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Abstract—We present a method to segment dynamic objects
from high-resolution low-rate laser scans. Data points are
tagged as static or dynamic based on the classification of pixel
data from registered imagery. Per-pixel background classes are
adapted online as Gaussian mixtures, and their matching 3D
points are classified accordingly. Special attention is paid to the
correct calibration and synchronization of the scanner with the
the accessory camera. Results of the method are shown for a
small indoor sequence with several people following arbitrarily
different trajectories.

Index terms – Segmentation, 3D sensing, calibration, sensor
synchronization.

I. INTRODUCTION

2D and 3D lidar scanning are popular sensing method-

ologies for robotics applications. They are used for robot

navigation [5], trajectory planning [20], scene reconstruction

[17], and even object recognition [1]. Aside from pricey

devices such as the Velodyne HDL-64E, high resolution 3D

lidar scanning is only possible at low frame rates. As an

example, we have built an omnidirectional lidar sensing de-

vice for outdoor mobile robotics applications that scans with

resolutions and acquisition times that range from 0.5 degrees

at 9 seconds per revolution to finer point clouds sampled at

0.1 degrees resolution at a more demanding processing time

of 45 seconds per revolution. This sensor has been devised

for low cost, dense 3d mapping. The removal of dynamic and

spurious data from the laser scan is a prerequisite to dense 3d

mapping.

In this paper we address this problem by synchronizing the

laser range sensor with a color camera, and using the high

frame-rate image data to segment out dynamic objects from

the point clouds. Per-pixel class properties of image data are

adapted online using Gaussian mixtures. The result is a syn-

chronized labeling of foreground/background corresponding

laser points and image data as shown in Fig. 1.

The paper is organized as follows. In the next section

we present related work in background segmentation using

computer vision methods and 3D laser range data. Section

III gives our custom built sensor specifications, and details

the methods developed for sensor synchronization and sensor

calibration. Section IV details the background segmentation

algorithm. Results of the method are shown in Section V on a

real indoor scenario with several people moving with random

patterns. Conclusions and future work are detailed in Section

VI.

Fig. 1. Several laser scans of a dynamic object reprojected on their
corresponding image frame.

II. RELATED WORK

Methods that study the segmentation of 3D laser data

usually focus on the extraction of valuable geometric primi-

tives such as planes or cylinders [10] with applications that

vary from map building, to object classification [2], road

classification [6], or camera network calibration [9]. All these

methods however are designed to work on static data only and

do not consider the temporal information. For outdoor map

building applications, the removal of dynamic objects from

the laser data is desirable. Furthermore, for low-rate scanning

devices such as ours, moving items in the scene would appear

as spurious 3D data; hence the need to segment them out.

Background segmentation is a mature topic in computer

vision, and is applied specially to track objects in scenarios

that change illumination over time but keep the camera fixed

to a given reference frame. The most popular methods adapt

the probability of each image pixel to be of background

class using the variation of intensity values over time. Such

adaptation can be tracked with the aid of a Kalman filter [14]

taking into account illumination changes and cast shadows.

These methods can be extended to use multimodal density

functions [18, 19] in the form of Gaussian mixture models,

whose parameters are updated depending on the membership

degree to the background class.

The classification of 3D range data fusing appearance infor-

mation has been addressed in the past, again for static scene

analysis. Posner et al. [11, 12, 13] propose an unsupervised



Fig. 2. Camera to laser rigid body pose estimation using a planar calibration
pattern.

Fig. 3. Our custom built 3D range sensing device and a rigidly attached
color camera.

method that combines 3D laser data and monocular images

to classify image patches to belong to a set of 8 different

object classes. The technique oversegments images based

on texture and appearance properties, and assigns geometric

attributes to these patches using the reprojected 3D point

correspondences. Each patch is then described by a bag of

words and classified using a Markov random field to model

the expected relationship between patch labels.

These methods (and ours) have as a prerequisite the accurate

calibration of both sensors, the laser and the camera. The

computation of the rigid body transformation between 2D

and 3D laser scanners and a camera are common procedures

in mobile robotics and are usually solved with the aid of a

calibration pattern. The techniques vary depending on the type

of sensor to calibrate, and on the geometric motion constraints

between the two sensor reference frames [23, 22, 7, 9].

Sensor synchronization on the other hand has received less

attention. Sensor synchronization and occlusions are studied

in [16] for the case of the Velodyne HDL-64 sensor. A more

general method to synchronize sensors with varying latency is

proposed in [8].

Fig. 4. Laser-camera pose refinement using line primitives. The green dotted
lines show the image features. Red lines show reprojection prior to pose
refinement, and blue lines correspond to refined reprojected estimates (best
viewed in color).

Fig. 5. Camera and laser synchronization.

III. SENSOR SYNCHRONIZATION AND CALIBRATION

A. Sensor specifications and data acquisition

Our 3D range sensing device consists of a Hokuyo UTM-

30LX laser mounted on a slip-ring, with computer-controlled

angular position via a DC brushless motor and a controller.

For the experiments reported in this paper, laser resolution

has been set to 0.5 degrees in azimuth with 360 degree

omnidirectional field of view, and 0.5 degrees resolution in

elevation for a range of 270 degrees. Each point cloud contains

194,580 range measurements of up to 30 meters with noises

varying from 30mm for distances closer to 10m, and up to

50mm for objects as far as 30m. The color camera used is a

Pointgray Flea camera with M1214-MP optics and 40.4 degree

field of view. Fig. 3 shows a picture of the entire unit.

B. Sensor Calibration

We are interested in the accurate registration of laser range

data with intensity images. Registration can be possible by first

calibrating the intrinsic camera parameters and then, finding

the relative transformation between the camera and laser

reference frames. Intrinsic camera calibration is computed

using Zhang’s method and a planar calibration pattern [24],



although other methods could also be used [3, 21]. Extrinsic

calibration between the laser and camera is initialized by

selecting correspondences of the calibration plane corners

on both sensing modalities with the aid of a graphical user

interface, and using Hagger’s method for pose estimation [4],

as shown in Fig. 2.

The method is subject to the resolution of the laser scanner

for the selection of the four 3D to 2D corner matches in the

pattern. Pose estimation is further refined by minimizing the

reprojection error of line primitives. Lines in the 3D point

cloud are obtained growing and intersecting planar patches

as in [10]. Their corresponding matches in the images are

manually selected using the graphical user interface.

Line reprojection error is computed as the weighted sum of

angular and midpoint location reprojection errors as shown in

Fig. 4,

ǫ =
∑

(θi − θp)
2 + w(mi −mp)

T (mi −mp) (1)

where the subscript i corresponds to measured image features,

and the subscript p indicates projected model features. The

weight w is a free tuning parameter to account for the

difference between angular and Cartesian coordinates.

C. Synchronization

At 0.5 degree resolution, our 3D scanner takes about 9

seconds to complete a scan, which is made of a 180 degree

turn of the sensor. Camera frame rate is set to 17 fps, thus we

have roughly 153 images per full 3D image.

The timestamps between consecutive laser slices tslicei , and
grabbed images tframej are compared and set to lie within a

reasonable threshold Ts in milliseconds.

|tslicei − tframej | ≤ Ts (2)

With Ts = 1/17, each laser scan is uniquely assigned to its

corresponding image frame, roughly two to three per image.

Increasing this threshold, allows to match each laser slice to

more than one image at a time (see Fig. 5).

IV. BACKGROUND SUSTRACTION

Once we have time correspondences between 3D laser

slices and image frames, we can use background segmentation

results on the image sequence to classify the corresponding 3D

points in each time slice as belonging to a dynamic or static

object. The method we implemented is based in [19].

A. Mixture Model

For each pixel in the image, the probability of its RGB

coordinates x to be of the background class is modeled as a

mixture of K Gaussian distributions.

p(x) =
K∑

k=0

ωkN (x|µk,Σk) (3)

with ωk the weight of the k-th Gaussian, and K a user selected

number of distributions.

This classification scheme assumes that the RGB values

for neighboring pixels are independent. During the training

session, when a pixel RGB value x falls within 2.5 standard

deviations of any of the distributions in the sum (in the

Mahalanobis sense), evidence in the matching distributions is

stored by recursively updating their sample weight, mean, and

variance with

ωk(t+ 1) = (1− α)ωk(t) + α (4)

µk(t+ 1) = (1− ρ)µk(t) + ρx (5)

Σk(t+ 1) = (1− ρ)Σk(t) + ρ(x− µ(t))T (x− µ(t))(6)

and

ρ = αN (x|µk,Σk) (7)

Note that after updating ω in Eq. 4, the weights need to

be renormalized. And, just as in [19] we also consider during

the training session, that when a pixel value x falls below a

2.5 standard deviation of the distribution, the least probable

distribution of the Gaussian sum is replaced by the current

RGB pixel value as the current mean, with an initially high

variance, and a low prior weight.

B. Background Class

The mixture model on each pixel encodes the distribution

of colors for the full image sequence set per full 3D scan

(about 153 images). The static portion of the data, i.e., the

background, is expected to have large frequency and low

variance. By ordering the Gaussians on each sum by the value
ω

detΣ
, the distributions with larger probability to be of the

background class will be aggregated in the top of the list.

Static items might however be multimodal in their color. For

instance, a flickering screen or a blinking light. As a result

we choose as background class the first B < K ordered

distributions which add up to a factored weight ωB , where

B = argminb(

b∑

i=1

ωi ≥ ωB) . (8)

C. Point classification

Each point on each scan slice is reprojected to its matching

image frames according to Eq. 2. Ideally, for tight bounds

on Ts, only one image will be assigned to each scan slice.

Robustness to noise is possible however, if this bound is

relaxed and we allow for larger values of Ts, so that more

than one image can be matched to the same scan slice. We

call this set of images I .
Thus for each point in a slice, the corresponding pixel values

x from the whole set I is visited, and checked for inclusion

in the set B of distributions. Class assignment is made if x
belongs to B for all the images in the set I .

V. EXPERIMENTS

Results are shown for a series of indoor sequences with

moderate dynamic content. For background segmentation, the

multimodal distribution is set to contain 4 Guassians, the

learning rate is set at α = 0.3, and the background class

is set to one third of the frequency in the distributions, i.e.,



(a) Ts = 1/fps. (b) Ts = 0.5sec (c) Foreground segmentation

(d) Segmented dynamic object

Fig. 6. Segmentation results for a sequence with one moving person and varying values of the synchronization threshold.

ωB = 0.3. The synchronization threshold Ts is varied from the

minimal 1/17 to a more conservative value of 0.5 seconds.

The first analyzed sequence corresponds to a single person

moving in front of the laser and camera. Frames (a) and (b) in

Figure 6 show final results of point classification for different

values of Ts; frame (c) shows the image pixel classification

results; and frame (d) shows the 3D reconstruction of both,

the segmented dynamic object, and the entire 3D scene.

The second sequence contains a more challenging scenario

with three people with slow random walking trajectories.

Given the slow motion rate of the people, laser range readings

hitting on them are difficult to categorize as being dynamic.

The background segmentation algorithm proposed in this

paper helps to alleviate this issue. Figure 7 shows results of

background segmentation in this new sequence for varying

values of the synchronization parameter. Setting this parameter

slightly above the camera acquisition rate accounts for syn-

chronization errors and produces better segmentation results.

Frames (a-c) in the image show the segmentation results for

Ts = 1/fps, whereas frames (d-f) show segmentation results

for Ts = 0.5sec.

Figure 8 shows 3D reconstruction results of the segmented

data and of the full 3D scene. The results shown are for a

synchronization threshold of 0.5 sec.

We appreciate the suggestion during the peer review phase

of this work to compare our method with other approaches.

Unfortunately, as far as we know, the system presented is

unique, and there are no other methods in the literature that

take low-rate 3d scans and remove dynamic content from

them using high-rate imagery. To validate the approach, we

can report however an empirical comparison with ground

truth image difference. Assuming a clean background scan is

available (without people), image difference to a full dynamic

cloud was computed with the Point Cloud Library [15] using a

distance threshold of 3mm. Fig. 9 shows results of such image

difference computation. The results of our method are visually

comparable to such ground truth experiment.

VI. CONCLUSIONS

We present a method to segment low-rate 3D range data

as static or dynamic using multimodal classification. The

technique classifies fast-rate image data from an accessory

camera as background/foreground adapting at frame rate a

per-pixel Gaussian mixture distribution. The results of image

classification are used to tag reprojected laser data.

Special attention is paid to the synchronization and metric

calibration of the two sensing devices. Sensor synchronization

is of paramount importance as it allows to match high frame

rate imagery with their corresponding low rate laser scans.

The method is tested for indoor sequences with moderate

dynamics.



(a) (b) (c)

(d) (e) (f)

Fig. 7. Segmentation results for a sequence with three people moving randomly and varying values of the synchronization threshold. Frames (a-c) show
three sequence instances segmented at Ts = 1/fps. Frames (d-f) show the same sequence instances segmented at Ts = 0.5sec.

Fig. 8. Segmentation results for a sequence with three slowly moving people with random walking trajectories.

The proposed method was designed to remove spurious data

or dynamic objects from low acquisition rate lidar sensors. The

result is a cleaner 3d picture of static data points. These point

clouds could then be aggregated into larger datasets with the

guarantee that dynamic data and noise will not jeopardize point

cloud registration. The intended application of the technique

is robotic 3d mapping.
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Fig. 9. Result of applying point cloud difference using PCL.
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