is due to the measurement noise. On the other
[0.4200,0.5200]. Uncertain parameters are consideredhand,h; and h4 are estimated by using the model that is af-
time varying. fected by parameter uncertainty. Although, they are indirectly
refined by the level measurementsandhs.
5.2. Fault scenarios

From the continuous-time non-linear equations presented ift-3-2. Scenario 2 (fault fp,) - _
[13], a simulator has been implemented in Matlab/Simulink. In  In this scenario, a fault in pump, is introduced at time
the simulations, three different types of faults have been contOmin. Figure 3 shows the same variables as in Figure 2. It

sidered to test the proposed fault detection approach: can be observed that when the faif appears, it is detected
and the FD decision indicator changes from '0’to '1’. Once the

e Faults in the pumpsfr, andfp, are faults in the pumps  fault has been detected, the state estimation algorithm continues
Py andP,, respectively. In these faulty situations, pump without correcting the estimation provided by the model using
gains {1, k2) are reduced to the0% of their nominal  the measurements. This is a post-fault strategy that avoids the
value. use of potentially faulty sensors. As a consequence, in both

variablegy; andys, the obtanied envelopes are wider, although

o Leaks in tanks:fr,, fr,, fr, and fr, are faults corre- .\ - ¢ ements still remain outside them.

sponding to leaks intanks , T, T3 andTy, respectively.
These leaks are assumed to be produced by holes of si
a;/2 at the bottom of the tanks (such that the outflow is
lost).

%.93.3. Scenario 3 (fault fr,)
Now, a leak in tank; is introduced at timéOmin. Figure 4
shows the state estimate results. It can be noticed that yihen
¢ Faults in the level sensorg,, and f,, are the faults in appears, the FD decision indicator changes form'0’to '1’, what
level sensorg;, andys,, respectively. These faults have means that the fault is detected. The detection of this fault has
been simulated by reducing the sensor gains t@%  a particular importance since it only appears in tdigkwhose

of their nominal value. level is not measured. However, since it is estimated using the
proposed state estimate approach, the fault could be detected.
5.3. Results Notice that, compared with the previous fault scenario, the

The results corresponding to three of the previous fault scdnconsistency between the model output and the corresponding

narios are presented: a faulless scenario and two faulty situf€@surements only appears in the varigplerhis information
tions. In all of them, results are obtained by usingAligrichm ~ CaN b€ used for fault isolation.

2. As discussed in the background section, several approaches ) i

can be used to solve the ICSP enunciatedfgorithm 2, in- ~ °-3-4 Scenario 4 (fault f,,)

cluding Waltz's local filtering algorithm [23] and Hyvénen's ~ Finally, a fault in the sensor that measures the léseis
tolerance propagation algorithm [10]. The first approach onlyntroduced at time Omin. Figure 5 shows the state estimation
ensures locally consistent solutions while the second can guai€sults obtained usingigorithm 2. It can be noticed that when
antee global consistent solutions but with high computational: @Ppears, the faultis indicated. As in the previous fault sce-
complexity. In this paper, the constraint satisfaction algorithn'arios, once the inconsistency is detected udilggrizim 2 the
embedded in the ICSP toBkal Paver [9], that efficiently com- ~ Staté estimation algorithm continues without correcting the es-
bines local and global consistency techniques, will be used tite estimation by using the measurements. In this scenario, the

implementdigorithm 2. measurements remain outside the envelopes just for some time
instants. However, the FD decision is maintained assuming that
5.3.1. Scenario 1 (faultless) once a fault appears it remains present.

This scenario is used to test the set-membership state esti-
mator in faultless situation. Results, obtained by ustigp- 6. Application Example 2: Sewer network
rithm 2, are presented in Figure 2. Top graphs of this figure
show the lower and upper state estimate boundéfandh, The second application example used to show the effective-
respectively. Middle graphs show the temporal evolution of theness of the proposed fault detection set-membership approach
measured levelg; andy, with each lower and upper state es- is based on the sewer network of Barcelona.
timate bounds/{;, ho). Finally, the bottom graph shows the
value of the fault detection (FD) decision indicator. This in- 6.1. System description
dicator takes '0’ value when no fault is detected and takes "1’ The portion of sewer network of Barcelona considered in
value when a fault is detected. It can be noticed that in this casgis paper is shown in Figure 6. This portion contain a real
the FD decision indicator is not activated since it is a faultlesgetention tank and two virtual tanks, which represent two net-
scenario. Notice also that the predicted interval for the tank levork catchments [4]. The following non-linear model can be
els of 77 andT5; (i.e.,h; andhs) is very tight, while the interval

6
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Figure 4: Results for the Quadruple-Tank process in the faulty scefigrioSolid blue, upper bound estimated level. Dashed blue, lower bound estimated level.

Dashed green, measured levels.
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Figure 5: Results for the Quadruple-Tank process in the faulty scefigrioSolid blue, upper bound estimated level. Dashed blue, lower bound estimated level.

Dashed green, measured levels.
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obtained by using the conservation of mass in tanks, assum- 4 P
ing that the position of gateS; andC, are fixed to avoid the v
sewage flow through linkg, andg,, and that gat€’s is com-
pletely open:

Virtual tank

Real tank
T1pgr = T1p + T [ury +uzp — Bro1y]

Topy1 = T + T [Brx1y — Bor/T2y]
T3p41 = T3 + T [Bor/Tay + usy, — B33y,
Yk = Bay/T2y, + vk,

Rain gauge

9 —
Redirection

gate

Escola
Industrial
Tank Retention gate

where

Overflow to
sea

e z; is the water volume in theéth virtual/real tank T.

- e =0 @ (0

Limnimeter

e u; = d; + w; corresponds to the rain inflow measured
employing rain gaugesHq, P and Py, according to
Figure 6), being; the real inflow andv; the measured
noise such thaw;;, € W; = [0,0.1].

Sewage
treatement
plant

e v is the sewage level in the output sewer of the tapk
measured by using the limnimeteg.

Mediterranean sea

e vy is the associated noise defined®y= [—5, 5].

. . . Figure 6: Case study: Portion of Barcelona’s sewer network
e 3,1 € {1,2,3}, corresponds with a proportional factor ¢ Y

for the volume-flow conversion.

Th del d iated intv h 6.2.2. Scenario 2 (sensor fault)
e The model parameters and associated uncertainty have |, y;q scenario, based on the same rain used in Scenario

be?” es_tlmated from real_data using the procedure de[, an additive sensor fauft, = 100 has been artificially intro-

scrltzed n [181'4 The obtained v;iues ave < J;LS x duced fromk = 40 (i.e., 200 min). Figure 8 shows the same

1077,6.8 x 10_4]' B2 € [1'995 107%,2.01 x 10~ and cases as in Figure 7. The FD decision indicator is activated just

B € 991077, 101 1077, after the fault apparition. In this case, the estimated interval for
e The system initial conditions that correspond with theState variable:; is empty, indicating the inconsistency between

initial sewer volume of the tanks are:;, = 167m3, the model and the available measurements.

229 = 0m? andzs, = 333 md.

e T = 300s is the sampling time. 7. Conclusions

In this paper, robust fault detection using set-membership
state estimation is presented. This state estimation is based on

6.2. Results . . . . o
) interval models that include parametric uncertainty. Addition-
The presented results are obtained from data recorded Ry nrocess and measurement noise are considered to be un-

the telemetry system of Barcelona sewer network in a real raiRn a\wn but bounded. First, the problem of set-membership state

scenario occurred on September 14, 1998gorithm 2 has  gstimation implemented using constraints satisfaction techniques

been applied in faultless and faulty scenarios. is presented. Then, the application of set-membership state es-
timation to fault detection is analysed. The main contribution

6.2.1. Scenario I (faultless) of this paper involves the consideration of both modelling un-

Figure 7 shows the results obtained in a faultless scenari%rtainw and measurement noise in an unified way using the
Top graphs show the lower and upper state estimate bounds fggt-membership state estimation framework. Another impor-
the non-measured states andz;. Middle graphs show the  tant contribution is to show that constraints satisfaction may be
temporal evolution of the state; estimated with the measured 5p, seful tool applied on fault detection.
variabley; and the lower and upper state estimate bound. Fi- Finally, two application examples have been used to show
nally, in the bottom graph, the value of the FD decision indi-the effectiveness of the proposed approach: the well-known
cator is shown. From Figure 7, it can be noticed that the statguadruple-tanks benchmark and a representative piece of Bar-
estimation algorithm is working properly. It can also be seenejona sewer network. The fault detection results obtained us-
that the fault indicator is not activated. ing the proposed approach show good performance in the con-

sidered scenarios. As further research, the algorithm is being
extended to address the fault isolation, the second stage after
fault detection in a fault diagnosis system.
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Figure 7: Results of the sewer network case study in the faultless scenario. Solid blue, upper bound estimated level. Dashed blue, lower bound estimated le

Dashed green, measured levels.
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