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Fault Diagnosis Based On Causal Computations
Albert Rosich, Erik Frisk, Jan̊Aslund, Ramon Sarrate and Fatiha Nejjari

Abstract—This work focuses on residual generation for model-
based fault diagnosis. Specifically, a methodology to derive
residual generators when non-linear equations are presentin
the model is developed. A main result is the characterization of
computational sequences that are particularly easy to implement
as residual generators and that take causal information into ac-
count. An efficient algorithm, based on the model structure only,
that finds all such computational sequences, is derived. Further,
fault detectability and fault isolability performance depend on
the sensor configuration. Therefore, another contributionis an
algorithm, also based on model structure, that places sensors
with respect to the class of residual generators that take causal
information into account. The algorithms are evaluated on a
complex, highly non-linear, model of a fuel cell stack system.
A number of residual generators are computed that are, by
construction, easy to implement and provide full diagnosability
performance predicted by the model.

Index Terms—Fault diagnosis, causal computations, sensor
placement, fuel cell stack system.

I. I NTRODUCTION

I NDUSTRIAL processes can be affected by faults having
a serious impact on operation when not promptly detected

and identified. In order to diagnose these faulty behaviors,
efficient diagnosis systems are of great importance for modern
industries. Over the last three decades, the growing demand
for safety and reliability has drawn significant research infault
detection and diagnosis based on a model of the system [1],
[2], [3], [4].

Most approaches for model-based fault diagnosis rely on
consistency checking. A comparison between the observed
behavior and a model of the process is performed by means of
a set of residual generators, which are designed by exploiting
the redundancy in the model of the system. Fault detection
is achieved when a residual generator is triggered upon the
occurrence of a fault. Fault isolation is then performed by
inferring the triggering pattern of a set of residuals. Most
diagnosis systems deployed in industry are still based on quite
basic techniques such as variable limit checking and there is
a potential to increase diagnosis performance by using more
advanced methods.

Many methods are difficult to use for industrial systems
since the models typically include non-linearities such as
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lookup-tables, saturations, hysteresis functions. Thereexist
methods for dealing with such models [5], [6], [7], but they can
often be practically infeasible. For example, methods based on
variable elimination suffer from severe complexity problems
and Gröbner basis techniques fail for even moderately sized
systems [8, p. 108]. Another example is observer based
techniques, as in [7], where analytical solutions to a non-linear
partial-differential equation are needed in the design. Although
theoretically sound, the design procedure is often not possible
for industrial models, due to the size and complexity of the
model equations.

One possible solution is to rearrange the model equations
so that all variables can be computed using back substitution.
However, this would require that parts of the model with
redundancy can be rearranged into a triangular form which
is a severe limitation on the class of models that can be used.

The main contribution of this paper is a method, placed
somewhere in between the simple substitution approach and
the more general techniques that rely on complex analytical
computations. The computation of the residual is here decom-
posed into either linear sub-problems, which are easy to solve,
or non-linear problems with a structure that allows a simple
back substitution. To identify these sub-problems, a structural
representation of the system is used together with a causal
interpretation. A novelty with this paper is the extension of
previous approaches [6] with a systematic treatment of linear
and non-linear variables, where the non-linear are separated
into causal and non-causal variables. Based on the generated
residuals, basic techniques from consistency based diagnosis
are used to perform the fault isolation. See for example [4] for
basic fault isolation algorithms and [9] for how to integrate
residual generation with such techniques.

Fault diagnosis relies on process observations, which are
usually measured with sensors. Hence, the efficiency of a
diagnosis system critically depends on the location of the
sensors. For many systems there exists a great number of
possible candidate residual generators [10], which means that
the restriction on the class of residual generators may not
severely limit the detection and isolation performance of a
designed diagnosis system. For this reason, an interesting
question is which sensors to use in order to achieve a given
diagnosis specification using this class of residual generators.
There exist some results devoted to sensor placement for
diagnosis using graph tools. In [11], a digraph representation
of the relationship between sensors and faults of the process
is used as a basis for the sensor-location problem. In [12], an
algorithm is developed for placing sensors but limited to linear
differential-algebraic systems. In [13], structural analysis is
applied but limited to linear structured systems. In [14],
structural analysis is applied to non-linear systems but the
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method requires the previous computation of the complete
set of redundant sub-models, which is a highly inefficient
task for large scale complex systems. Lastly, in [15], a more
efficient algorithm is developed which does not require this
previous computation. However, existing techniques basedon
structural analysis give only best case results when applied
to non-linear systems. This drawback is alleviated in this
present work, by formulating a sensor placement algorithm
which takes into consideration the causal computability inthe
residual generation. Previous works, as [15], neither focus on
residual generation nor handle causal variables.

This paper is organized as follows. In Section II, the
problem to be solved is motivated and defined. In Section III,
the guidelines to handle causalities within a structural model
are presented and algorithms to determine the computable part
of the model are proposed. Next, in Section IV, the previous
algorithms are applied to determine the fault diagnosis proper-
ties of the system. The sensor placement problem is addressed
in Section V, whereas Section VI deals with the computation
of the sub-models which are used for residual implementation.
Finally, in Section VII, the whole methodology is applied to
a fuel cell stack system [16] where main advantages of the
proposed approach are illustrated. The fuel cell system model
is complex, involving a wide range of non-linear equations
including look-up tables, piecewise polynomial functions, non-
linear dynamic equations, etc. The model also covers a wide
range of operating points.

II. PROBLEM BACKGROUND AND MOTIVATION

In model based diagnosis, consistency is checked by using
a set of sub-models with redundancy. One approach is to
analyze the model structure and findminimalsub-models with
redundancy. These are the smallest sets of equations that can
be used to compute a residual. The name given to minimal sub-
models with redundancy depends on the approach, for example
analytical redundancy relations, ARR [17], minimal struc-
turally overdetermined set, MSO [10], testable sub-system,
TSS [18] andminimal evaluation chain, MEC [19].

A residual generator will here be realized from a minimal
redundant sub-model by computing the internal unknown
variables through a convenient manipulation of sub-model
equations and checking consistency in a redundant equation.
This concept is known as a causal interpretation of the
computability [6]. For instance, in [18] causality is taken
into account in the computation of the set of redundant sub-
models whereas in [20] causality is considered in derivative
and integral computations. The causal interpretation can be
represented by a directed bi-partite graph that shows how the
internal values can be computed from the equations (value
propagation) in every redundant sub-model. However, to guar-
antee that the residual can be generated by using non-linear
equations, the structural model framework must be adapted in
order to handle causal computability.

To illustrate residual generation based on a causal interpre-
tation, i.e., a computable sequence for the unknown variables,
consider the model (1). It consists of three equations (e1, e2
ande3), wherey1 andy2 are known variables, andx1 andx2

are unknown variables.
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r(y1, y2)

Fig. 1. Computation sequence.

e1 : x1 = h1(y1)
e2 : x2 = h2(x1, y2)
e3 : h3(x1, x2, y1) = 0

(1)

A corresponding computation sequence for the unknown
variables can be constructed (see Fig. 1). Equatione1 is used
to compute variablex1 and equatione2 to compute variable
x2 and it is then straightforward to propagate the values to
compute the residual as in (2).

r(y1, y2) = h3(h1(y1), h2(h1(y1), y2), y1) (2)

where,
{

r(y1, y2) ≃ 0 means that there is consistency
r(y1, y2) 6≃ 0 means that there is no consistency

(3)

Using this procedure to design residual generators in com-
plex systems gives an intuitive idea on how a residual can
be computed. However, solving a certain variable in a non-
linear equation could be a hard task, or even impossible, which
ultimately poses restrictions on the residual generator design.
This means that not all matchings can be used to design
a residual generator as in the example. This will lead to a
restricted set of residuals and consequently a restricted set of
corresponding minimal sub-models with redundancy.

Specifically, residuals generators that depend on sub-models
that imply the inverse computation of non-invertible functions
will be excluded. Furthermore, equation subsets that involves
loops, both algebraic and differential, in the computation
sequence will be excluded as well. Therefore, no nonlinear
solving tools will be needed and the residual computation
will be ensured. On the other hand, to keep the simplicity of
the approach and at the same time reduce the restrictiveness,
sub-models including linear loops will not be excluded, since
solving linear equations is not a complex task. A consequence
of this extension is that existing structural methods for finding
sub-models and computational sequences have to be modified.
A main contribution of this work is that the design of the
diagnosis systems and the sensor placement analysis take into
account which methodology is used to compute residuals.

III. C AUSAL FRAMEWORK

A. Causal Structural Model

To determine when a redundant sub-model can be used to
generate a residual, using a computation sequence, some infor-
mation on how variables can be computed in each equation is
required. In non-linear equations, unknown variables can not
always be computed as a function of the others, for instance
when non-invertible functions are regarded. This leads to the
following definition:
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Definition 1 (Causally computable variable):Let h(x) =
0 be an equation of the model. Variablexi ∈ x is causal inh,
if xi can be computed usingh, assuming that the remaining
variables,x \ xi, are known. We say that there is a causal
relation betweenxi andh.

From Definition 1 it follows that equationh can never
be used in the computation sequence to compute non-causal
variables. Furthermore, as mentioned before, causal variables
that are involved in non-linear loops are not computable in
the computation sequence. For instance, the two expressions
in (4) are used to calculate the compressor efficiency,η, and
the compressor torque,τ , in the fuel cell stack model. Assume
that the compressor pressure,p, the angular speed,ω, the
atmospheric temperature,Tatm, and the compressor torque,
τ are known or measured variables, whereas the efficiency,η,
and the air flow,W , are unknown variables. ConstantsCp and
γ are known system parameters.

η = LookupTable(p,W ) (4a)

W = τ
(

Cp

Tatm

η · ω
(p

γ−1

γ − 1)
)−1

(4b)

Note that in the first equation, a look-up table is used to
calculate the compressor efficiency from the air flow and the
compressor pressure. Thus neither the pressure nor the air
flow can be computed using this expression. According to
Definition 1, the unknown variableη is causal in the first
equation, whereasW is not. In the second equation, both
unknown variables,η andW , are causal variables.

This is a well-constrained set of equations and there is a
causal relation between unknown variables and equations, i.e.
equation (4a) can be used to computeη and equation (4b)
can be used to computeW . However, it is not possible to
compute the unknown variables by forward value propagation
since both unknown values must be computed at the same
time.

This kind of structure is known as analgebraic loop. There
are several tools to compute unknown variables in an algebraic
loop (e.g., numeric solvers, non-linear optimization, tearing
techniques), but the solution is not always ensured and the
computation cost can be large. In this work, a conservative
approach consisting in rejecting all non-linear algebraicloops
is adopted. On the other hand, linear algebraic loops are easier
to handle as long as algebraically independent coefficientsare
assumed. Thus, in this work, algebraic loops involving linear
variables will be accepted in a computation sequence. This
motivates Definition 2.

Definition 2 (Linear Variable):Let h(x) = 0 be an equa-
tion of the model. A set of variablesxi ⊆ x is linear inh if h
can be arranged asL(xi)+ g(x \xi) = 0 and|xi| > 1, where
L is a linear function. We say that there is a linear relation
betweenxi andh.

Note that considering one single variable as a linear variable
in an equation is not necessary. Linear relations are meant to
be considered for identifying linear algebraic loops, and one
single variable never forms a loop. Thus, linear relations are
considered when two or more linear variables appear in the
same equation.

To exemplify a linear algebraic loop, consider the electric
motor equations from the air compressor model (5), where all
variables are linear. The compressor voltage,v, and the com-
pressor torqueτ are known variables, whereas the compressor
current,i, and the angular speed,ω, are unknown variables.

R · i+ kv · ω = v (5a)

kp · i− J
dω

dt
−B · ω = τ (5b)

Since both equations are linear, the unknown variables,i and
ω can be easily computed, in spite of the existence of an
algebraic loop:

(

i

ω

)

=

(

R kv
kp −(Jp+B)

)−1 (

v

τ

)

(6)

whereR, kv, kp, J andB are model parameters andp is the
differentiation operator.

The structure of a model can be formalized as a bipartite
graphG(M,X,A), whereM = {. . . , ei, . . . } is the set of
model equations,X = {. . . , xj , . . . } the set of unknown
variables andA the set of edges, such that(ei, xj) ∈ A if
equationei ∈ M depends on the variablexj ∈ X . Information
on causal and linear relations can be well fitted in the structural
model by a partition of the set of edgesA = AL ∪A× ∪A∆

where, according to the previous definitions:

• AL is a subset of edges such thatxj is a linear variable
in ei.

• A× is a subset of edges such thatxj is a causal but not
linear variable inei.

• A∆ is the remaining subset of edges, wherexj is a non-
causal variable inei.

In the biadjacency matrix, edges inAL are represented by
an “L” symbol, edges inA× are represented by a “×” symbol
and edges inA∆ are represented by a “∆” symbol.

A central concept used frequently in the following sections
is matching[21]. A matching is a setΓ of edges such that no
two edges inΓ have common nodes. A matching can, in the
context of structural models, loosely be interpreted as which
variable is solved in which equation.

B. Causal Computability

Given a structural model, there is a need to know whether
a set of unknown variables can be computed when causal
and linear relations are considered. LetG(M,X,A) be a
structural model withA = AL ∪ A× ∪ A∆. First, for the
sake of simplicity, assume that there are no linear variables,
i.e., AL = ∅.

In the previous section it was exemplified how a residual
can be computed using a computational sequence. To be able
to do this in a general case, a necessary condition is that there
exists a complete matchingMX

G in X , such that

MX
G ⊆ A× (7)

i.e., only casual variables are matched.
As pointed out in the previous subsection, only algebraic

loops involving linear variables will be accepted. In the ab-
sence of linear variables, this means that the well-constrained



4

×
×

. . .
×

×

x1 x2 · · · xm

X

e1

e2

...

em

∂MMX

G

em+1

...

en

M \ ∂MMX

G

Fig. 2. Causally computable structure

subgraphG′(∂MMX
G , X) has noHall components[22] with

more than one equation, where∂MMX
G is the subset of

equations inM incident to edges inMX
G .

Therefore, if a matching with such properties exists then
the set of unknown variables,X , can be computed using the
computation sequence without loops. Note that this means that
the set of equations and the set of variables can be rearranged
such that the biadjacency matrix has a triangular form with a
diagonal of “×” symbols. Fig. 2 shows this pattern where all
unknown variables can be evaluated.

Algorithm 1 searches for the set of variables that can be
computed as causal variables. This is iteratively done by
finding equations that only contain one causal variable,

e ∈ M : |varX(e)| = 1 ∧ (e, varX(e)) ∈ A× (8)

where varX(E) denotes the set of variables inX adjacent to
the set of equationsE. Note that

(e, varX(e)) ∈ MX
G

according to (7) and (8). After finding equatione the graph
is pruned and the algorithm continues searching for more
equations until no more equation-variable pairs can be found.

Algorithm 1 XC = CausalVariable(G(M,X,A))

XC := ∅
while ∃e ∈ M : |varX(e)| = 1 ∧ (e, varX(e)) ∈ A× do
X := X \ varX(e)
XC := XC ∪ varX(e)

end while

Here, it is assumed that a set of variables can be solved if
every variable can be matched with an equation using a causal
edge and there are no algebraic loops, so anyHall component
with more than one equation-variable pair is rejected.

Now, assume that also linear variables are considered, i.e.
A = AL ∪A× ∪A∆. In Section III-A, it was discussed that a
subset of linear variables can be solved in an algebraic loop.
Therefore, the Dulmage-Mendelsohn decomposition can be
applied to determine the subset of linear computable variables.
The Dulmage-Mendelsohn decomposition [23], [24] defines
a partition on the set of equations and the set of variables.
This partition consists in the under-determined part, the just-
determined part and the over-determined part, which contains
the redundant equations.

×
L

×
···

L L

L L

×

XX \ X

E

M \ E

Fig. 3. Causal and linear computable decomposition

Since causal variables are determined by means of Algo-
rithm 1, now we are only interested in finding the linear
variables that can be computed. First, the set of equationsEL

that depend on linear variables and no others is identified

EL = {e ∈ M : ∀x ∈ varX(e), (e, x) ∈ AL} (9)

Then, the set of linear computable variablesXL is determined
by applying the Dulmage-Mendelsohn decomposition to the
equations subsetEL,

XL = varX(E0
L) ∪ varX(E+

L ) (10)

whereE0
L andE+

L denote respectively the just-determined and
the over-determined equation sets of the Dulmage-Mendelsohn
decomposition inEL. Note that this holds with the assumption
that the linear coefficients are algebraically independent.

Algorithm 2 is developed to compute the set of linear
computable variablesXL according to (9) and (10).

Algorithm 2 XL = LinearVariable(G(M,X,A))

EL := {e ∈ M : ∀x ∈ varX(e), (e, x) ∈ AL}
XL := varX(E0

L) ∪ varX(E+
L )

The diagonal matching presented in Fig. 2 is now extended
to include linear computable variables. The resulting structural
decomposition is shown in Fig. 3 where the triangular form
remains, but now theHall componentscan include more than
one variable, since linear loops are allowed. This decomposi-
tion is done by Algorithm 3, which iteratively alternates Algo-
rithms 1 and 2, and finally returns the sub-graphG(E ,X , A)
which corresponds to the computable part.

From the discussion above, it is clear that the sub-graph
G(E ,X , A) contains the computable part of the model. Thus,
all remaining equations,M \ E , are not useful anymore, since
they contain variables that can not be computed, i.e.,X \ X .

Algorithm 3 {X , E} = ComputableSystem(G(M,X,A))

X := ∅
repeat
X ′ := CausalVariable(G(M,X \ X , A))
X := X ∪ X ′

XL := LinearVariable(G(M,X \ X , A))
X := X ∪ XL

until X ′ ∪ XL = ∅
E := {e ∈ M : varX(e) ⊆ (X )}



5

Note that extracting the computation sequence given by the
subgraphG(E ,X , A), decomposed as in Fig. 3, is straightfor-
ward since now the matching-diagonal establishes an interpre-
tation of which equation to use to compute each variable.

IV. CAUSAL STRUCTURAL MODEL BASED DIAGNOSIS

According to the decomposition in Fig. 3 there exists, at
least, one complete matching inG(E ,X , A). This means that
there is no under-determined subset of equations inE , i.e.,
E− = ∅. Since the matching in Fig. 3 is complete inX , it
follows that the over-determined set of equationsE+ contains
part of this diagonal matching, so variables inE+ are com-
putable. Now, fault diagnosis analysis can be performed on the
over-determined part and the computation sequence can always
be guaranteed to generate residuals. For extended information
on the Dulmage-Mendelsohn decomposition applied to fault
diagnosis see for example [6].

In this work, faults are defined as a subset of equations,
F ⊆ M , since a relation between an equation and a fault
can be easily established, i.e., a signal fault that affectsan
equation, or the assumption or support of an equation. In order
to simplify the following theoretic development, only system
faults and faults in the original sensor setup will be considered,
i.e., no faults in additional sensors will be included in the
sensor placement analysis.

A. Causal Structural Detectability

It is well known that the set of detectable faults can
be defined from the over-constrained part [6]. A given set
of faults F ⊆ M is structurally detectable ifF ⊆ M+.
Analogously, causal (structural) detectability can be defined
from the computable part of the model.

Definition 3 (Causal (Structural) Detectability):A fault
f ∈ F is causally detectable inM if

f ∈ E+ (11)

whereE is the computable part ofM .
Algorithm 4 uses Algorithm 3 to find all causally detectable

faultsFD, when computable sequences are taken into account.
The inputs are a structural modelG(M,X,A) and a set of
faults,F ⊆ M .

Algorithm 4 FD = CausalDetectability(G(M,X,A), F )

{X , E} := ComputableSystem(G(M,X,A))
FD := E+ ∩ F

B. Causal Structural Isolability

Isolability analysis is based on detectability conditions.
According to [15], a faultfi ∈ F is structurally isolable from
fj ∈ F if fi is detectable in the sub-modelM \ {fj}. The
same holds when causal computations are considered.

Definition 4 (Causal (Structural) Isolability):Given two
causally detectable faultsfi, fj ∈ F , fault fi is causally
isolable from faultfj in M if

fi ∈ E+

fj
(12)

TABLE I
NON-SYMMETRIC ISOLABILITY EXAMPLE

x1 x2

f1 → e1 ∆ ∆

f2 → e2 × ×

e3 ∆ ×

e4 ×

whereEfj is the computable part ofM \ {fj}.
This means that for each causally detectable faultf ∈ FD,

there exists a set of faultsFI(f) that are causally isolable
from f . Algorithm 5 uses Algorithm 4 to compute the causally
isolable fault set for each causally detectable fault.

Algorithm 5 FI = CausalIsolability(G(M,X,A), FD)

for eachf ∈ FD do
Mf := M \ {f}
FI(f) := CausalDetectability(G(Mf , X,A), FD)

end for

Note that, here, the isolability relation between two faults
is not symmetric, i.e., faultfi is isolable from faultfj does
not imply thatfj is isolable fromfi. Since causal detectability
depends on the causally computable sub-model, the symmetry
property in the isolability relation (see [15]) is lost.

For instance, assume the following causal structural model
represented in Table I, where faultsf1 andf2 affect equation
e1 ande2 respectively, and both are detectableFD = {e1, e2}.
Then, by applying Algorithm 5 we obtain that

FI(e1) = {e2}

FI(e2) = ∅

and it can be therefore concluded thatf2 is isolable fromf1
but the reverse does not hold (i.e., the symmetry property is
not satisfied).

V. SENSORPLACEMENT FOR CAUSAL STRUCTURAL

MODEL BASED DIAGNOSIS

Given a set of equations, the subset of unknown variables
that can be computed will depend on the set of installed
sensors (i.e., known variables).

The main idea is to perform fault detectability and fault
isolability analysis with all sensors installed. Under this set-
ting, the set of detectable faults and the set of isolable faults
will give an upper limit on the fault diagnosis specifications.
Installing the same sensor more than once makes neither
detectable a non-detectable fault nor isolable a non-isolable
fault, except for faults in the installed sensors. Once maximum
fault diagnosis specifications are known, the minimal set of
sensors that satisfies these specifications is sought.

A. Maximum causal detectability and isolability specifications

The maximum detectability specification is ensured when all
candidate sensors are installed. Therefore, it is straightforward
to select those faults that can be detected from those that will
never be, before the sensor placement analysis.
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The set of candidate sensors can be defined as a subset of
unknown variables,S ⊆ X . Each sensor has a corresponding
sensor equationy = x, with y being the measurement signal
and x ∈ S the measured variable. This equation has to be
added to the model whenever the corresponding sensor is
selected for installation. Note that adding this equation implies
that x becomes a causal variable in the corresponding sensor
equation. Given a sensor configurationSk ⊆ S, the set of
sensor equations is denoted byMSk

.
Even if all sensors are added, there may be some sensors

that can not be used to compute a residual. It is important
to identify these sensors in order to exclude them from the
sensor placement analysis. These sensors are characterized
by the property that the corresponding sensor equation does
not belong to the over-determined part of the computable
subsystem. Therefore, it is possible to determine the set of
useful sensors from

MSd
= E+

S
∩MS (13)

where ES is the computable part of the system with all
sensors installed, i.e.,{X , ES} := ComputableSystem(G(M ∪
MS , X,A)). Thus, the new set of candidate sensors,Sd ⊆ S,
is now defined as all sensors such that their corresponding
sensor equation belongs toMSd

. Therefore, there is no need
to further consider sensors fromS\Sd in the sensor placement
analysis.

Now, the maximum causal detectability specification is
computed by Algorithm 4 with the new set of sensorsSd

added in the model:

FDmax
= CausalDetectability(G(M ∪MSd

, X,A), F )

The maximum causal isolability specification is computed
by Algorithm 5, with just the set of sensorsSd installed, and
for those system faults that are detectable,FDmax

:

FImax
= CausalIsolability(G(M ∪MSd

, X,A), FDmax
)

B. Sensor placement algorithm

Once maximum causal detectability and isolability speci-
fications are known, the sensor placement algorithm can be
introduced. Algorithm 6 uses Algorithms 4 and 5 to search
for the minimal set of sensors that satisfies them (i.e.,FDmax

andFImax
).

The algorithm starts each iteration by choosing the minimal
set of sensors (Sk) not already chosen. The sensor set cost
or cardinality are different criteria that could be used to
determine the minimal set of sensors. Then, the algorithm
computes causal detectability using the chosen sensor set and
tests whether maximum causal detectability is achieved. If
so, the same is done with causal isolability and maximum
causal isolability. When both, maximum causal detectability
and isolability, are achieved the solution (Smin) is returned.

In Section V-A, it has been shown that the algorithm
will terminate since the set of candidate sensors,Sd, is one
admissible set, that fulfills the specifications.

Algorithm 6 Smin = CausalSensorPl(M,Sd,FDmax
, FImax

)

1: Smin := ∅
2: repeat
3: Sk := the minimal subset not previously tested from

Sd

4: FD :=
CausalDetectability(G(M∪MSk

, X,A), FDmax
)

5: if FD = FDmax
then

6: FI := CausalIsolability(G(M ∪MSk
, X,A), FDmax

)
7: if FI = FImax

then
8: Smin := Sk

9: end if
10: end if
11: until Smin 6= ∅

VI. CAUSALLY COMPUTABLE MSO SET GENERATION

Finding redundant sub-systems for diagnosis is an important
topic in the field of diagnosis based on structural models.
There are several works devoted to this issue [17], [10],
[18], [19]. An efficient algorithm that computes the complete
set of MSO (Minimal Structural Overdetermined) sets was
published in [10]. An MSO set is a subset of model equations
that is structurally overdetermined and no proper subset is
overdetermined. Furthermore, an MSO set can be used to im-
plement a residual generator. A modification of this algorithm
is presented in this section. It consists in only computing
those MSO sets that can be used to generate a residual by
means of the computation sequence. This kind of MSO set
is calledcausally computable MSO set. Therefore, a causally
computable MSO set is an MSO set that contains a causally
computable structure, which means that it can be decomposed
as in the(E ,X ) structure depicted in Fig. 3. The extension of
the algorithm in [10], that computes the complete set of MSO
sets, is presented in Algorithm 7.

Algorithm 7 M = findCCMSO(G(M,X,A), R)

1: M := ∅
2: {X , E} := ComputableSystem(G(M,X,A))
3: if (M \ E+) ∩R = ∅ then
4: M := E+

5: if ϕ̄(M) = 1 then
6: M := M∪{M}
7: else
8: while R 6⊇ M do
9: Select ane ∈ M \R

10: E := M \ (M \ {e})+

11: if E ∩R = ∅ then
12: R := R ∪E

13: M ′ := M \ E
14: M := M∪ findCCMSO(G(M ′, X,A), R)
15: else
16: R := R ∪E

17: end if
18: end while
19: end if
20: end if
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Fig. 4. Fuel Cell System scheme

The algorithm computes the set of causal MSO sets by
iteratively removing equations. The setR is a set of equations
that are not allowed to be removed to avoid finding the same
MSO set more than once. Algorithm 7 is initially called with
the entire modelG(M,X,A) andR = ∅. The condition to
ensure that an MSO set has been found is thatϕ̄(M) = 1 (step
5), whereϕ̄(M) is the structural redundancy degree, which is
defined by

ϕ̄(M) = |M | − |varX(M)| (14)

The extension, compared to the algorithm in [10], mainly
consists of steps 2 to 4. The setM \ E+ is the set of
equations that are removed in step 4 and, in step 3, it is
ensured that no equations inR are removed. The remaining
part of Algorithm 7 is equivalent to the MSO sets generation
algorithm in [10]. The original algorithm in [10] finds all
possible MSO sets. Since the set of causally computable MSO
sets is a subset of all the MSO sets, Algorithm 7 finds all
possible causally computable MSO sets,M.

VII. A PPLICATION TO THEFUEL CELL STACK SYSTEM

Fuel cell devices are receiving much attention in the last
decade as good candidates for clean electricity generation.
Here, we will use a fuel cell based system to apply the
presented diagnosis approach.

A. System description

The model of the Polymer Electrolyte Membrane (PEM)
fuel cell stack (FCS) system used in this work was proposed
in [25], and further information can be found in [16]. The
benchmark is widely accepted in the control community as
a good representation of the behavior of a fuel cell system.
The model (see Fig. 4) includes a detailed description of the
air compressor, the inlet and return cathode manifolds, the
static air cooler, the static humidifier, the hydrogen flow and
the PEM fuel cell stack. The fuel cell stack model is further
decomposed into four main subsystems: stack voltage, cathode
flow, anode flow and membrane hydration. In the model, it is
assumed that the temperature is known and constant since its
dynamic behavior is much slower than that of the rest of the
model.

In [26] there is a model of the FCS with 116 equations. The
equations describe, in great detail, the physics and chemistry
in the components. However, the model comprises non-linear
relations, for example non-linear algebraic equations, piece-
wise polynomial functions, function maps, and look-up tables,
which makes the proposed approach suitable.

A set of seven faultsF has been selected for this evaluation
study. Each fault affects one, and only one, equation, for

TABLE II
SYSTEM FAULTS,F

Fault Description Involved
equation

f1 Electrical fault in the compressor motor e1
f2 Mechanical fault in the compressor motor e2
f3 Compressor fault. The relation described

by thecompressor mapdoes not hold e11
f4 Air leak in the inlet manifold e13
f5 Humidifier fault. Output humidity does

not follow desired humidity e29
f6 Cathodereturn manifoldfault e33
f7 Exit cathode fault e75

TABLE III
CANDIDATE SENSORS

Variable Description
ωcp Compressor motor speed
icp Compressor motor current

Tcp,out Compressor output air flow temperature
pcp,out Compressor output pressure
Tim,out Inlet manifold output air flow temperature
pim,out Inlet manifold output pressure
Tmc,out Magic cooler output air flow temperature
pmc,out Magic cooler output pressure
Tsh,out Static humidifier output air flow temperature
psh,out Static humidifier output pressure
Tom,out Outlet manifold output air flow temperature
pan,in Stack anode input pressure
pca,in Stack cathode input pressure
pst,ds Stack downstream pressure
vst Stack voltage

Tan,out Stack anode output flow temperature
pan,out Stack anode output pressure
Wca,out Stack cathode output flow
Tca,out Stack cathode output flow temperature
pca,out Stack cathode output pressure

example by changing a parameter or a variable. Table II
summarizes the faults considered in this work. Other faults
could be easily included in this set, that should be related to
their corresponding model equations. Another assumption is
that only single faults are allowed. This means that two or
more faults can not occur in the system at the same time.

Furthermore, there is a set of already known variables: the
compressor voltage (vcm) and stack current (ist) since they are
needed for control purposes, the desired temperature (Tdes)
and humidity (φdes), both set-points, the stack temperature
(Tst) and all the ambient variables (pressurepamb, temperature
Tamb and humidityφamb). All these variables are excluded
from the sensor placement problem.

B. Sensor Placement for the FCS System

A set of 20 candidate sensors for installation has been
considered for this benchmark. Table III briefly describes
them. All these physical quantities can be easily measured by
standard sensors. Other physical quantities such as humidity
or mass have not been considered since measurement of those
quantities usually involve complex and expensive sensors.

Following the methodology introduced in Section V-A,
maximum causal detectability and isolability specifications are
sought. The conclusion is that all faults can be detected and
isolated, under the assumption that all candidate sensors are



8

installed. Thus,FDmax
= F and FImax

(fi) = F \ {fi} for
i = {1, . . . , 7}.

Moreover, the sensor equation corresponding to sensorvst
is not in the computable over-determined part. So, the effective
set of candidate sensors becomesSd = S \ {vst}. This is due
to the fact that there is only one equation (15) that depends on
variablevst and not all the variables involved in this equation
can be causally computed.

e79 : vst = h(ist, pca,out, pO2
, Tst, λm, pH2

) (15)

Now, the minimal cardinality sensor placement for diagnosis
is solved. Applying Algorithm 6, six possible solutions are
obtained. All sensor configurations are equivalent, involving 8
sensors as follows:

Smin1
= Sbase ∪ {pcp,out, pca,in}

Smin2
= Sbase ∪ {pcp,out, psh,out}

Smin3
= Sbase ∪ {pmc,out, pca,in}

Smin4
= Sbase ∪ {pmc,out, psh,out}

Smin5
= Sbase ∪ {pim,out, pca,in}

Smin6
= Sbase ∪ {pim,out, psh,out}

with

Sbase = {ωcp, icp, Tim,out, pst,ds,Wca,out, pca,out}

Sensor configurationSmin1
is finally adopted for the FCS

system.

C. Causal MSO Sets Generation for the FCS System

Once the set of sensors to achieve maximum diagnosis
specification is known and their corresponding equations are
introduced in the FCS structural model, Algorithm 7 is applied.
It returns 323 causally computable MSO sets.

This will be compared to the number of MSO sets obtained
under the assumption that all unknown variables were causal.
Applying the original MSO set generation algorithm in [10],
219089 MSO sets are computed. Note that, for many of the
MSO sets it is not possible to implement a residual generator
due to computational problems.

Not all 323 corresponding residuals have to be implemented,
but a reduced set. A subset of causally computable MSO
sets will be selected such that it ensures maximum causal
detectability and isolability of the fault set given in Table II.
Following this criterion, 7 causally computable MSO sets have
been selected for residual implementation. Table IV shows
the fault sensitivity of these causally computable MSO sets.
An MSO set is sensitive to a fault if the corresponding fault
equation belongs to that MSO set. Note that all faults are
causally detectable and isolable from each other, according to
Definitions 3 and 4. The system and sensor equations that
belong to each selected causally computable MSO set are
described in (16).

MSO1 = {e75, e124, e125, e126}

MSO2 = {e31, e32, e33, e36, e81, e103, e104, e105, e109,

TABLE IV
RELATION BETWEEN MSO SETS AND SYSTEM FAULTS

f1 f2 f3 f4 f5 f6 f7
MSO1 ×

MSO2 ×

MSO3 × ×

MSO4 × ×

MSO5 × ×

MSO6 × ×

MSO7 ×

e116, e124, e125}

MSO3 = {e12, e13, e14, e15, e16, e18, e19, e20, e25, e28,

e29, e82, e83, e84, e85, e87, e88, e89, e90, e94,

e95, e96, e97, e98, e100, e101, e102, e114, e121,

e122, e123, e126, e119, e121, e122, e126}

MSO4 = {e7, e9, e11, e12, e14, e15, e16e18, e19, e20,

e25, e28, e29, e82, e83, e84, e85, e86, e87, e88,

e89, e94, e95, e96, e97, e98, e100, e101, e102,

e114, e119, e121, e122, e123}

MSO5 = {e2, e3, e4, e6, e8, e9, e13, e14, e15, e16, e18,

e19, e83, e84, e85, e86, e87, e90, e119, e120, e121,

e122, e126}

MSO6 = {e2, e3, e4, e6, e7, e8, e9, e11, e14, e15, e16,

e18, e19, e83, e84, e85, e86, e87, e119, e120,

e121, e122}

MSO7 = {e1, e117, e119, e120} (16)

For instance, consider the causally computable MSO set
MSO2 in (16). The system and sensor equations that belong
to this MSO set are presented in (17). Note that variables
Tst, pom,ds, Wca,out and pst,ds are all known:Wca,out and
pst,ds are measured (see Section VII-B),pom,ds is the down-
stream outlet manifold pressure, which equals to the ambient
pressure, andTst equals the ambient temperature. Equations
{e31, e32, e33, e36} belong to theoutlet manifoldcomponent.
The causal structural model corresponding to (17) is depicted
in Table V. In equatione36, a non-linear function computes
the output manifold flow. This function is not invertible, soit
cannot be used to compute any of the input variables, which
is consistent with the row assigned toe36 in Table V. The
same reasoning holds for each causally computable MSO set
in (16). Note that the structure in Table V can be decomposed
as in Fig. 3 (i.e., it is a computable structure).
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TABLE V
COMPUTABLE STRUCTURE OFMSO2
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t
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s
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W
c
a
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t

e31 L L
e32 L L
e33 × L × L
e36 × ∆ ∆ ∆

e105 L L
e116 L L
e81 L L
e104 L L
e103 ×

e109 ×

e124 ×

e125 ×

pst,ds

Tca,outTst

Wca,out

e116

e105e81

e104

pom,out

pom,ds

Tom,in

Wom,in

e36

Wom,out

e33

ẋ

e32

x e31
r2

Fig. 5. Computation sequence fromMSO2

e31 : pom,out = x

e32 : ẋ = dx
dt

e33 : ẋ = Tom,in
R

Vom
(Wom,in −Wom,out)

e36 : Wom,out = NonlinearNozzle(pom,out, pom,ds, Tom,in)
e81 : Tca,out = Tst

e103 : pom,ds = 1atm
e104 : Wom,in = Wca,out

e105 : Tom,in = Tca,out

e109 : Tst = 353K
e116 : pom,out = pst,ds
e124 : pst,ds = pst,dsmeasured

e125 : Wca,out = Wca,outmeasured

(17)

D. FCS System Diagnosis

Once the set of causally computable MSO sets is obtained,
residuals can be easily implemented following the compu-
tation sequence. Note that the diagonal in the computable
decomposition (see Fig. 3) shows how all variables can be
computed. Therefore, implementing the computation sequence
for a causally computable MSO set is straightforward. For
instance, considerMSO2 shown in the previous subsection.
The corresponding computation sequence is depicted in Fig.5.
Here sensor equations{e124, e125} and constant assignments
{e103, e109} have been omitted in order to make the figure
more readable. This computation sequence corresponds to the
evaluation of residualr2.

To test the residualr2, fault f6 has been simulated by an
abrupt change of parameterVom in equatione33, from nominal
value 5 · 10−3m2 to 4, 5 · 10−3m2, at time 15 seconds. As
long as faultf6 does not occur,r2 ≃ 0 (i.e., assuming model
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Fig. 6. Normalized residuals response forfault 6

inaccuracies). However, when faultf6 occurs, equatione33
does not hold and consequentlyr2 6≃ 0, signaling the fault (i.e.,
fault detection). Furthermore, according to (16),r2 is the only
residual which is sensitive to faultf6. This is consistent with
Table IV, and implies that a violation of residualr2 indicates
that faultf6 has occurred (i.e., fault isolation).

Fig. 6 shows the residuals response corresponding tofault
f6 episode (normalized in the interval[−1, 1]). At time 10
seconds, some residuals are slightly affected due to a change
of the system operating point. However, at time 15 seconds
the residualr2 is clearly affected by the fault, whereas the
other residuals are not.

The same procedure could be followed to verify the perfor-
mance of the residuals corresponding to the remaining MSO
sets in (16). Remind that working with structural models, only
best case results are obtained. This means that the residual
sensitivities shown in Table IV will depend on the fault
magnitude. Furthermore, a proper residual conditioning (i.e.,
filtering, thresholding, etc.) should be done. However, this
topic is outside the scope of this work.

E. Comparison with the Non-Causal Approach

These results are compared to the solution of the minimal
sensor placement problem when causal computability is not
addressed. This can be accomplished by applying Algorithm 6
to a causal structural model of the fuel cell benchmark under
the assumption that every unknown variable is a linear vari-
able. Under this hypothesis, the minimal sensor configuration
involves fewer sensors:{icp, pst,ds}.

For this particular solution, there exist 7 useful MSO sets
for causal fault detectability and isolability. The table of fault
sensitivities of these 7 MSO sets is shown in Table VI. Note
that all the faults are causally detectable and fully isolable.
However, implementing residual generators with this fault
sensitivity pattern is not a trivial task since all faults except
one have to trigger the residual.

Furthermore, analyzingMSOnc
1 in Table VI, it could be

seen that most of system equations are contained in this MSO:
MSOnc

1 = M \ {e1, e34, e35, e79, e106}, with M being the set
of 116 system equations. Computing the unknown variables of
this MSO set entails solving a non-linear system of equations.
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TABLE VI
RELATION BETWEEN NON-CAUSAL MSO SETS AND SYSTEM FAULTS

f1 f2 f3 f4 f5 f6 f7
MSOnc

1
× × × × × ×

MSOnc
2

× × × × × ×

MSOnc
3

× × × × × ×

MSOnc
4

× × × × × ×

MSOnc
5

× × × × × ×

MSOnc
6

× × × × × ×

MSOnc
7

× × × × × ×

A search through all choices of a redundant equation in this
MSO set reveals that a non-linear algebraic loop of size at
least 49 needs to be solved. Similar conclusions can be drawn
for the other MSO sets.

For these reasons, implementing residual generators in non-
linear large models by means of the computation sequence is
often not possible when causal computations are not taken into
account.

VIII. C ONCLUSIONS

Structural methods are often used to find suitable sets of
equations that can be used to design residual generators. If
invertability properties of the model are not taken into account
in the analysis, then the resulting residual generators may
include non-linear systems of equations that need to be solved
either analytically or by using numerical techniques.

One way to avoid solving non-linear systems of equations
is to take into account causal information an look for residual
generators where the unknown variables are computed using
direct back substitution. Such back substitution solutions are
only possible under strong requirements on the model struc-
ture. The basic idea in this paper is to extend back substitution
techniques to allow linear loops. This alleviates the modelcon-
straints but does not significantly increase the computational
complexity of the residual generators. A main contributionof
this paper is a structural framework and algorithms to identify
sets of model equations where the unknown variables can
be solved either by back substitution or by solving linear
loops. In addition, a sensor placement algorithm has been
developed that selects which sensors to include in order to
meet a given diagnosability requirement under the assumption
that all residual generators are designed using the extended
back substitution approach.

A case study of a fuel cell stack system is used to illustrate
the approach. With no causal restrictions on the residual
generator, less sensors are needed to meet the diagnosability
requirement, but this comes at the price of having to solve
large non-linear systems of equations. Utilizing the causal
information in the model results in a set of residual gener-
ators, fulfilling the isolability requirements, that can easily be
computed by a simple back substitution approach and/or by
solving linear loops.
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