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A 3-DOF Actuated Robot Based on a Minimal
Tensegrity Configuration

Josep M. Mirats-Tur and Josep Camps

Abstract—This paper presents a realization of a tensegrity
based robot composed of a 3-bar symmetric prism-like minimal
tensegrity configuration. Statics and kinematics are studied
presenting the workspace for the designed robot. After a detailed
implementation description of the physical robot, some trajecto-
ries within its workspace are analyzed. While our long term
objective is provide to the community mobile tensegrity based
robots, this work studies a case in which the robot is anchored to
the ground. This provides us a first insight of how these structures
should be actuated and sensed in order to produce movement.

Index Terms—Tensegrity structures, mechanism design.

I. I NTRODUCTION

FROM an engineering point of view tensegrity are a special
class of structures whose elements may simultaneously

perform the purposes of structural force, actuation, sense, and
feedback control. They have a very high resistance/weight
coefficient and are easily deformable. In such kind of struc-
tures, theoretically, pulleys or other kind of actuators may
stretch/shorten some of the constituting elements in orderto
substantially change their form with a little variation of the
structure’s energy. [7, 8] demonstrated that tensegrity struc-
tures are very similar to cytoskeleton structures of unicellular
organisms, some of which are known to move. They are also
very similar to muscle-skeleton structures of high efficiency
land animals that can reach speeds up to 60 mph. As reported
by [24] these beings incorporate tensional elements in their
muscle-skeleton system such that they maintain the structure
integrity while acting it, storing and distributing energy[11].

Due to these similarities with such organisms we think
that tensegrity structures may be a good candidate to con-
struct mobile robots with arbitrary forms and capable of self-
deformation in order to adapt efficiently to the environment
where they work. Up to now tensegrity have been mainly
used for static applications where the length of all membersis
kept constant and actuation is performed only to compensate
for external perturbations. In the last decades the tensegrity
framework has been also used to build deployable structures
although the tensegrity paradigm has not been fully exploited
either. It is not since very recent years that we find some
relevant works towards this goal: for instance, [1] put together
several simple tensegrity structures to build a redundant ma-
nipulator robot. [17] and [13] proposed different self-propelled
tensegrity architectures to build mobile robots.
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The purpose of this paper is to demonstrate the feasibility of
constructing robots using tensegrity structures. Mobile robotics
is our long term objective but first, in order to understand
how these structures can be actuated and sensed, we face
up the problem of manipulators, i.e. with fixed base. So we
present in this paper the implementation, including design
and construction details, of a robot based on a 3 bar prism-
like tensegrity in a 3D minimal configuration. The designed
mechanism is capable of following any desired trajectory
inside its workspace.

This paper is organized as follows. An introductory geomet-
ric robot description is given in section II. Static and kinematic
analysis is performed in section III where results such as the
workspace of the constructed robot are provided. Next, section
IV hands in a detailed description of the implementation of the
presented robot: simulation results, mechanics and electronics
implementation. Some real results comprising different trajec-
tories followed by this tensegrity based robot are reportedin
section V. Finally, main conclusions of this work are outlined
in section VI.

II. ROBOT DESCRIPTION

This work deals with the design, construction and validation
stages of a new kind of deformable robot based on an
actuated tensegrity structure, the octahedral tensegritysystem
first introduced by [20] and [3]. A schematic of the designed
robot is given in figure 1 representing a minimal tensegrity
configuration in stable equilibrium.Minimal means, in this
context, that the number of cables used to link the rigid
elements are the minimum required to give stability (in terms
of rigidity) to the structure in the3D space. This number is9
in the case of the octahedral tensegrity; note, however, that we
fixed the lower nodes of the structure so the3 lower cables
disappear as depicted in figure 1.

A fixed reference frame is considered to be located at node
n1 being they axis oriented towards noden2, as depicted
in the figure. The three lower nodes labeled asn1, n2, n3,
have been fixed to the ground so eliminating possible rigid
displacements of the whole structure in the space. Therefore,
being a the side of the lower base triangle, the vectors of
position for these nodes with respect to the chosen reference
frame can be stated as:

p1 = (0, 0, 0)T

p2 = (0, a, 0)T

p3 = (−sin(60 ∗ pi/180) ∗ a, cos(60 ∗ pi/180) ∗ a, 0)T

(1)
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Fig. 1. Minimal tensegrity in stable configuration representing the designed
robot. Cables are thin red lines while bars are the thick black ones.

Edges between the three lower nodes have been eliminated
since they have no function at all. Upper nodes are linked to
the lower ones by three actuated bars which may vary their
lengths; in fact, this can be mathematically seen as a strut with
an upper elongation limit. Barb1 links nodesn2 andn4, barb2

nodesn3 andn5, and barb3 links noden1 to noden6. Please
note that the ordering of bars and nodes may be arbitrarily
chosen provided the right connections between them. Position
of the upper nodes can hence be expressed as:

p4 = p2 + lb1b1

p5 = p3 + lb2b2

p6 = p1 + lb3b3

(2)

where lbi
denotes the current longitude of barbi and bi

a unit vector on the direction of thei − th bar. This could
alternatively be expressed using two rotation angles for each
bar, pitch and yaw, which respectively represent the angle of
the bar with respect to thexy plane,βi, and the angle of the
bar projection onto thexy plane with respect thex axis,αi.

bi =





cosαicosβi

sinαicosβi

sinβi



 (3)

In order to complete the tensegrity structure tensile elements
are needed. As the bars are actuated each time some or all
of the bars lengths change the longitude of whichever tensile
element used has to be changed as well. This fact ensures
the structure is maintained in a stable position. We have
chosen to use springs instead of cables so as to assure the
tensile elements of the structure passively adapt to the required
length when changing the bar lengths. Also, we assure that the
structure always stays in a minimum energy configuration once
the actuators are locked. Hence, six springs are neededc4 to
c9 which respectively link nodesn1 to n4, n2 to n5, n3 to
n6, for the vertical springs, andn4 to n5, n5 to n6 andn6 to
n4 for the horizontal springs on the upper triangular platform.
These springs are considered to be massless and linear elastic
with stiffness constantk equal for all of them and rest-length

lc0
. The stiffness of the bars is assumed to be infinite with

respect to that of the springs.
The reference configuration for our robot is the first cor-

responding to a proper tensegrity configuration, the one from
which the springs are always in tension. A proper configuration
can be found by using a form-finding technique. It is beyond
the scope of this paper to talk about such techniques, please
refer for instance to [23] for more details. So our first proper
tensegrity configuration corresponds to, usinga = 57cm and
lc0

= 38cm, an elongation of the bars of67cm. However,
control inputs can be generated fromlb ∈ [55, 92]cm. Note
that for the rangelb ∈ [55, 67)cm the robot is not a valid
tensegrity since the springs are not in tension. This range of
control inputs should not be considered here. Neverthelessit
is worth to mention since the designed robot can be deployed
from a total folded configuration to a 3D simplex tensegrity
structure by means of the considered actuators.

We note that the designed robot has a total of9 degrees
of freedom, since each node could move in the three axes
but we have9 constraints imposed by the three lower nodes,
which are fixed. However, only three of them are actuated.
As a matter of fact, the three controllable dofs, that is our
output vector, are theλλλ = (x, y, z) coordinates of the centre
of mass of the upper triangle driven by the control inputs
u = (lb1 , lb2 , lb3). The remaining dofs are constrained by the
potential energy of the springs, it must reach a minimum so as
to drive the structure to a stable position. Given a fixed length
for each of the bars together with a set of nodal forces there is a
unique possible stable position of the robot correspondingto a
self-stress configuration, that is a configuration where thenull
space of the robot’s equilibrium matrix ([18]) is not empty.
Note that as the robot is sub-actuated and we used springs
instead of cables, and although the actuators are locked, itwill
move to a different equilibrium configuration when external
forces are exerted onto the structure nodes.

III. STATIC AND K INEMATIC ANALYSIS

We devote our attention to the statics and kinematics. In
a tensegrity structure with actuators capable of changing the
length of some of its elements, the relations between input
(in our case the length of the bars) and output variables (the
centre of mass of the upper platform) will, in general, depend
on internal forces (tension in the springs) as well as external
ones. The dynamic model of the system under study is left
for future works, by now the interested reader could check
our ongoing work in this field in [14] or [4].

The study of the static and dynamic characteristics of
such structures has previously received some attention by the
scientific community in other areas. Some analytic solutions to
the static problem were given by [16], [10], or more recently,
a quite complete static analysis review was given by [5].
The dynamics of tensegrity were first studied by [15]. [9]
studied dynamic particle models while considering the bars
to be massless; other studies, [19] or [21] consider mass on
bars. Also non-linear models and their linearisation have been
considered by [22]. All those studies consider statics and
dynamics from a structural point of view, for example the
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behaviour of a tensegrity dome under heavy winds, but have
not considered the possibility of a tensegriy with self-motion
capability.

We would be interested in solving both, the direct and
the inverse kinematic problems. The first is related to the
calculation ofλλλ when the external forces on the upper nodes
fT
ext = (fT

4 , fT
5 , fT

6 ) and the control inputsu are given. On
the other hand, the second problem is related to findu for a
desiredλλλ when a force is exerted onto the nodes of the upper
platform.

In order to solve these problems we can take a look at
the equilibrium equations of the structure. For a tensegrity
structure to be in an equilibrium configuration

R(p)Tγγγ = fext (4)

whereR(p)T denotes the equilibrium matrix of the struc-
ture relating the internal forces in the elementsγγγ to the nodal
forcesfext. The vectorp contains the coordinates of the nodes;
is a concatenation of thepi vectors. In general, for a structure
with e elements andn nodes,R(p)T has dimensionnd × e
being d the dimension of the realization space. This matrix
has a column for each element and a row for each node and
dimension which is full of0′s except for the elements in the
rows corresponding to the element terminal nodes.

A 3-bar prism-like tensegrity has an equilibrium matrix of
dimension18x12 meaning18 highly non-linear equations for
15 unknowns. In our case, as we fixed the lower nodes to the
ground, the equilibrium matrix has dimension9x9 so we have
a system of9 non-linear equations for9 unknowns. Those
are the coordinates of the upper nodes from which we can
compute the internal force provided the rest lengths of the
springs, their stiffness constants and assuming a linear spring
model. Hence, in general we can not find a close solution to
those equations.

We rather looked at these problems from energetic consider-
ations. As was demonstrated by [2], for a tensegrity structure
to be at an equilibrium configuration it should be at a minimum
of its potential energy. The potential energy considering the
gravitational force is given by the expression:

U =
1

2
k

nc
∑

j=1

(lcj
− lcj0

)2 +

nb
∑

j=1

mghj

wherelc, lb are, respectively, the lengths for cables and bars,
m is the mass of the bars, considered equal for all of them,g
is the gravitational constant, andhj = 1

2
lbj

sinβj is the height
of the bar’s centre of mass. Note the dependency of thelc on
the i, j nodes coordinatesl2c = (pj − pi)

T (pj − pi).
At a first glance one may think in getting proper equations

by taking derivatives of the potential energy with respect
the considered generalized coordinates (whether the unitary
vectors of the bars or the anglesαi, βi); but this is in general
not enough since we have to observe some constraints in order
to be at a tensegrity configuration. These constraints are mainly
given by maintaining the springs in tension and complying
equations 4.

So we face a problem of non-linear minimization with non-
linear constraints which can be solved by non-linear program-
ming using, for instance, a penalty method. This has been the
approach followed in this work. Details on the optimization
technique used can be found in [6].

Now, for the direct kinematic problem we provideu as well
as the external forces and solve an optimization problem. In
this way if we discretize the actuator space the workspace of
our robot can be computed. Figures 2 and 3 show the possible
positions for the upper nodes as well as the workspace for the
proposed robot considering the output as the centre of mass
of the upper platform. Bars have allowed to change length
betweenlb = 67cm and lb = 92cm with 5mm increments.

Fig. 2. Admissible positions for the upper nodes of the robotwhen the bar
lengths are allowed to change in the intervallb ∈ [67, 92]cm. Blue is for
noden4, red n5 and greenn6.

Fig. 3. Workspace for the proposed robot considering the output as the centre
of mass of the upper platform when the bar lengths are allowedto change in
the intervallb ∈ [67, 92]cm.

The inverse kinematic problem can be solved as well
by solving an optimization algorithm. Given a final desired
configuration we first compute the closer equilibrium configu-
ration to it by solving a form-finding procedure. Then, values
for the required length of the bars and hence the required
control inputs are obtained.
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IV. I MPLEMENTATION

The implemented robot is basically composed of three
actuated bars and nine passive strings in the form of springs.
It was necessary to design an electronic motion control unit
for the actuators as well as a force sensor acquisition system.
We analyse in this section three basic items of the robot
implementation: previous simulation, design of the mechanic
parts and control hardware.

A. Simulation

As a previous step to the physical implementation of the
robot it was necessary to simulate the full structure with the
aim of estimating its key parameters: length of the bars, the
motor torque required to perform a given bar elongation and
the springs stiffness constant and rest lengths.

Simulation starting point is a stable configuration for the 3-
bar tensegrity structure. In this case the six nodes coordinates
were obtained by solving a form finding process [6] consider-
ing a bar length of55cm. Once the coordinates of the nodes
were obtained a model was built using Adams, a physical
simulation program of mechanical assemblies. A screen-shot
of the complete robot is shown in figure 4.

(a) Front view (b) Side view

Fig. 4. Preview of the prototype structure using a simulation software.

The form finding process did not take into account the
gravity field, so at the beginning the structure is not in a
well-balanced configuration. The first performed simulation
was letting the structure to freely oscillate until it achieved
the equilibrium state. This is shown in Figure 5 where the
force exerted on the three springs entering a node during
the transitory mode are also shown. The final equilibrium
state gives us enough information to know two of the key
parameters: the minimum initial length of the springs (all of
them considered to be equal) and the minimum constant force
that they should support.

For the bars we want to control their lengths using DC
motors. In order to estimate the necessary force to displacethe
nodes and, hence, determine the proper torque of the motors,
a different simulation is required; see figure 6.

B. Robot Mechanics

The main mechanical issue is the design of the actuated
bars. They have been made up of aluminium due to its low
weight. Bar length change is based on the screw mechanism: a
screw thread is fixed to the motor axis and the corresponding

Fig. 5. Transient simulation before arriving to equilibrium configuration. On
the right, real force exerted on the three springs linking each node.

Fig. 6. Simulation of the required force a motor should deliver when bars
elongate up to 20cm.

nut to the extreme of the internal tube. Figure 7 shows this
principle while (5) states the relation betweenW , the force
generated by the mechanism, andM , the torque of the motor.

M = W tan

(

arctan

(

L

2πr

)

+ r arctan(µ)

)

(5)

Fig. 7. Movement transmission between motor and screw.

Each bar has two aluminium tubes, one (13x10.5mm) fitted
within the other (18x15mm) allowing its length vary from55
to 95cm. The motion system is composed by a DC motor
(Faulhaber Series 2342), a metal gear head unit (14 : 1) and
a digital encoder (16pulses/rev). The motor is located in the
base of the bar (blue in figure 9) so that its shaft rotation makes
the bar length to change. For integrity reasons each bar has
been provided with two stop switches. When all the bars are
built and ready mounting the full robot is as easy as joining
the springs correctly and fix the lower nodes on the support
table. Figure 8 shows the full robot architecture.

Looking at figure 8 we can see the robot has two kind
of joints. The lower ones are spherical joints providing free
movement of the bar in any direction of rotation. Please note
that the springs should end at the same point where the joint
is, this is what the mathematical model considers; instead they
don’t because of difficulties in the physical implementation.
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Fig. 8. Tensegrity based prototype robot.

The upper nodes just concentrate three springs each. Again,
the node is not punctual so we may observe little differences
between the real behaviour and the predicted one with the
theoretical model. Finally, figure 9 includes a comparison
drawing between the CAD designed bar and the real one, and
details of the upper and lower nodes.

(a) Real and
designed bar

(b) Upper node (c) Lower node

Fig. 9. Some details about the prototype structure.

C. Control hardware

The control hardware has been divided into two different
parts: motion control and force acquisition unit. The first one
deals with the movement of the each bar, sending and receiving
commands, synchronizing movements, home method and so
on. The second part is in charge of acquiring and sending the
current force value of the six springs.

Let begin with the motion control unit. The Faulhaber
MCDC2805 driver has been chosen for this application; it
provides a standard RS-232 serial link with a bit rate up to
19.200baud. As the used host computer had only one input
serial port and we have three motors, we had to deal with:

1) Collisions. Every driver asynchronously sends a reply
data package informing of the end of movement. As it
is possible that two drivers send this at the same time
a collision may occur. So transitions are placed in a
multiple access.

2) Bandwidth. The maximum bandwidth available for a
standard serial port is115.200bps. This means in our

particular case that every driver can use up to38.400bps.
However, this baud rate may not be enough in the
future if more information is required, like torque, sense
current, etc., or more actuators are added to the structure.

Both problems were solved by implementing a switch serial
port-Ethernet using a FPGA device providing a bandwidth
up to 100Mbps. Every device entering the switch has its
own address so multiple access situations are avoided. Finally,
an interface board between the FPGA and the computer is
necessary to translate TTL levels to RS232 and vice-versa.
Figure 10 depicts the schema of the motion control unit.

Fig. 10. Motion control hardware diagram.

We now proceed with the force sensor acquisition unit. A
measure of force in each spring provides a lot of insight to
understand how the full structure acts and responds. As shown
in figure 11, the force measure system comprises the load cells
(Futek, LSB200), the signal conditioning (Texas Instruments
SCC-SG24), the analog to digital converter (Analog Devices
AD7939CB) and another FPGA (Xilinx Virtex4 ML405)
which properly filters, calculates, and sends the force values
to the host computer through an Ethernet port.

Fig. 11. Force acquisition hardware diagram.
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V. RESULTS

We present in this section two experiments performed with
the real tensegrity based mechanism. The aim is to demonstrate
the possibility of taking a tensegrity structure from an initial
stable configuration to a desired one. This is equivalent to state
that by means of changing the shape of the structure we can
bring a specified point of the structure, the end effector, toa
desired position in the space.

The first experiment shows how the structure changes height
by moving the three actuated bars at the same velocity. Initial
length for all the three bars is670mm, the final length is
920mm and the velocities are1mm/s. This corresponds to
an almost pure vertical trajectory of the structure from44cm
to 70cm height. Figure 12 shows the forces gathered by the
sensors: load cells 1 to 3 correspond to vertical springs while
load cells 4 to 6 to the springs on the upper platform. Figure 13
contains two snapshots for the initial and final configurations
of the structure.
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Fig. 12. Springs’ real force when the three bars change length at equal rates.

(a) Initial configuration (b) Final configuration

Fig. 13. Two snapshots from the vertical trajectory of the structure.

The second experiment shows a little bit more complex tra-
jectory performed by the structure. Initial and final lengths for
the actuated bars are the same as in the previous experiment,
but now different velocities are given to each bar:2, 4 and
8mm/s. While the final configuration is exactly the same the
performed trajectory is now a kind of three-direction steps
ladder; the upper platform tends to move towards the bar with
highest velocity. Again, the structure changes height between

44 and70cm but this time simultaneously moving on the xy
plane of the top platform. Figure 14 shows the forces gathered
by the load cells. Some snapshots of the performed trajectory
are shown in figure 15 where Matlab plottings have been used
to give an upper view of the structure (projected onto thex−y
plane) and hence a clearer understanding of the performed
trajectory.
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Fig. 14. Real force on the springs when the three bars change length at
different velocities.

(a) t=5s (b) t=10s

(c) t=15s (d) t=20s

(e) t=25s (f) t=30s

Fig. 15. Some snapshots for a trajectory considering different bar velocities.
In this experimentvb1

= 2, vb2
= 4 andvb3

= 8mm/s.
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VI. CONCLUSIONS

Obtaining new kind of deformable robots using tensegrity
structures having some or all of its elements actuated is
nowadays a big challenge for roboticians. In the case that more
elements than degrees of freedom in the space are actuated
we obtain a hyper -actuated device which may be, apart of
moved, shape controlled. The objective of this paper has been
to demonstrate the application of these structures to develop
robotic mechanisms.

This paper has been devoted to explain how our first
prototype of tensegrity based robot was developed. Based on
a 3-bar tensegrity prism, we allow its bars to change length
which gives us the possibility to control three degrees of
freedom in the space. Those are the height of the structure as
well as thexy position of the upper platform. The workspace
of the mechanism was presented in figure 2 demonstrating
the feasibility of performing a shape-changing structure that
can perform any trajectory inside this workspace. We note,
however, the taken decision to use springs as passive elements
which accommodate themselves to the resulting structure
for each stable configuration. This translates into an under-
actuated device, that is it has more degrees of freedom than the
ones we can effectively control. In despite of this we still were
able to perform arbitrary trajectories within the workspace
assuming no external forces other than gravity were acting
on the structure.

We notice here the singularity of the equilibrium matrix
for a stable tensegrity configuration. This means that although
cables can be used that rigidifies the structure so avoiding
unwanted motions when applying external forces to the nodes,
an infinitesimal mechanism exists which, in this case, would
allow infinitesimal rotations of the upper platform with respect
the base. This effect can be negligible using enough pre-
tensioned cables. Also, a non-minimal tensegrity configuration
would not have this infinitesimal mechanism, for instance
the one with a completed topology graph, with extra cables
between nodes(n2, n6), (n3, n4) and(n1, n5). For the purpose
of demonstrating that some or all of the elements of a
tensegrity can be actuated to obtain a deformable structurethat,
in medium term, can be used as a deformable mobile robot,
we have found the minimal tensegrity configuration interesting
by itself.

We did neither focused the paper on how to obtain a
proper control law for the designed robot, instead we presented
an open-loop law based in the form-finding process used.
Author’s are currently working on a control law that, given
a goal point, provides the necessary length changes of the
structure’s elements so as to achieve the goal in a required
time. Results already exist in the literature for tensegrity driven
by tendon, see for instance the work by [12], although nobody
dealt before with bar actuation. Kinematics and dynamics
of tensegrity structures are difficult to solve because of the
involved equations. In fact, the issue of how to control the
structure to change its shape as well as to move it remains an
open and challenging question in the literature. We also shall
investigate in the near future how to combine actuated bars
and cables so as to have a hyper-actuated structure.

Despite their huge potential of applicability only a few
structures of this kind have been built at the present time.
Tensegrity have already been shown to have superior fea-
tures than traditional approaches in areas like architecture
or civil engineering, and some of their properties, such as
high energetic efficiency, deploy-ability, deform-ability and
redundancy, as well as their biological inspiration, make this
kind of structures good candidates to design both mobile
robots and manipulators. So we think that a good field of
application for such structures is to allow them move by the
use of adequate actuators and sensors, and expect that in the
next years research on tensegrity structures will focus on their
dynamics and control, and, in our specific interest, obtaining
new deformable and totally environmental adaptable robots.
We just gave an example in this paper of a novel functional
tensegrity robot based on a compliant passive tendon network
actuated by a bar-length controller hardware.
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