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Abstract— This paper presents FaMSA, an efficient method to
boost 3D scan registration from partially known correspondence
sets. This situation is typical at loop closure in large laser-based
mapping sessions. In such cases, scan registration for consecutive
point clouds has already been made during open loop traverse,
and the point match history can be used to speed up the
computation of new scan matches. FaMSA allows to quickly
match a new scan with multiple consecutive scans at a time, with
the consequent benefits in computational speed. Registration
error is shown to be comparable to that of independent scan
alignment. Results are shown for dense 3D outdoor scan
matching.

Index terms – ICP, 3D scan registration, scan alignment.

I. INTRODUCTION

The Iterative Closest Point (ICP) algorithm is the de-facto

standard for range registration in 3D mapping. It is used to

compute the relative displacement between two robot poses

by pairwise registration of the point clouds sensed from them.

In a typical mapping session, consecutive pairwise registration

is performed during open loop traverse, and accumulates drift

error. This error is corrected by closing loops, i.e., matching

point clouds with large temporal deviation (see Fig. 1).

Most SLAM algorithms keep probabilistic estimates of the

robot location that can be used to determine whether or not

a loop closure test is advisable. For instance, by considering

not only pose uncertainty but information content as well [12].

But, once a loop closure test is deemed necessary, an algorithm

that can compute it expeditiously is needed. Typically loop

closure tests are checked not only from the current cloud

to a query cloud in the past, but instead, to a consecutive

set of query clouds in the past, which in turn have already

been registered among them. Using this knowledge, we can

expedite multiple registrations at a time. In this paper we

propose FaMSA, a technique for fast multi-scan point cloud

alignment at loop closure that takes advantage of the asserted

point correspondences during sequential scan matching.

The paper is organized as follows. A description of related

work is given in Section II. Section III details some implemen-

tation details of our ICP algorithms; and Section IV elaborates

on the particularities of the method. Experiments that validate

the viability of the method are given in Section VI, and

Section VII contains some concluding remarks.

II. RELATED WORK

The most popular scan matching methods are based on the

Iterative Closest Point algorithm [5]. The objective of this

Fig. 1. Dense point cloud registration during loop closure at the Barcelona
Robot Lab.

algorithm is to compute the relative motion between two data

sets partially overlapped by minimizing the mean squared error

of the distance between correspondences in the two sets.

In the original algorithm, a point-to-point metric is used

to measure the distance between correspondences in the set.

Point-to-plane metrics are also common practice [8], which

make the method less susceptible to local minima. Further-

more, point-to-projection metrics are also possible [7], by

matching points to ray indexes directly, inverting the ray

casting process. A thorough account of these metrics and their

properties is given in [21]. More recently, an error metric

that weights unevenly rotation and translation was proposed

for 2D [15], [16], and later extended to 3D [6]. The method

uses point-to-projection minimization using triangles as the

projection surface, and performs nearest neighbor search in the

new metric space. FaMSA uses this metric for optimization.

ICP’s computational bottleneck is in correspondence search.

Most strategies to accelerate this search rely on some prior

ordering of points within each point cloud, and use tree-

based search methods such as the Approximate Nearest Neigh-

bor [19], [3] that uses balanced kd-trees; kd-trees with caching

mechanisms [24]; or parallelized kd-trees [18].

A method for fast NN search that competes with kd trees

for execution speed is based on the spherical triangle con-

straint [10]. Like in [24], point caching is maintained from

one iteration to the next, and ordering and triangle constraints

are used to quickly identify correspondences. Aside from tree

structures, other space partitioning mechanisms that allow

for fast NN search include double z-buffering [4] and grid

decomposition [26].

Point sampling is also a common strategy used to accel-



erate the matching process. Sampling however, only reduces

asymptotic computational complexity by a constant factor. It

is common practice to use hierarchical coarse-to-fine sampling

methods to avoid missing fine resolution correspondences [25],

[27]; and sampling can be either uniform [25], [7], ran-

dom [14], or with ad-hoc reduction heuristics related to the

sensing mechanism [20].

Outlier removal is also a major concern on most modern ICP

implementations. Point rejection can be based on statistical

point distributions [27], [14], [20], using fixed or dynamic

distance thresholds [22], or using topological heuristics [25],

[27], [22].

The idea of multi-scan alignment has been addressed as

a bundle adjustment problem for 2D range scans [13] using

force field simulation. The work that most relates to ours is

the latent map [11], a multi-scan matching technique for 2D

range matching.

III. RANGE IMAGE REGISTRATION

A. Notation

The objective of the classic ICP algorithm is to compute the

relative rotation and translation (R, t) between two partially

overlapped point clouds P and Q, iteratively minimizing the

mean square error over point matches. For a given set of point

match indexes Y , ICP’s cost function is

argmin
R,t

∑

(i,j)∈Y

‖(pi −Rqj − t)‖
2
. (1)

This minimization is solved iteratively, revising at each

iteration the list of point matches, using for instance, NN

search.

B. Implementation details and computational complexity

Correspondence search is the most expensive step in the

ICP algorithm. Finding the NN to a given query point relies

on the ability to discard large portions of the data with simple

tests. Brute force correspondence search would take O(n),
with n the size of the point cloud. The preferred data structures

used to solve the NN problem in low multidimensional spaces

are kd-trees [9] with O(n log n) construction complexity and

O(log n) search complexity. Box structures on the other hand

take polynomial time to build [2] and constant time to search.

Box structures are possible in ICP only when the initial and

final poses do not change significantly so that NNs remain in

the originally computed box.

We implement Acka’s box search structure with some

modifications. The box structure in [2] assigns to empty boxes

the index of the last occupied box. We instead leave empty

boxes out of the search. This serves effectively as a fixed

distance filter with significant savings in computational load.

Our method is faster than using the optimized Approximate

Nearest Neigborh (ANN) library [3] with fixed radius search,

as shown in the experiments section.

The original ICP algorithm of Besl and McKey [5] assumes

that for each point in the reference set there must be a cor-

respondence in the query set. In most applications this is not

FAMSA(P, P ′, Q, Y,R, t, R0, t0)
INPUTS:

P, P ′: Two consecutive query point clouds.
Q: Current point cloud.
Y : Correspondences between P and P ′.
R, t: Relative displacement between P and P ′.
R0, t0: Initial displacement between P and Q.

OUTPUTS:
RP , tP : Relative displacement between P and Q.
RP ′ , tP ′ :Relative displacement between P ′ and Q.

1: RP , tP ← R0, t0
2: RP ′ , tP ′ ← (R0, t0)⊕ (R, t)
3: while not convergence do
4: Z ← NNSEARCH(P,Q,RP , tP )
5: Z′

← LINK(Z, Y )
6: RP , tP ← ICPUPDATE(P,Q,RP , tP , Z)
7: RP ′ , tP ′ ← ICPUPDATE(P ′, Q,RP ′ , tP ′ , Z′)
8: convergence ← (ǫ < T ) and (ǫ′ < T )
9: end while

Algorithm 1: FaMSA: Fast multi-scan alignment with partial

known correspondences

the case and adequate similarity tests must be implemented.

Using point distance as the only criteria for point similarity

usually leads to wrong data association and local minima.

We use, as in [22], oriented normal similarity constraints,

together with statistical constraints [14], i.e, points at distances

larger than a multiple of their standard deviation are rejected.

These filtering strategies are time consuming, and should be

used with discretion, since they require sorting and binary

search. Correspondence uniqueness is also enforced and its

implementation needs appropriate bookkeeping of matches at

each iteration.

Several metrics exist to find the closest point during cor-

respondence search [23], [21]. We adopt in this work the

metric proposed in [6], but use point-to-point matching instead

a point-to-triangle matching, and avoid the computational

burden of computing the corresponding triangle mesh.

The metric is an approximated distance that penalizes

rotations with a user defined weight L,

d(pi, qj) =

√

‖pi −Rqj − t‖
2
−

‖qj × (pi −Rqj − t)‖
2

‖qj‖2 + L2
.

(2)

and a point norm ‖q‖ =
√

x2 + y2 + z2 + L2θ2. The metric

d substitutes the Euclidean distance in Eq. 1, and as L → ∞,

this measure tends to the Euclidean distance.

IV. FAST MULTI SCAN ALIGNMENT WITH PARTIALLY

KNOWN CORRESPONDENCES

Given that correspondence search is the most expensive part

of any ICP implementation, we propose FaMSA to boost mul-

tiple scan alignment using previously known correspondences.

That is, given two previously aligned point clouds P and P ′,

the relative transformation between the two R, t, and a list Y
of correspondences, we want to find the registration between

the current point cloud Q and the two query scans P and P ′.



FAMSA2(P, P ′, Q, Y,R, t, R0, t0)
INPUTS:

P, P ′: Two consecutive query point clouds.
Q: Current point cloud.
Y : Correspondences between P and P ′.
R, t: Relative displacement between P and P ′.
R0, t0: Initial displacement between P and Q.

OUTPUTS:
RP , tP : Relative displacement between P and Q.
RP ′ , tP ′ :Relative displacement between P ′ and Q.

1: RP , tP ← R0, t0
2: while not convergence do
3: Z ← NNSEARCH(P,Q,RP , tP )
4: RP , tP ← ICPUPDATE(P,Q,RP , tP , Z)
5: convergence ← (ǫ < T )
6: end while
7: RP ′ , tP ′ ← (RP , tP )⊕ (R, t)
8: while not convergence do
9: Z′

← LINK(Z, Y )
10: RP ′ , tP ′ ← ICPUPDATE(P ′, Q′, RP ′ , tP ′ , Z′)
11: end while

Algorithm 2: FaMSA2: Very fast multi-scan alignment with

partial known correspondences

The method proceeds as follows. Standard correspondence

search is implemented between clouds P and Q, and for each

match between points pi and qi, a link to P ′ is read from Y ,

and consequently the distance from qj to p′k is immediately

established, avoiding the computation of similarity search and

filters. Aside from the previous alignment of P and P ′, the

method needs, as any other iterative ICP algorithm, an initial

estimation of the relative displacement between the query

cloud Q and P . Algorithm 1 shows the approach.

In the algorithm, Z and Z ′ indicate the correspondence sets

between P and Q; and P ′ and Q, respectively. Appropriate

index bookkeeping links to the other in constant time. The

threshold T is used to indicate the maximum error allowed for

the registration of both point clouds. The method also limits

the search to a maximum number of iterations, typically set

to 100.

The method is suboptimal in the sense that no new matches

are sought for between point clouds P ′ and Q. For sufficiently

close reference clouds P and P ′ it does not impose a limitation

on the quality of the final correspondence.

In the same way that FaMSA takes advantage of the point

correspondences between P and P ′ to boost the computation

of the relative displacement between P ′ and Q, one can also

defer the estimation of the pose between P ′ and Q until all

iterations for P have finished and use the result as a starting

point for the second optimization. This method is shown in

Algorithm 2.

Extensive experimentation shows that only one iteration of

ICP update suffices to revise the pose of P ′ with respect to Q,

once the relative transformation between P and Q has been

optimized. We call this method FaMSA2.

Fig. 2. Our mobile robotic platform.

V. EXPERIMENT SETUP

Our experimental data was acquired in the Barcelona Robot

Lab, located at the Campus Nord of the Universitat Politècnica

de Catalunya. The point clouds were captured using a Pioneer

3AT mobile robot and a custom built 3D laser with a Hokuyo

UTM-30LX scanner mounted in a slip-ring. Each scan has

194,580 points with resolution of 0.5 deg azimuth and 0.25

deg elevation. Figure 2 shows the coordinate frames of all of

our robot sensors. For the work reported here, only 39 scans

from this dataset were used. Figure 7(a) shows a partial view

of the mapped environment. The entire dataset is available

in [1].

Each scan was uniformed sampled for faster convergence

using voxel space discretization with a voxel size of 0.35

meters. During sampling, we also computed surface normals

and enforced a minimum voxel occupancy restriction of 4

points. Random sampling with set sizes of 20 points was used

for those boxes exceeding such number of points. Normal

orientations are computed after random sampling. This has

shown to produced better orientation estimates, especially

around corners, when compared to other strategies such as

k-NNs with density filtering.

ICP is executed in open loop for 39 consecutive scans,

storing all relative pose displacements as well as the corre-

spondence indexes. Then, a number of possible loop closure

locations were selected manually. FaMSA was executed on

these loop closure candidates. The specific parameters of the

ICP implementation include: maximum angle between nor-

mals of 35 deg; upper and lower bounds of sigma rejection at

0.25σ and 5σ, respectively; and maximum number of iterations

at 100.

For the execution times reported, experiments were run in

MATLAB using mex files of C++ routines in an Intel Core 2



(a) Dense point cloud registration. Color indicates height.
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(b) Robot trajectory. In green the initial pose, in red the final pose.

Fig. 3. A path with 39 poses around the FIB plaza of the Barcelona Robot Lab.
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(a) Time required to match Q and P ′, when the correspondences between P

and P ′ are known.
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(b) Time required to match Q with both P and P ′.

Fig. 4. Algorithm performance.

Quad CPU Q9650 3.0 GHz system, with 4 GB RAM running

Ubuntu 10.04 32 bits.

VI. RESULTS

First, we compare the execution time in seconds for various

implementations of multi-scan ICP. To this end, 10 loop

closure locations Q are selected in the trajectory, and each

is compared against its query clouds P and P ′. Figure 4(a)

shows the time it takes to align the current cloud Q to the

second query cloud P ′ given the correspondences between Q
and first cloud P are knwon. The methods BNN, ANN-FR

and ANN refer to our implementation of voxel NNs; ANN

with fixed radius, the size of the voxels; and conventional

ANN. FaMSA and FaMSA2 stand for the methods presented

in this paper that make use of previous point correspondence

indexes to speed up registration. Note that FaMSA2 is the

fastest of the methods, requiring only one iteration in the

minimization. Extensive experimentation showed that further

refinement in the case of FaMSA2 does not significantly

improve the registration.

Figure 4(b) plots the time it takes to register the current

point cloud Q against both query clouds P and P ′. The

plot shows individual registration using BNN and combined

registration using the proposed schemes BNN+FaMSA and

BNN+FaMSA2. The advantages in computational load of

using the proposed mechanism are significative.

One might think that using only the correspondences in

Y would yield suboptimal estimation. As a matter of fact,

when using only this set to compute the relative displacement

between P ′ and Q, the number of correspondences effectively

halves (see Fig.5), but pose estimation accuracy does not suffer

significantly.
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Fig. 5. Number of correspondences between P ′ and Q running a full BNN
compared to using the stored set Y .

Figure 6 plots proportional translation and rotational errors

as compared with full ICP estimation using BNN, and com-

puted as follows [17]: using as ground truth the relative pose

between Q and P ′ as computed with BNN (RBNN , tBNN ),

we measure the relative error of the estimated rotation (R, t),
as ER(%) = ‖qBNN − q‖/‖q‖, where qBNN and q are

the normalized quaternions of the corresponding orientation

matrices RBNN and R, respectively. Similarly, the relative

error of the estimated translation is computed with Et(%) =
‖tBNN − tP ′‖/‖tP ′‖. Translation error turns out to be less

than 0.7% for FaMSA and for all cloud pairs, and less than

0.2% for FaMSA2. Rotation error is barely noticable for both

methods.

Figure 7 shows a sample of the point cloud match (best

viewed in color). In blue, the current pose. In green and red,

the query poses. A safe percentage of point cloud overlap in

our method is roughly 50%. This is achieved with displace-

ments of about 4 meters.

VII. CONCLUSIONS

This paper presents a novel ICP variation for simultaneous

multiple scan registration that benefits from prior known

correspondences. Speed up gain is substantial when compared

with other methods.

The method uses a voxel structure to efficiently search for

correspondences to the first cloud in the set, and a metric that

unevenly weights rotation and translation.

The method was devised to search for loop closures after

long sequences in open loop traverse but could be used for

other configurations, provided the correspondences on the

query set are known.
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(a) Relative translational error.
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(b) Relative rotational error.

Fig. 6. Proportional translation and rotation errors for the registration between Q and P ′ with the proposed methods. BNN is used for ground truth
comparison.

(a) P in yellow, P ′ in red, and Q in blue. (b) Cenital view.

Fig. 7. A loop closure location between clouds 3, 4, and 28 in the BRL dataset (best viewed in color).
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