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Abstract

We present an algorithm to simultaneously recover non-
rigid shape and camera poses from point correspondences
between a reference shape and a sequence of input images.
The key novel contribution of our approach is in bringing
the tools of the probabilistic SLAM methodology from a
rigid to a deformable domain. Under the assumption that
the shape may be represented as a weighted sum of defor-
mation modes, we show that the problem of estimating the
modal weights along with the camera poses, may be prob-
abilistically formulated as a maximum a posterior estimate
and solved using an iterative least squares optimization.

An extensive evaluation on synthetic and real data,
shows that our approach has several significant advantages
over current approaches, such as performing robustly under
large amounts of noise and outliers, and neither requiring
to track points over the whole sequence nor initializations
close from the ground truth solution.

1. Introduction

Recovering non-rigid 3D shape from monocular se-
quences is known to be a highly ambiguous problem be-
cause very different shapes may have a similar projec-
tion [9, 19]. As shown in Fig. 1 the problem becomes even
further ill-conditioned if the camera moves while the shape
deforms, and both non-rigid shape and camera motion have
to be simultaneously retrieved. In order to turn this problem
into a tractable one, it is required to introduce prior knowl-
edge about the object’s behavior or camera properties.

Standard approaches to limit the space of possible solu-
tions involve introducing deformation models, either phys-
ically inspired ones [5, 13, 14] or learned from training
data [3, 6, 10, 12, 17, 27]. Surface deformations are then
expressed as weighted sums of modes, and estimating shape
amounts to retrieving the weights of this linear combination
by minimizing and image based objective function. How-
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Figure 1. Simultaneous estimation of non-rigid shape and camera
pose from input images. Top: Three different frames of an input
sequence with the recovered mesh overlaid. Bottom: Re-textured
side view of the retrieved surface and sample camera poses up to
the current frame. Note that from only the observation of the de-
forming shape, estimating the camera pose is very complicated
even for the human eye. It would be much easier from the obser-
vation of the rigid objects, such as the calibration box, although
we do not contemplate this case in the current paper.

ever, convergence is only guaranteed if both the camera
pose and shape are initialized close to their true values.

Recently, non-rigid structure-from-motion (NRSFM)
methods [1, 18, 20, 23, 25] have shown that deformation
modes can be learned along with the shape and motion pa-
rameters. While these approaches are especially interesting
in situations where training data is hard to obtain, they typ-
ically require a number of points to be tracked throughout
the whole sequence, which is difficult to satisfy in practice.
Furthermore, existing NRSFM approaches have shown to
be effective only for relatively small deformations and they
are quite sensitive to the presence of outliers and noisy data.

In this paper, we propose a new formulation to the prob-
lem of simultaneously retrieving non-rigid shape and cam-
era motion that overcomes some of the limitations of previ-
ous approaches. We make two basic assumptions, shared
with many state-of-the-art approaches [16, 19, 21, 22].
First, we assume that the deformation modes are avail-
able, and second, that 2D-to-3D correspondences can be
established with a reference image in which the shape is
known. Yet, in contrast to NRSFM methods, we do not re-
quire tracking the points along the whole sequence, that is,
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each input image may have its independent set of matches.
In addition, our approach tolerates significant rates of out-
liers and noise. Taking our inspiration on a recent work on
SLAM for mapping rigid and static environments [8], we
show that, under the above assumptions, the problem of es-
timating the modal weights describing the shapes and the
pose parameters of the camera can be probabilistically for-
mulated as a maximum a posterior estimate that can be it-
eratively solved using linearization and an efficient QR fac-
torization for sparse linear systems [7]. As we will demon-
strate through testing on both synthetic and real data, be-
sides the robustness to outliers and noise, our method does
not require from a precise initialization, which is a marked
step-forward when compared to the approaches mentioned
above used to fit deformation modes to image sequences.

2. Related Work

Many solutions have been proposed over the years that
make use of prior information to disambiguate the problem
of 3D reconstruction of non-rigid surfaces from monocular
images. These solutions may be roughly classified in those
based on deformation modes and those that learn the modes
along with the shape and pose parameters.

The former include approaches that use physically-
inspired modes such as superquadrics [14], thin-plate
splines [13] or balloons [5] to reduce the degrees of free-
dom of the problem. Yet, all these early approaches are only
effective to capture relatively small deformations. More re-
alistic deformations were described by complex non-linear
models [2, 24], although their applicability is limited to very
specific materials.

This limitation is addressed by methods that learn the de-
formation modes from training data, such as the Active Ap-
pearance and Shape Models [6, 12] or the 3D Morphable
Models [3]. These approaches represent surface deforma-
tions as linear combinations of rigid modes, and retrieving
shape entails minimizing an image-based objective func-
tion. However, since this function is typically highly non-
convex, it requires from good pose and shape initializations
to converge, which makes these methods appropriate for
tracking shapes with a small inter-frame deformation, such
faces [17, 27]. In [10], a similar approach is used to detect
human shape and pose from just a single image, although it
requires manual pose initialization.

Several recent methods have been proposed to recover
non-rigid shape from single images, by using deformation
modes in conjunction with local rigidity constraints to re-
construct inextensible surfaces [9, 19, 21, 22], and in con-
junction with shading constraints to reconstruct stretchable
surfaces [16]. However, none of these approaches retrieves
the camera pose, and either assume that the deformation
modes are aligned with the camera referencial or yield a
solution shape for which the pose is unknown.

In contrast to previous approaches, non-rigid structure-
from-motion methods [1, 4, 18, 20, 23, 25, 26] do not re-
quire to know a priori the deformation modes and, given
a video sequence, compute them simultaneously with the
pose and shape. This generality, though, comes at the price
of having to impose several constraints that are difficult to
hold in practice, such as requiring a sufficient number of
points to be tracked throughout the whole sequence. In ad-
dition, these methods have only been effectively used to re-
trieve relatively small deformations, and tend to be sensitive
to noisy correspondences, missing data, and outliers.

To address the limitations of previous approaches, we
propose a solution inspired in the SLAM technique devel-
oped in Robotics to simultaneously recover a set of camera
poses and landmarks position in a rigid environment [8].
In this paper we show that using deformation modes in a
similar formulation yields an efficient solution to the prob-
lem of simultaneously retrieving non-rigid shape and pose.
Furthermore, this solution is shown to have significant ad-
vantages in terms of robustness and convergence properties.

3. Simultaneous Pose and Non-Rigid Shape
Based on a similar formalism as [8] used for rigid en-

vironments, we next show that the problem of simultane-
ously recovering pose and non-rigid shape can be proba-
bilistically formulated as a maximum a posterior estimate,
where both pose and shape are maximized given a set of
3D-to-2D correspondences between each input image and
a reference image. We then show that the solution can be
iteratively approximated solving a sequence of linear least
squares problems.

3.1. Notation and Initial Assumptions

We represent the surface as a triangulated 3D mesh with
nv vertices vi concatenated in a vector x=[v�

1 , . . . ,v
�
nv
]�,

and the camera pose as a 6-dimensional vector ρ parame-
terizing a rotation matrix R and translation vector t. Given
a sequence of input images I = {I k}, 1 ≤ k ≤ nI , our
goal is to simultaneously estimate the surface shape xk and
camera pose ρk at each time instant k.

We assume that we are given a set of 3D points Rref=
{ri}, 1 ≤ i≤nr on a reference configuration xref , and that
for each input image, we know nk

c ≤ nr 3D-to-2D corre-
spondences between a subset of points of Rref and a set of
2D points Uk={uk

i } on I k. Note that this subset of corre-
spondences is independent at each time step, which relieves
of having to track points throughout the whole sequence, as
required in NRSFM approaches.

Additionally, we model surface deformations as linear
combinations of a mean shape x0 and nm deformation
modes Q = [q1, . . . ,qnm

]

xk = x0 +

nm∑
i=1

αk
i qi = x0 +Qαk , (1)
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where αk = [αk
1 , . . . , α

k
nm

]� are unknown weights that de-
fine the surface shape at time k. In our implementation,
the deformation modes were obtained by applying Princi-
pal Component Analysis over a training database of meshes
with similar deformations as the target motion.

And finally, we also assume the camera to be calibrated
and denote by A its matrix of intrinsic parameters.

3.2. Probabilistic Formulation of the Problem

By representing the surface shape through deformation
modes, we can reformulate our problem as that of estimat-
ing Φ={φk} with 1≤ k≤nI and with φk=(ρk�,αk�)�

the augmented (6 + nm)-state vector that collects the un-
known pose and shape for a given frame k, given the obser-
vations U={Uk}, and where Uk={uk

i }, 1 ≤ i ≤ nk
c are

the known measurements of the 2D coordinates of the nk
c

3D-to-2D correspondences at time instant k. This can be
expressed in terms of the following maximum a posterior
estimate

Φ∗ = argmax
Φ

P (Φ | U) ∝ argmax
Φ

P (Φ,U) . (2)

The joint probability P (Φ,U) may be written as

P (Φ,U) = P (φ1)

nI∏
k=2

P (φk|φk−1)

nk
c∏

i=1

P (uk
i |φk, rik ) (3)

where P (φ1) is a prior on the initial pose and shape,
P (φk|φk−1) is the motion model and P (uk

i |φk, rik) is the
measurement model of the 3D reference point rik , corre-
sponding the i-th 3D-to-2D match at time step k.

3.3. Motion and Measurement Models

We describe the motion model on the camera pose and
modal weights in the form φk = f(φk−1) + wk

φ, which
may be probabilistically written as

P (φk|φk−1) ∝ exp−||f(φk−1)− φk||2Σk
φ

(4)

where ||·||2Σ denotes the squared Mahalanobis distance, f(·)
models the camera and shape dynamics, and wk

φ is a zero

mean Gaussian noise with covariance matrix Σk
φ. In fact,

this covariance is a block diagonal matrix, composed of a
6 × 6 covariance matrix Σk

ρ for the poses, and a nm × nm

covariance matrix Σk
α for the modal weights. As shown in

Fig 2, we set these covariance matrices to relatively large
values in order to produce many different types of shapes
and poses. This increases the generality of our approach
to solve problems where input data may considerably differ
from the training data we used to compute the modes.

The measurement model is described in the form uk
i =

h(φk, rik) +wk
u, and hence

P (uk
i |φk, rik) ∝ exp−||h(φk, rik)− uk

i ||2Σk
u

(5)

Figure 2. Shape and Pose priors samples we consider, obtained by
adding Gaussian noise to a given shape and pose. Note that the
priors we use are fairly ambiguous and allow representing many
different configurations of shapes and poses.

where uk
i is the known 2D correspondence of rik , h(·) is

the measurement equation, and wk
u is a zero mean Gaus-

sian noise with 2 × 2 covariance matrix Σk
u. The function

h(φk, rik), corresponds to the equation that projects the 3D
reference point rik onto the image, after being mapped ac-
cording to the pose and shape parameters ρk and αk, re-
spectively.

More specifically, let pk
i be a point on the mesh xk cor-

responding to the point rik in the reference configuration.
We can write pk

i in terms of the barycentic coordinates of
the face it belongs as

pk
i =

3∑
j=1

aijv
k
ij , (6)

where the aij are the barycentric coordinates and vk
ij

are

the vertices of the face in xk containing the point pk
i . Since

we assume the mesh does not stretch, these barycentric co-
ordinates remain constant for each point an can be easily
computed from points rik and the reference mesh xref .

The measurement equation h(φk, rik) returns ũk
i , the

2D projection of pk
i onto the image given the current pose

and shape parameters. If we expand φk into a rotation ma-
trix Rk, translation vector tk, and modal weights αk we
can write such a projection as

wi

[
ũk
i

1

]
= A

[
Rk|tk]

[
pk
i

1

]

where wi is a scalar. Finally, by injecting the barycentric
coordinates of Eq. 6 and the modal description of Eq. 1, the
measurement equation h(φk, rik) = ũk

i can be written in
terms of the pose parameters and modal weights.

3.4. Least Squares Formulation

As discussed in Section 3.2, the problem of simultane-
ously retrieving pose and shape can be formulated in terms
of a MAP estimate of the joint probability P (Φ,U). By
taking the negative logarithm of Eq. 2, and considering
Eqs. 3, 4 and 5, it can be further shown that the problem
may be reduced to the following non-linear least-squares
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estimation

Φ∗ = argmin
Φ

nI∑
k=1

ε(φk−1,φk) (7)

where

ε(φk−1,φk) =
∥∥∥f(φk−1)− φk

∥∥∥
2

Σk
φ

+

nk
c∑

i=1

∥∥∥h(φk, rik )− uk
i

∥∥∥
2

Σk
u

and where we define f(φ0) = 0.
Since the measurement function h(·) is nonlinear and

the process function f(·) may also be non-linear, the min-
imum is iteratively approximated linearizing Eq. 7. Let
θ0 = (φ1�

0 , . . . ,φnI�
0 )� be an initial estimation of Φ∗. We

approximate f(·) and h(·) linearizing at θ0

f(φk−1) ≈ f(φk−1
0 ) + Fk−1δk−1

h(φk, rik) ≈ h(φk
0 , rik) +Hk

ik
δk

where δk = φk
0 − φk, Fk−1 is the (6 + nm) × (6 + nm)

Jacobian of f(·), and Hk
ik

is the 2 × (6 + nm) Jacobian
matrix of h(·), both of them evaluated at the corresponding
element of θ0

Fk−1 =
∂f(φk−1)

∂φk−1

∣∣∣∣
φk−1

0

Hk
ik =

∂h(φk, rik )

∂φk

∣∣∣∣
φk

0

Let us write the error in the dynamic motion prediction as
ck = φk

0 − f(φk−1
0 ), and the error in the measurement as

dk
i = uk

i − h(φk
0 , rik). Then, Eq. 7 becomes

ε(δk−1, δk) ≈
∥∥∥Fk−1δk−1+Gδk−ck

∥∥∥
2

Σk
φ

+

nk
c∑

i=1

∥∥∥Hk
ikδ

k−dk
i

∥∥∥
2

Σk
u

where G is a (6 + nm)× (6 + nm) identity matrix, intro-
duced to simplify subsequent notation. Finally, the original
least-squares problem is re-written as

δ∗ = argmin
δ

‖B δ − b‖2Σ (8)

where δ = [δ1�, . . . , δnI�]�, and Σ is a matrix made of
all the Σk

φ and Σk
u noise terms. The matrix B collects all

Jacobian matrices, and the vector b all errors in motion pre-
diction and measurements

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G
F1 G

F2 G
. . .

. . .
FnI−1 G

J1

J2

. . .
JnI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

c3

...
cnI

d1

d2

...
dnI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with Jk = [Hk
1 , · · · ,Hk

nk
c
]� and dk = (dk

1 , . . . ,d
k
nk
c
).

In order to solve Eq. 8 we derive and equate to zero.
Then, δ∗ may be found as the solution of

B̂� B̂ δ∗ = B̂� b̂

with B̂ = Σ−1/2 B and b̂ = Σ−1/2 b. Note that B is a
large but very sparse matrix. Assuming a constant number
nc of 3D-to-2D correspondences per image, B would be a
nI(nm+6+2nc)×nI(nm+6) matrix. Typical values in our
experiments are nI = 50 images, we detect about nc = 100
correspondences per image, and use nm = 30 deformation
modes. These values would yield a 11800 × 1800 matrix,
although with only a 2.3% of non-null entries. Taking ad-
vantage of this sparsity, B̂ and b̂ can be directly defined pre-
multiplying Fk, G, and cki by (Σk

φ)
−1/2, and Hk

i and dk
i

by (Σk
u)

−1/2. The resulting B̂ is also sparse and we can use
a sparse QR factorization [7] on B̂ to efficiently obtain δ∗

without explicitly having to compute B̂� B̂. The solution
δ∗ is then used to update θ0 and the procedure described in
this Section is repeated until convergence.

3.5. Detecting and Removing Outliers

As will be shown in the results section, the formulation
we propose, yields very good results in terms of conver-
gence and robustness to noise. In addition we implemented
a procedure similar to what was proposed in [21] to detect
and remove 3D-to-2D correspondences with very large er-
rors. We define

λk
i =

dk
i

median(dk
i , 1 ≤ k ≤ nI , 1 ≤ i ≤ nk

c )
,

and reduce the influence of the more noisy correspondences,
by multiplying the rows of B with the weight

wk
i =

{
exp(−λk

i ) if λk
i < λ

1 otherwise

where the parameter λ is chosen large enough (we set λ = 3
in all our experiments) to ensure that only those measure-
ments with large errors dk

i are penalized. Yet, we initially
do not remove these observations, because their gross error
might come from a wrong estimate of shape and pose at the
current iteration. Instead, we remove them if after having
contributed in the current estimate, their reprojection error
remains outside a radius, that is reduced at each iteration. In
practice, we start with a 100 pixel radius that progressively
reduce until a value of 10 pixels.

4. Experimental Results

In this section we extensively evaluate the performance
of our approach against noise in the correspondences, the
presence of outliers, or its dependence on the quality of the
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Figure 3. Results on shape and pose recovery for a sequence of a deforming synthetic mesh. Top-Left: Mean reprojection, reconstruction,
rotation and translations errors, as a function of the number of outliers and for different levels of noise in the correspondences. Bottom-
Left, Right: Different levels of pose and reprojection errors to give significance to the errors we obtain. Note, that even with fairly vague
initializations, our algorithm converges to reasonably good solutions.

initialization. We show results on both synthetic and real
images.

In order to position the current approach within the state-
of-the-art, we also provide a comparison against [18], which
is representative of the non-rigid shape from motion tech-
niques. Although the two methods are not directly compara-
ble, as they require from different assumptions, we enforce
the comparison and show the benefits of using combined
priors on the shape deformation and camera dynamics, even
when they are very weak.

4.1. Synthetic Data

We first applied our approach to a 50 frames synthetic
sequence of a 9 × 9 mesh, simulating the deformation of a
wave with increasing amplitude. The reference configura-
tion was represented by a 30 × 30 cm planar shape. The
camera was allowed to move according to random Brown-
ian paths on the surface of a 80 cm sphere centered on the
mesh, and with the optical axis pointing to this center. The
left-most graph in the middle row of Fig. 3 shows one ex-
ample of shape and camera poses generated this way.

For each pair of camera pose and mesh shape, we then
synthetically produced 150 random 3D-to-2D correspon-
dences, between a 640×480 image acquired for that partic-
ular shape and pose, and the reference configuration. Given
this setup, we performed two different types of experiments,
to evaluate both the robustness and convergence perfor-
mance of the proposed algorithm.

In the first experiment we analyzed the performance of

our approach against noise in the 2D correspondences and
the presence of outliers. More specifically, we performed 10
different experiments by adding noise with standard devia-
tion of {0, 1, 2, 3, 4} pixels, and by introducing a percentage
of outliers of {0, 5, 10, 20, 30, 40}%. In addition, this com-
bination of parameters was repeated for 15 different random
camera paths.

In each of these experiments all the shapes in the se-
quence were initialized with the planar shape of the refer-
ence mesh. The poses, were initialized by adding random
noise to the ground truth poses such that the initial percent-
age of rotation and translations errors were approximately
of 50%. The right-most graphs in the second and third rows
of Fig. 3 show that these initializations are significantly far
from the ground truth solutions.

In all experiments we used the same set of parameters
to describe the dynamic and measurement models of Sec-
tion 3.3. As a dynamic model, we used simple Brownian
motion, and the function f(·) in Eq. 4 was taken to be the
identity, that is, f(φ) = φ. The covariance matrix Σρ on
the poses was set to a constant diagonal matrix, with a 0.1
standard deviation for the rotation components, and 3 cm
for the translational ones. The covariance matrix Σα on the
modal weights was computed from the training data used to
estimate the deformation modes, scaled by a factor of 3 to
increase the generality of the method. For the measurement
model we set a diagonal covariance Σu to the observations,
with a 3 pixel standard deviation.

Fig. 3 reports the mean results of the experiment. In the
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Figure 4. Detection of outliers. P: true number of outliers. N:
true number of inliers. TP: Number of outliers correctly de-
tected. FP: Number of inliers miss-classified as outliers. True
Positives(%)=TP

P
. False Positives(%)=FP

N
. Observe that even for

large levels of noise, our algorithm correctly detects most of the
outliers.

upper row, we plot the mean reprojection, reconstruction
and pose errors, as a function of the percentage of outliers
and for different levels of noise in the correspondences. Ob-
serve that even for large levels of noise and outliers, the
results are within reasonable bounds. The images on the
middle and bottom rows give significance of the errors we
obtain. For instance, observe that a mean reconstruction er-
ror of 1.0 cm, still represents a good approximation to the
true shape.

In Fig. 4 we evaluate the methodology described in Sec-
tion 3.5 to detect outliers. Observe that it yields very large
rates of true positives and low rates of false positives. This
means that correctly detects most of the outlier correspon-
dences, while only miss-classifies a very small percentage
of correct correspondences. Of course, the results slightly
fall when the noise in the correspondences is increased, be-
cause then, correct but very noisy correspondences are clas-
sified as outliers.

In a second experiment with the synthetic data we eval-
uated the convergence behavior of our approach. For that
purpose, we initialized our algorithm with very different
poses and shapes, either relatively close to the true solu-
tions or very far away. Fig. 5 shows the reconstruction and
pose errors at convergence as a function of the errors in
the initialization. Errors larger than specific ratios are sat-
urated and shown in black, such that we can consider the
black regions, as non-convergence areas. In fact these non-
convergence values are reasonable values for which the re-
trieved solutions are visually disturbing. Observe that con-
vergence almost does not depend on the quality of the initial
shapes, and the initial pose is the dominant factor. That be-
ing said, our algorithm tolerates errors in the initial pose of
up to 80%, which is relatively large, specially considering
that the pose error shown in the middle-right plot of Fig. 3
is of about 50%.

4.2. Real Images

We tested our method on a 120-frames sequence of a
bending paper and a 100-frames sequence of a deforming T-
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Figure 5. Shape and pose errors at convergence, as a function of
the error in the initialization.

shirt, acquired with a Pointgrey Bumblebee stereo camera.
In both cases the camera was moved around the deform-
ing shape while capturing the sequence. The upper images
in Fig. 1 show three different frames of the “bending pa-
per” sequence, where the movement of the camera can be
clearly appreciated from the viewpoint change of the still
calibration box.

We used the stereo rig to estimate the ground truth shape,
although our algorithm was ran with just the images from
one of the cameras. The ground truth pose was computed
by applying the PnP algorithm [15] over a small set of man-
ually introduced correspondences between points on a 3D
model of the calibration box and points in each of the in-
put images. The 3D-to-2D correspondences between the
reference configuration and the input images of the mesh
were computed using SIFT [11]. In order to obtain a suffi-
ciently large number of correspondences, we used the SIFT
matches to initially detect the surface in 2D and then used
normalized cross correlation in very small regions to obtain
dense correspondences.

Since the distance between the camera and the surface
was roughly the same as for the synthetic experiments, and
the inter-frame camera displacement was also very similar
we used the same dynamic and measurement models we
defined in the previous section.

Yet, an issue we had to resolve was that the number
of frames of the real sequences was much larger than for
the synthetic case, and the size of the matrix B in Eq. 9
became very large to be tractable. To handle this situa-
tion we implemented an incremental version of our algo-
rithm, in which the sequence was split into several parts,
and each part solved independently. However, in order to
avoid jumps between the different parts, we allowed certain
overlapping of the frames and shared their solution among
sub-sequences.

Fig. 6 depicts the results for the two real experiments. In
each case, the upper-row graphs plot the errors per frame, at
initialization, after 4 iterations, and at convergence. Since
the results have been obtained by applying our algorithm to
several sub-sequences the number of iterations to converge
is not unique. However, all sub-sequences converged using
between 50 − 70 iterations. The bottom plots, show the
configuration of camera poses at previous time instances.
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Figure 6. Results on two real sequences. Left: For each experiment, the upper plots depict the errors per frame obtained after initialization,
4 iterations and convergence. The bottom plots show the poses corresponding to the previous time instances. Right: Shape recovery on
two real sequences. For each frame, the we overlaid the recovered mesh overlaid on the original image, and show the 3D mesh seen from
a constant point of view, after eliminating the camera movement.

Note, that our algorithm yields fairly good results, specially
considering the large error of the initial set of poses. Finally,
in Fig. 6-Right we show the recovered shape for different
frames of each sequence.

4.3. Comparison with NRSFM techniques

We finally compare our method against [18], a recent
Non-Rigid Shape From Motion algorithm. As said above,
there are substantial differences between our approach and
NRSFM methods. The most important is that we make
use of a deformation model, computed from training data,
while in NRSFM methods do not assume that training data
is available, and simultaneously estimate 3D shape and
modes. This obviously makes these algorithms more gen-
eral, but at the price of being more sensitive to noise and
constrained to relatively small deformations.

Fig. 7 shows the results of the comparison for the syn-
thetic sequence used in Section 4.1. In order to satisfy the
input data requirements of [18], we provided the tracks of

all the vertices of the mesh, and projected them onto the
image using an orthographic camera model. We then com-
puted the reconstruction error for increasing levels of in-
put noise. As expected, the behavior of the NRSFM meth-
ods is quite poor, and becomes specially unstable for large
amounts of noise. In contrast, the use of the deformation
modes yields a remarkable robustness and stability to our
algorithm. In addition, besides shape, our algorithm also
provides an accurate estimation of the camera pose, which
we did not show here because [18] does not explicitly com-
pute pose.

5. Conclusion
In this paper we have shown that the problem of simul-

taneously retrieving pose and non-rigid shape given a set
of 3D-to-2D correspondences can be probabilistically for-
mulated as a maximum a posteriori (MAP) estimate. We
then introduce dynamic and measurement models account-
ing for noisy data, and reduce the MAP estimate to a non-

7
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Figure 7. Comparison with NRSFM aproaches. Left: Reconstruction error of our approach and [18] for the synthetic sequence presented
in Sect. 4.1, as a function of the input noise. Right: Sample reconstructions showing the error bounds for both methods. Observe, that even
the solution with largest error of our approach represents a better approximation than the solution with smallest error obtained with [18].
Of course, this additional accuracy is consequence of using known deformation modes.

linear least squares optimization that we solve using stan-
dard techniques. In the results section, we have shown that
we obtain satisfactory results under situations where current
methods are prone to fail, such as, large rates of outliers and
noise in the input data, or very poor quality of the initializa-
tions.

The formulation of the problem we propose is very gen-
eral, and allows introducing additional constraints either on
the structure of the mesh or on the dynamic models. In par-
ticular, as part of future work, we pretend to investigate the
use of length constraints on the edges of the mesh, as has
been done in previous literature [19, 22]. We believe that
introducing these constraints would reduce the dependence
of the method on training data, and that more global defor-
mation modes might be used for several applications.
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