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Abstract—This work focuses on residual generation for model-
based fault diagnosis. Specifically, a methodology to desv
residual generators when non-linear equations are presenin
the model is developed. A main result is the characterizatio of
computational sequences that are particularly easy to imgment
as residual generators and that take causal information ind ac-
count. An efficient algorithm, based on the model structure aly,
that finds all such computational sequences, is derived. Ftlrer,
fault detectability and fault isolability performance depend on
the sensor configuration. Therefore, another contributionis an
algorithm, also based on model structure, that places senso
with respect to the class of residual generators that take eaesal
information into account. The algorithms are evaluated on a
complex, highly non-linear, model of a fuel cell stack syste.
A number of residual generators are computed that are, by
construction, easy to implement and provide full diagnosatliity
performance predicted by the model.

Index Terms—Fault diagnosis, causal computations, sensor
placement, fuel cell stack system.

|I. INTRODUCTION

NDUSTRIAL processes can be affected by faults havingO
a serious impact on operation when not promptly detect q

and identified. In order to diagnose these faulty behavio
efficient diagnosis systems are of great importance for mod

industries. Over the last three decades, the growing demdfil

for safety and reliability has drawn significant researcfaint
detection and diagnosis based on a model of the system
(21, 3], [4].

Most approaches for model-based fault diagnosis rely

consistency checking. A comparison between the obsenV&
behavior and a model of the process is performed by meansﬁ&
a set of residual generators, which are designed by expdoiti

the redundancy in the model of the system. Fault detecti

is achieved when a residual generator is triggered upon th
occurrence of a fault. Fault isolation is then performed b
inferring the triggering pattern of a set of residuals. Mos

. . - . . S
diagnosis systems deployed in industry are still based d@e quossible candidate residual generators [10], which m ;

basic techniques such as variable limit checking and ther
a potential to increase diagnosis performance by using m
advanced methods.

Many methods are difficult to use for industrial systems
since the models typically include non-linearities such &
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lookup-tables, saturations, hysteresis functions. Thedist
methods for dealing with such models [5], [6], [7], but thenc
often be practically infeasible. For example, methods thase
variable elimination suffer from severe complexity probke
and Grobner basis techniques fail for even moderatelydsize
systems [8, p. 108]. Another example is observer based
techniques, as in [7], where analytical solutions to a rioedr
partial-differential equation are needed in the desigthdugh
theoretically sound, the design procedure is often notipless
for industrial models, due to the size and complexity of the
model equations.

One possible solution is to rearrange the model equations
so that all variables can be computed using back substitutio
However, this would require that parts of the model with
redundancy can be rearranged into a triangular form which
is a severe limitation on the class of models that can be used.

The main contribution of this paper is a method, placed
somewhere in between the simple substitution approach and
the more general techniques that rely on complex analytical
mputations. The computation of the residual is here decom
sed into either linear sub-problems, which are easy teesol
non-linear problems with a structure that allows a simple
ack substitution. To identify these sub-problems, a stinat
resentation of the system is used together with a causal
Interpretation. A novelty with this paper is the extensidn o

revious approaches [6] with a systematic treatment ofiline
Q'Ifd non-linear variables, where the non-linear are segxrat

g%to causal and non-causal variables. Based on the gederate

3iduals, basic techniques from consistency based di&gno

¢ used to perform the fault isolation. See for exampled#] f
asic fault isolation algorithms and [9] for how to integrat
B%Sidual generation with such techniques.

é:ault diagnosis relies on process observations, which are
sually measured with sensors. Hence, the efficiency of a
iagnosis system critically depends on the location of the
ensors. For many systems there exists a great number of

6?')8 restriction on the class of residual generators may not

severely limit the detection and isolation performance of a
designed diagnosis system. For this reason, an interesting
uestion is which sensors to use in order to achieve a given
lagnosis specification using this class of residual geoesa
There exist some results devoted to sensor placement for
diagnosis using graph tools. In [11], a digraph repres@mat

of the relationship between sensors and faults of the psoces
is used as a basis for the sensor-location problem. In [12], a
algorithm is developed for placing sensors but limited nedr
differential-algebraic systems. In [13], structural as& is
applied but limited to linear structured systems. In [14],
structural analysis is applied to non-linear systems bet th



method requires the previous computation of the complete €1 €3

set of redundant sub-models, which is a highly inefficient (y1 I @ > r(y1,y2)

task for large scale complex systems. Lastly, in [15], a more \"\j2

efficient algorithm is developed which does not require this (¥2 | T2

previous computation. However, existing techniques based

structural analysis give only best case results when appligg. 1. computation sequence.

to non-linear systems. This drawback is alleviated in this

present work, by formulating a sensor placement algorithm

which takes into consideration the causal computabilitthe

residual generation. Previous works, as [15], neither $amu e1: w1 =hi(y1)

residual generation nor handle causal variables. ez : oy = ha(21,y2) 1)
This paper is organized as follows. In Section I, the €3 : hy(21, 72,41) = 0

problem to be solved is motivated and defined. In Section IlI, A corresponding computation sequence for the unknown
the guidelines to handle causalities within a structuratleto variables can be constructed (see Fig. 1). Equatiois used
are presented and algorithms to determine the computatile pa compute variable:; and equatiore; to compute variable

of the model are proposed. Next, in Section IV, the previoys and it is then straightforward to propagate the values to
algorithms are applied to determine the fault diagnosip@ro compute the residual as in (2).

ties of the system. The sensor placement problem is addresse

in Section V, whereas Section VI deals with the computation r(y1,92) = ha(h1(y1), h2(R1(y1), y2), y1) (2)

of the sub-models which are used for residual implementatio

Finally, in Section VII, the whole methodology is applied td"here,

a fuel cell stack system [16] where main advantages of the [ r(y1,y2) ~ 0 means that there is consistency
proposed approach are illustrated. The fuel cell systememod { r(y1,y2) % 0 means that there is no consistency
is complex, involving a wide range of non-linear equations
including look-up tables, piecewise polynomial functipngn-
linear dynamic equations, etc. The model also covers a wi
range of operating points.

®3)

Using this procedure to design residual generators in com-

lex systems gives an intuitive idea on how a residual can

Eg computed. However, solving a certain variable in a non-
linear equation could be a hard task, or even impossiblestwhi
Il. PROBLEM BACKGROUND AND MOTIVATION ulti_mately poses restrictions on t_he residual generatergde _

) ) ) ) This means that not all matchings can be used to design

In model based diagnosis, consistency is checked by usiqegiqal generator as in the example. This will lead to a

a set of sub-models with redundancy. One approach is Q. ted set of residuals and consequently a restrictedfs

analyze the model structure and findnimal sub-models with corresponding minimal sub-models with redundancy

Ledund;ncy. These are thde slmalrllest sets ‘?f equatpn_s Mnlat CaSpecifically, residuals generators that depend on sub-imode
e used to compute a residual. The name given to minimal SWhsy i1y the inverse computation of non-invertible fiinos

models with redundancy depends on the approach, for examp|f pe excluded. Furthermore, equation subsets that |
analytical redundancy relationsARR [17], minimal struc- loops, both algebraic and differential, in the computation

trally overdetermined setMSO [10], testable sub-system sequence will be excluded as well. Therefore, no nonlinear

TSA? [18_Lanldminimal eval_llfar':ion %hamMFCd[lfgl' .. solving tools will be needed and the residual computation
residual generator will here be realized from a minimajy he ensured. On the other hand, to keep the simplicity of

redundant sub-model by computing the internal unknovque approach and at the same time reduce the restrictiveness

variables through a convenient manipulation of Sub'mOdS.Jb-models including linear loops will not be excludedgcsin

equations and checking consistency in a redundant equatig&ving linear equations is not a complex task. A conseggienc

This conbngt IGS klgow_n as a C?‘“Si'S Interprelt_athn Ofk 8 this extension is that existing structural methods fodifiig
_computa ||ty_[ ]. For mstan_ce, in [18] causality is take ub-models and computational sequences have to be modified.
into account in the computation of the set of redundant su

“main contribution of this work is that the design of the

modgls whereas in [2(.)] causality is congdered in derieati iagnosis systems and the sensor placement analysis take in
and integral computations. The causal interpretation can

represented by a directed bi-partite graph that shows hew § ccount which methodology is used to compute residuals.
internal values can be computed from the equations (value
propagation) in every redundant sub-model. However, ta-gua
antee that the residual can be generated by using non-linfarcausal Structural Model
equations, the structural model framework must be adapted i To determine when a redundant sub-model can be used to
order to handle causal computability. generate a residual, using a computation sequence, soate inf
To illustrate residual generation based on a causal irgerpmation on how variables can be computed in each equation is
tation, i.e., a computable sequence for the unknown vasablrequired. In non-linear equations, unknown variables cain n
consider the model (1). It consists of three equatians ¢ always be computed as a function of the others, for instance
andes), wherey; andy, are known variables, anth andxz, when non-invertible functions are regarded. This lead$éo t
are unknown variables. following definition:

Ill. CAUSAL FRAMEWORK



Definition 1 (Causally computable variablelet h(x) = To exemplify a linear algebraic loop, consider the electric
0 be an equation of the model. Variahte € x is causal inh, motor equations from the air compressor model (5), where all
if x; can be computed usinl, assuming that the remainingvariables are linear. The compressor voltageand the com-
variables,x \ z;, are known. We say that there is a causgressor torque are known variables, whereas the compressor
relation betweern; andh. current,i, and the angular speed, are unknown variables.
From Definition 1 it follows that equatiork. can never Rtk we 5
be used in the computation sequence to compute non-causal vtk w =0 (5a)
variablesr Furtherr_nore, as mentioned before, causalh}asia_ ky i — Jd_w CBow=—r (5b)
that are involved in non-linear loops are not computable in dt
the computation sequence. For instance, the two expressiGince both equations are linear, the unknown variablesd
in (4) are used to calculate the compressor efficiencygnd w can be easily computed, in spite of the existence of an
the compressor torque, in the fuel cell stack model. Assumealgebraic loop:
that the compressor pressung, the angular speed,, the , 1
atmospheric temperaturé,,,,, and the compressor torque, (’) — (R ke ) (“) (6)
T are known or measured variables, whereas the efficiency, w kp —(Jp+ B) T

and the air flow}V, are unknown variables. Constaidts and whereR, k,, k,, J and B are model parameters apds the

~ are known system parameters. differentiation operator.
The structure of a model can be formalized as a bipartite
n = LookupTablép, W) (4a) graphG(M, X, A), whereM = {...,e;, ...} is the set of
T - _1 model equationsX = {...,z;,...} the set of unknown
W = T(C’p na.tz (p 7 — 1)) (4b) variables andA the set of edges, such thét;,z;) € A if

equatiore; € M depends on the variablg € X. Information

Note that in the first equation, a look-up table is used n causal and linear relations can be well fitted in the stinatt
calculate the compressor efficiency from the air flow and thgodel by a partition of the set of edgels= A;, U A, U Aa
compressor pressure. Thus neither the pressure nor thewdiere, according to the previous definitions:

flow can be computed using this expression. According to Ay is a subset of edges such thatis a linear variable
Definition 1, the unknown variable is causal in the first ine,.

equation, whereasl’ is not. In the second equation, both , 4 s a subset of edges such thatis a causal but not
unknown variablesy and W, are causal variables. linear variable ine;.

This is a well-constrained set of equations and there is a, A is the remaining subset of edges, whereis a non-
causal relation between unknown variables and equati@ns, i caysal variable ;.

equation (4a) can be used to compyisnd equation (4b) In the biadjacency matrix, edges iy, are represented by

can be used to computd’. However, it is not possible to an “L” symbol, edges ind.. are represented by a< symbol
compute the unknown variables by forward value propagati%d edges im’A are represented by a\* symbol

since both unknown values must be computed at the SAM& central concept used frequently in the following sections

time. . : L
L . . is matching[21]. A matching is a sef’ of edges such that no
This kind of structure is known as aigebraic loop There two edges inl" have common nodes. A matching can, in the

?re several tools to corlnpute unkr1|_own vanatl_blgs '? an ?Ige_b "Bontext of structural models, loosely be interpreted asciwhi
oop (e.g, numeric solvers, non-linear optimization, tearing_ .../ .« soved in which equation.

techniques), but the solution is not always ensured and the
computation cost can be large. In this work, a conservative .

approach consisting in rejecting all non-linear algebragps B: Causal Computability

is adopted. On the other hand, linear algebraic loops aiereas Given a structural model, there is a need to know whether
to handle as long as algebraically independent coefficanets a set of unknown variables can be computed when causal
assumed. Thus, in this work, algebraic loops involvingdine and linear relations are considered. L@&(M, X, A) be a
variables will be accepted in a computation sequence. Tisisuctural model withA = Ay U A, U Aa. First, for the

motivates Definition 2. sake of simplicity, assume that there are no linear vargble
Definition 2 (Linear Variable):Let h(x) = 0 be an equa- i.e., Ap = 0.
tion of the model. A set of variableg, C x is linear inh if h In the previous section it was exemplified how a residual

can be arranged a&(x;) + g(x \ x;) = 0 and|x;| > 1, where can be computed using a computational sequence. To be able
L is a linear function. We say that there is a linear relatioi® do this in a general case, a necessary condition is thi the
betweenx; andh. exists a complete matching!y in X, such that

Note that considering one single variable as a linear veriab MEC A )
in an equation is not necessary. Linear relations are meant t G =
be considered for identifying linear algebraic loops, amé oi.e., only casual variables are matched.
single variable never forms a loop. Thus, linear relatiores a As pointed out in the previous subsection, only algebraic
considered when two or more linear variables appear in tlwwps involving linear variables will be accepted. In the ab
same equation. sence of linear variables, this means that the well-coingtda
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Fig. 3. Causal and linear computable decomposition
Fig. 2. Causally computable structure

Since causal variables are determined by means of Algo-
subgraphG’ (0™ M, X) has noHall component§22] with  rithm 1, now we are only interested in finding the linear
more than one equation, whe@" MY is the subset of variables that can be computed. First, the set of equafitns
equations inM incident to edges in\g. that depend on linear variables and no others is identified

Therefore, if a matching with such properties exists then
the set of unknown variablesy, can be computed using the Ep ={ee M:Vxevarx(e), (e,z) € AL} ©)

computation sequence without loops. Note that this meaats tirhen, the set of linear computable variabks is determined

the set of equations and the set of variables can be reattangg applying the Dulmage-Mendelsohn decomposition to the
such that the biadjacency matrix has a triangular form withegyuations subseft;,

diagonal of “x” symbols. Fig. 2 shows this pattern where all 0 N
unknown variables can be evaluated. X = varx (E7) Uvarx (ET) (10)

Algorithm 1 searches for the set of variables that can bg,ore 50 and £+ denote respectively the just-determined and
computed as causal variables. This is iteratively done Ry oer-determined equation sets of the Dulmage-Menklelso
finding equations that only contain one causal variable,  yecomposition in; . Note that this holds with the assumption

e €M :|vary(e)] = 1 A (e, varx (e)) € Ay (8) that the linear coefficients are algebraically independent
Algorithm 2 is developed to compute the set of linear

where vak (F) denotes the set of variables i adjacent to computable variableg’;, according to (9) and (10).
the set of equation&’. Note that

(e,varx(e)) € /\/lé

Algorithm 2 X, = LinearVariabl¢G(M, X, A))
Ep :={ee M :Vx evarx(e),(e,z) € AL}

according to (7) and (8). After finding equatienthe graph  y;, .= vary (E9) Uvarx (E})

is pruned and the algorithm continues searching for more

equations until no more equation-variable pairs can bedoun

The diagonal matching presented in Fig. 2 is now extended
Algorithm 1 X = CausalVariablgZ (M, X, A)) to include I.ir_lear. computaple v_ariables. The resulltingcﬁmal
o decomposition is shown in Fig. 3 where the triangular form
while Je € M : [vary(e)] = 1 A (e, varx (¢)) € Ay do remains, but now thd?iall componentgan mcIude.more than
X = X\ vary (e) one variable, since linear loops are allowed. This decoinpos
- tion is done by Algorithm 3, which iteratively alternatesyat
Xo = X Uvary (e) . .
: rithms 1 and 2, and finally returns the sub-gra@gf€, X', A)
end while .
which corresponds to the computable part.
o _ _From the discussion above, it is clear that the sub-graph
Here, it is assumed that a set of variables can be solveddife, x', A) contains the computable part of the model. Thus,
every variable can be matched with an equation using a caugikemaining equations)/ \ €, are not useful anymore, since
edge and there are no algebraic loops, sotdaly component they contain variables that can not be computed, e\, X
with more than one equation-variable pair is rejected.
Now, assume that also linear variables are considered, pggorithm 3 {X', £} = ComputableSystef@(M, X, A))
A=A UA,UAA. In Section llI-A, it was discussed that a X =0
subset of linear variables can be solved in an algebraic. Iooprer;eat
Therefore, the Dulmage-Mendelsohn decomposition can be X' :— CausalVariabléG (M, X \ X, A))
applied to determine the subset of linear computable viasab Py o YU ’ ’
The D_qlmage-MendeIsohn dec_omposmon [23], [24] d(_efmes Xy, = LinearVariabléG(M, X \ X, A))
a partition on the set of equations and the set of variables. X XYUX
This partition consists in the under-determined part, thss-j until .X’ UX L: 0
determined part and the over-determined part, which costai £ = {cc ML- varg (o) € (X))
the redundant equations. i e =




. . . TABLE |
Note that extracting the computation sequence given by the NON-SYMMETRIC ISOLABILITY EXAMPLE

subgraphG(€, X, A), decomposed as in Fig. 3, is straightfor-

ward since now the matching-diagonal establishes an irgerp | 21 o
tation of which equation to use to compute each variable fimen A A
q p - fao—oe | x %

es A X

IV. CAUSAL STRUCTURAL MODEL BASED DIAGNOSIS e4 x

According to the decomposition in Fig. 3 there exists, at
least, one complete matching (€, X', A). This means that

there is no under-determi_ned_ supset qf equationé’,irile_., This means that for each causally detectable fAult Fp,
£~ = 0. Since the matching in Fig. 3 is complete M, it hore exists a set of faultd; (f) that are causally isolable

follows thgt the over-determ_ined set of_equatiefﬁscontains from £. Algorithm 5 uses Algorithm 4 to compute the causally
part of this diagonal matching, so variablesdn are com- igs|aple fault set for each causally detectable fault.
putable. Now, fault diagnosis analysis can be performedhen t

over-determined part and the cqmputation sequence_caysalwglgorithm 5 F; — CausallsolabilityG/(M, X, A), Fp)
be guaranteed to generate residuals. For extended informat
on the Dulmage-Mendelsohn decomposition applied to fault
diagnosis see for example [6]. My =M\ {/} o

In this work, faults are defined as a subset of equations, Fi(f) -= CausalDetectabilif(My, X, 4), Fp)
F C M, since a relation between an equation and a fanltend for
can be easily established, i.e., a signal fault that affaats
equation, or the assumption or support of an equation. larord Note that, here, the isolability relation between two fault
to simplify the following theoretic development, only sgst is not symmetric, i.e., faulff; is isolable from faultf; does
faults and faults in the original sensor setup will be coaséd, notimply thatf; is isolable fromf;. Since causal detectability
i.e., no faults in additional sensors will be included in thdepends on the causally computable sub-model, the symmetry
sensor placement analysis. property in the isolability relation (see [15]) is lost.

For instance, assume the following causal structural model
represented in Table I, where faulfs and f> affect equation

A. Causal Structural Detectability ‘
. e1 andey respectively, and both are detectablg = {e1, ex}.
It is well known that the set of detectable faults Ca%hen by applying Algorithm 5 we obtain that

be defined from the over-constrained part [6]. A given set

of faults F C M is structurally detectable if* C M™. Fr(er) = {e2}
Analogously, causal (structural) detectability can be rofi Fies) = 0
from the computable part of the model.

Definition 3 (Causal (Structural) Detectability)A  fault and it can be therefore concluded thatis isolable fromj;
f € F is causally detectable in/ if but the reverse does not hold (i.e., the symmetry property is

not satisfied).

where&y; is the computable part of/ \ { f;}.

for eachf € Fp do

feé&r (11)
where& is the computable part of/. V. SENSORPLACEMENT FOR CAUSAL STRUCTURAL
Algorithm 4 uses Algorithm 3 to find all causally detectable MODEL BASED DIAGNOSIS

faults Fip, when computable sequences are taken into accountgijven a set of equations, the subset of unknown variables
The inputs are a structural modél(M/, X, A) and a set of that can be computed will depend on the set of installed

faults, F' € M. sensors (i.e., known variables).
i _ The main idea is to perform fault detectability and fault
Algorithm 4 Fp = CausalDetectability=(), X, A), F') isolability analysis with all sensors installed. Understisiet-
{X, €&} := ComputableSystet (M, X, A)) ting, the set of detectable faults and the set of isolablésfau
Fp:=&TNnF will give an upper limit on the fault diagnosis specificaton

Installing the same sensor more than once makes neither

detectable a non-detectable fault nor isolable a nonfit®la

B. Causal Structural Isolability fault, except for faults in the installed sensors. Once maxn
Isolability analysis is based on detectability conditiongault diagnosis specifications are known, the minimal set of

According to [15], a faultf; € F is structurally isolable from sensors that satisfies these specifications is sought.

f; € F if f; is detectable in the sub-modél \ {f;}. The

same holds when causal computations are considered.
Definition 4 (Causal (Structural) Isolability)Given  two

causally detectable faultg;, f; € F, fault f; is causally

isolable from faultf; in M if

A. Maximum causal detectability and isolability specificas

The maximum detectability specification is ensured when all
candidate sensors are installed. Therefore, it is strfaighard
to select those faults that can be detected from those thiat wi
fi € 5}; (12) never be, before the sensor placement analysis.



The set of candidate sensors can be defined as a subsédlgerithm 6 S,,.;, = CausalSensor@l/, Sq,Fp.,.., F1,..)
unknown variabless C X. Each sensor has a correspondingi: S,,;, := 0
sensor equatioy = xz, with y being the measurement signal 2: repeat
and z € S the measured variable. This equation has to b&: S, := the minimal subset not previously tested from
added to the model whenever the corresponding sensor is S,
selected for installation. Note that adding this equatioplies 4. Fp :=

that z becomes a causal variable in the corresponding sensor CausalDetectability(MUMs, , X, A), Fp,,..)

equation. Given a sensor configuratiéh C S, the set of s if Fp = Fp___ then

sensor equations is denoted bys, . 6: Fy := CausallsolabilityG(M UMsg, , X, A), Fp,,...)
Even if all sensors are added, there may be some sensors if Fr=Fy, . then

that can not be used to compute a residual. It is importarg: Sonin = Sk

to identify these sensors in order to exclude them from the: end if

sensor placement analysis. These sensors are charatterize end if
by the property that the corresponding sensor equation daas until S,,;, # 0
not belong to the over-determined part of the computabie

subsystem. Therefore, it is possible to determine the set of
useful sensors from VI. CAUSALLY COMPUTABLE MSO SET GENERATION

Finding redundant sub-systems for diagnosis is an impbrtan
topic in the field of diagnosis based on structural models.
There are several works devoted to this issue [17], [10],
t18], [19]. An efficient algorithm that computes the complet
set of MSO (Minimal Structural Overdetermined) sets was

ublished in [10]. An MSO set is a subset of model equations
rI]|%t is structurally overdetermined and no proper subset is
overdetermined. Furthermore, an MSO set can be used to im-

Mg, = £ N Mg (13)

where £s is the computable part of the system with al
sensors installed, i.e{,X', £s} := ComputableSysteft (M U
Mg, X, A)). Thus, the new set of candidate senséisC S,
is now defined as all sensors such that their correspond
sensor equation belongs fdg,. Therefore, there is no need

to further consider sensors fr Sy in the sensor placement . . ) .
offh S P plement a residual generator. A modification of this aldponit

analysis. : ) . . ; . .
Now, the maximum causal detectability specification i't% presented in this section. It consists in only com_putmg
comouted by Alqorithm 4 with the new set of sensc ose MSO sets that can be used to generate a residual by
addé)d in theymogel' ® means of the computation sequence. This kind of MSO set

' is calledcausally computable MSO séfherefore, a causally
— CausalDetectabilityG (M U Mg, X, A), F) computable MSO set is an MSO set tha}t contains a causally
computable structure, which means that it can be decomposed

The maximum causal isolability specification is compute@ In the(&, &) structure depicted in Fig. 3. The extension of
by Algorithm 5, with just the set of sensof installed, and the algorithm in [10], that computes the complete set of MSO

Ip

max

for those system faults that are detectaldlp, . : sets, is presented in Algorithm 7.
Fr.... = CausallsolabilityG(M U Mg,, X, A), Fp,...) Algorithm 7 M = findCCMSQG(M, X, A), R)
1 M:=0
. 2: {X, €&} .= ComputableSyste(t (M, X, A))
B. Sensor placement algorithm 3 if (M\EY)NR =0 then

Once maximum causal detectability and isolability speci-* M =&
fications are known, the sensor placement algorithm can be if (M) =1 then
introduced. Algorithm 6 uses Algorithms 4 and 5 to searctf: M= MU{M}
for the minimal set of sensors that satisfies them (&, /- €Ise

andF; ). while R 2 M do

The algorithm starts each iteration by choosing the minimaf" Select are € M \ R
set of sensorsy) not already chosen. The sensor set codf: E =M\ (M\{e})*
or cardinality are different criteria that could be used td if ENR =0 then
determine the minimal set of sensors. Then, the aIgorithFﬁ: R:=RUFE
computes causal detectability using the chosen sensondet &% M= M\ E
tests whether maximum causal detectability is achieved. }f- M = M UfindCCMSQG(M', X, A), R)
so, the same is done with causal isolability and maximurtp: else
causal isolability. When both, maximum causal detectgbili 16 Rf: RUE
and isolability, are achieved the solutiofi(;,) is returned. 17 end if

In Section V-A, it has been shown that the algorithml& en_d while
will terminate since the set of candidate sensdfsg, is one ;g: en?jni? if

admissible set, that fulfills the specifications.




TABLE Il
SYSTEM FAULTS, F'

Anode Inlet
Flow Control 7 .
Stack | | Reum Fault | Description Involved
Inlet Magic Static Veriol equation
=1 Vanfold cgjer | wumidfer | fi Electrical fault in the compressor moto e1
fo Mechanical fault in the compressor mojor ez
f3 Compressor fault. The relation described
. by the compressor maploes not hold e11
Fig. 4. Fuel Cell System scheme Ta Air Teak in the inlet manifold €13
fs Humidifier fault. Output humidity does
not follow desired humidity €29
The algorithm computes the set of causal MSO sets by/fs | Cathodereturn manifoldfault e33
iteratively removing equations. The sBtis a set of equations — /7| EXit cathode fault ers
that are not allowed to be removed to avoid finding the same TABLE Il

MSO set more than once. Algorithm 7 is initially called with
the entire modelG(M, X, A) and R = (). The condition to

ensure that an MSO set has been found is¢ifar) = 1 (step __Variable

CANDIDATE SENSORS

Description

5), whereg(M) is the structural redundancy degree, which is ‘;’;’
defined by

Tcp,out
Pep,out

P(M) = [M] — |varx (M) (14)

im,out
The extension, compared to the algorithm in [10], mainly Pim.out
consists of steps 2 to 4. The séf \ £ is the set of p:::;”::
equations that are removed in step 4 and, in step 3, it Sy, o
ensured that no equations i are removed. The remaining Psh.out

Compressor motor speed

Compressor motor current

Compressor output air flow temperature
Compressor output pressure

Inlet manifold output air flow temperature
Inlet manifold output pressure

Magic cooler output air flow temperature
Magic cooler output pressure

Static humidifier output air flow temperature
Static humidifier output pressure

Outlet manifold output air flow temperature

part of Algorithm 7 is equivalent to the MSO sets generation” *™ "
algorithm in [10]. The original algorithm in [10] finds all p.q.in
possible MSO sets. Since the set of causally computable MSQst,as ~ Stack downstream pressure

. . . Ust Stack voltage
sets is a subset of all the MSO sets, Algorithm 7 finds a”Tan,out Stack anode output flow temperature

Stack anode input pressure
Stack cathode input pressure

Pan,in

possible causally computable MSO setd, Pan,out  Stack anode output pressure
Wea,out  Stack cathode output flow
Tea,out  Stack cathode output flow temperature
VII. APPLICATION TO THEFUEL CELL STACK SYSTEM Powoms  Stack cathode output pressure

Fuel cell devices are receiving much attention in the last
decade as good candidates for clean electricity generation
Here, we will use a fuel cell based system to apply théxample by changing a parameter or a variable. Table II
presented diagnosis approach. summarizes the faults considered in this work. Other faults
could be easily included in this set, that should be related t
A. System description their corresponding model equations. Another assumpsgon i

The model of the Polymer Electrolyte Membrane (PEI\/ﬁ‘at only single faults are_allowed. This means that _two or
fuel cell stack (FCS) system used in this work was propos&re faults can not occur in the system at the same time.
in [25], and further information can be found in [16]. The Furthermore, there is a set of already known variables: the
benchmark is widely accepted in the control community &9mpressor voltage() and stack current(;) since they are
a good representation of the behavior of a fuel cell systeffgeded for control purposes, the desired temperaflije)(
The model (see Fig. 4) includes a detailed description of tR8d humidity ¢q.s), both set-points, the stack temperature
air compressor, the inlet and return cathode manifolds, thest) and all the ambient variables (presspig,,, temperature
static air cooler, the static humidifier, the hydrogen flovdl anlams @nd humidity o). All these variables are excluded
the PEM fuel cell stack. The fuel cell stack model is furthdfom the sensor placement problem.
decomposed into four main subsystems: stack voltage, datho
flow, anode flow and membrane hydration. In the model, it |§
assumed that the temperature is known and constant since it
dynamic behavior is much slower than that of the rest of the A set of 20 candidate sensors for installation has been
model. considered for this benchmark. Table Il briefly describes

In [26] there is a model of the FCS with 116 equations. TH&sem. All these physical quantities can be easily measuyed b
equations describe, in great detail, the physics and chigmisstandard sensors. Other physical quantities such as hymidi
in the components. However, the model comprises non-linesrmass have not been considered since measurement of those
relations, for example non-linear algebraic equationscgi quantities usually involve complex and expensive sensors.
wise polynomial functions, function maps, and look-up¢sbl  Following the methodology introduced in Section V-A,
which makes the proposed approach suitable. maximum causal detectability and isolability specificati@re

A set of seven fault§’ has been selected for this evaluatiosought. The conclusion is that all faults can be detected and
study. Each fault affects one, and only one, equation, f@olated, under the assumption that all candidate sensers a

SSensor Placement for the FCS System



installed. Thus,Fp
1={1,...,7}.
Moreover, the sensor equation corresponding to sengor
is not in the computable over-determined part. So, the &ffec
set of candidate sensors beconsgs= S\ {vs}. This is due
to the fact that there is only one equation (15) that depends o
variablev,; and not all the variables involved in this equation
can be causally computed.

=FandFy, (f) = F\{f} for

max

€79 : Ust = h(istapca,outapOzaTsta )\masz) (15)

Now, the minimal cardinality sensor placement for diagaosi
is solved. Applying Algorithm 6, six possible solutions are
obtained. All sensor configurations are equivalent, inv@\8
sensors as follows:

MSO;3
Sming = Spase U {Dep,out; Pea,in }
Smins = Spase U {Dep,outs Dsh,out }
Srming = Sbase U {Pme,outs Pea,in }
Sming = Sbase U {Pme,outs Psh,out } MSO,
Sming = Spase U {Dim,out, Pea,in }
Sming = Sbase U {Dim,out, Psh,out ;

with
Shase = {pra Z.cpv Tim,outaPst,dSv Wca,outv pca,out} MSOs
Sensor configuratioy,,,;,, is finally adopted for the FCS
system.
MSOg

C. Causal MSO Sets Generation for the FCS System

TABLE IV

RELATION BETWEENMSO SETS AND SYSTEM FAULTS

fi fo fs fa fs fe f7
MSOl X

MSO- X
MSOs X X
MSO4 X X
MSOs X X
MSOg X X

MSO~7 X

€116, €124, 6125}

{612, €13, €14, €15, €16, €18, €19, €20, €25, €28,
€29, €82, €383, €84, €85, €87, €88, €89, €90, €94,
€95, €96, €97, €98, €100, €101, €102, €114, €121,
€122, €123, €126, €119, €121, €122, 6126}

{67, €9, €11, €12, €14, €15, €16€18, €19, €20,
€25, €28, €29, €82, €83, €84, €85, €86, €87, €88,
€89, €94, €95, €96, €97, €98, €100, €101, €102,
€114, €119, €121, €122, 6123}

{92, €3, €4, €6, €8, €9, €13, €14, €15, €16, €18,
€19, €83, €84, €85, €86, €87, €90, €119, €120, €121,
€122, 6126}

{ez, €3, €4, €, €7, €8, €9, €11, €14, €15, €16,

€18, €19, €83, €84, €85, €86, €87, €119, €120,

Once the set of sensors to achieve maximum diagnosis €121, €122}
§peC|f|cat|o_n is known and their correspond!ng quaﬂoes_ aNsSO; = {e1,einr, eino, €120} (16)
introduced in the FCS structural model, Algorithm 7 is apgli
It returns 323 causally computable MSO sets.

This will be compared to the number of MSO sets obtained
under the assumption that all unknown variables were causal
Applying the original MSO set generation algorithm in [10],
219089 MSO sets are computed. Note that, for many of the
MSO sets it is not possible to implement a residual generator
due to computational problems.

Not all 323 corresponding residuals have to be implemented,
but a reduced set. A subset of causally computable MSOFOr instance, consider the causally computable MSO set
sets will be selected such that it ensures maximum cauddi®Oz in (16). The system and sensor equations that belong
detectability and isolability of the fault set given in Tadl. 10 this MSO set are presented in (17). Note that variables
Following this criterion, 7 causally computable MSO seteena Lst: Pom.ds: Wea,out @Nd psr,as are all known:Weq e and
been selected for residual implementation. Table IV showst.ds are measured (see Section VII-B), 45 is the down-
the fault sensitivity of these causally computable MSO .sefream outlet manifold pressure, which equals to the ambien
An MSO set is sensitive to a fault if the corresponding fauRressure, and’; equals the ambient temperature. Equations
equation belongs to that MSO set. Note that all faults afé31, €s2; €33, €36} belong to theoutlet manifoldcomponent.
causally detectable and isolable from each other, acogitdin The causal structural model corresponding to (17) is degict
Definitions 3 and 4. The system and sensor equations tHatlable V. In equatioress, a non-linear function computes

described in (16). cannot be used to compute any of the input variables, which

is consistent with the row assigned ¢gg in Table V. The
same reasoning holds for each causally computable MSO set
in (16). Note that the structure in Table V can be decomposed
as in Fig. 3 (i.e., it is a computable structure).

MSO, = {ers,e124,€125, €126}

MSO; = {es1,e32, €33, €36, €81, €103, €104, €105, €109,



TABLE V

Episode: fault 6

COMPUTABLE STRUCTURE OFM SO2 oar
)
. )
. +~ - = hed 01F “/
S S 0 0
IR =
& ~ ‘:4 - — —residual
Q a % E? & E? E g? Ef < E sl b residual 3
residual 4
€31 L L 2 0af ' residual 5
. 3 residual 6
€32 L L g o5l residual 7
es33 X L X L
€36 X A A A T
€105 L L o7r
€116 L L -08F
es1 L L sl e
€104 L L ‘ ‘ ‘ ‘
€103 X K © ime (seo) ® ®
€109 X
€124 X
€125 x Fig. 6. Normalized residuals response fault 6

inaccuracies). However, when fauft occurs, equatioress
does not hold and consequentlyz 0, signaling the fault (i.e.,

= fault detection). Furthermore, according to (16),s the only
residual which is sensitive to fauf;. This is consistent with
Table IV, and implies that a violation of residual indicates
that fault f¢ has occurred (i.e., fault isolation).

Fig. 5. Computation sequence frofd SO Fig. 6 shows the residuals response correspondirfgttth

fe episode (normalized in the intervgh1,1]). At time 10

seconds, some residuals are slightly affected due to a ehang

of the system operating point. However, at time 15 seconds

€31 1 Pom.out = T the residgalw is clearly affected by the fault, whereas the
€30k = 42 other residuals are not.

dt .
€33 & = Tom,in%(Wom,in ~ Wom.out) The same procedure could be followed to verify the perfor-

mance of the residuals corresponding to the remaining MSO
sets in (16). Remind that working with structural modeldyon
best case results are obtained. This means that the residual
100 Wom.in = sensitivities shown in Table IV will depend on the fault

. om,in ca,out A . . . .
€105 : Tom.in = Tea.out r_nag_nltude. Furthe_rmore, a proper residual conditioningy,(i _
e109 : Tt = 353K fllte_rln_g, thrgsholdlng, etc.) shc_)uld be done. Howevers thi
topic is outside the scope of this work.

€36 - Wom,out = Non”nearNOZZIépom,outvpom,d57Tom,in)
€81 - Tca,out = Tst
€103 : Pom,ds = latm

€116 * Pom,out = Pst,ds
€124 : Pst,ds = Pst,dsmeasured

€125 : Wea,out = Wea,outmeasurea ) E. Comparison with the Non-Causal Approach
These results are compared to the solution of the minimal

) ) sensor placement problem when causal computability is not

D. FCS System Diagnosis addressed. This can be accomplished by applying Algorithm 6

Once the set of causally computable MSO sets is obtainédl,a causal structural model of the fuel cell benchmark under
residuals can be easily implemented following the compthe assumption that every unknown variable is a linear vari-
tation sequence. Note that the diagonal in the computallele. Under this hypothesis, the minimal sensor configumati
decomposition (see Fig. 3) shows how all variables can bwolves fewer sensorip, pst,ds }-
computed. Therefore, implementing the computation secgien For this particular solution, there exist 7 useful MSO sets
for a causally computable MSO set is straightforward. Fdor causal fault detectability and isolability. The tablefault
instance, consided SO, shown in the previous subsectionsensitivities of these 7 MSO sets is shown in Table VI. Note
The corresponding computation sequence is depicted irbFigthat all the faults are causally detectable and fully iskeab
Here sensor equation®124, €125} and constant assignmentsHowever, implementing residual generators with this fault
{e103, €109} have been omitted in order to make the figureensitivity pattern is not a trivial task since all faultscept
more readable. This computation sequence corresponds todhe have to trigger the residual.
evaluation of residuats. Furthermore, analyzing/.SO7¢ in Table VI, it could be

To test the residuat,, fault fs has been simulated by anseen that most of system equations are contained in this MSO:
abrupt change of paramef&y,, in equatioress, from nominal M SO7¢ = M\ {e1, e34, €35, €79, €106 }, With M being the set
value 5 - 10~2m? to 4,5 - 1073m?, at time 15 seconds. As of 116 system equations. Computing the unknown variables of
long as faultfs does not occuryy ~ 0 (i.e., assuming model this MSO set entails solving a non-linear system of equation
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TABLE VI
RELATION BETWEEN NON-CAUSAL MSO SETS AND SYSTEM FAULTS [3] R. Reiter, “A theory of diagnosis from first principlesArtificial
Intelligence vol. 32, no. 1, pp. 57 — 95, 1987.
3 _ [4] J. de Kleer and B. C. Williams, “Diagnosing multiple f&t Artificial
N SOTC h fXQ Jj: J:f J;d {f J: Intelligence vol. 32, no. 1, pp. 97-130, 1987.
M So}m % % X X X X [5] M. Staroswiecki and G. Comtet-Varga, “Analytical rediamcy relations
M SO%C . X X X X for fault detection and isolation in algebraic dynamic eyss$,” Auto-
Msore | % % x X % % matica vol. 37, no. 5, pp. 687-699, 2001. o _
Mso‘fm © X X X % % [6] M. Blanke, M. Kinnaert, J. Lunze, and M. StaroswiecRiagnosis and
MSO™ | x x x X x % Fault-Tolerant Control 2nd ed. Springer, 2006.
Msogm %X X X X X X [7] C. De Persis and A. Isidori, “A geometric approach to roeér fault

detection and isolation,JEEE Transactions on Automatic Control
vol. 46, no. 6, pp. 853-865, 2001.
[8] D. Cox, J. Little, and D. O’'Shealdeals, varieties, and algorithms

A search through all choices of a redundant equation in this 2nd ed. Springer, 1996.

. . . ] M.-O. Cordier, P. Dague, F. Levy, J. Montmain, M. Star@sski, and
MSO set reveals that a non-linear algebralc |00p of size L. Travé-Massuyes, “Conflicts versus analytical redumogarelations:

least 49 needs to be solved. Similar conclusions can be drawn a comparative analysis of the model based diagnosis agprivam
for the other MSO sets. the artificial intelligence and automatic control perspes” |IEEE
_ For these reasons, implementing residual ge.nerators in non I;?ngif:tr'g_]ss’ngs)ésltg?ﬂsz’lgﬂ;né&rf Cybernetics, Part B: 1aghes
linear large models by means of the computation sequenceii§ M. Krysander, JAslund, and M. Nyberg, “An efficient algorithm for
often not possible when causal computations are not taken in ~ finding minimal over-constrained sub-systems for modekbadiagno-
t sis,” IEEE Trans. Syst., Man, Cybern, ®ol. 38, no. 1, 2008.
account. [11] R. Raghuraj, M. Bhushan, and R. Rengaswamy, “Locatiegssrs in
complex chemical plants based on fault diagnostic obséityatriteria,”
AIChE J, vol. 45, no. 2, pp. 310-322, Feb. 1999.
[12] E. Frisk, M. Krysander, and Jslund, “Sensor placement for fault
Structural methods are often used to find suitable sets of isolation in linear differential-algebraic system#utomatica vol. 45,

; : ; no. 2, pp. 364-371, 2009.
equations that can be used to design residual generatorﬁlg]f C. Corﬁﬁwult, 3. M. Dion. and S. Y. Agha, “Structural i for the

invertability properties of the model are not taken intoaout sensor location problem in fault detection and isolatiohjitomatica
in the analysis, then the resulting residual generators may vol. 44, no. 8, pp. 2074-2080, aug 2008.

include non-linear systems of equations that need to beedol\;”] A. Rosich, R. Sarrate, V. Puig, and T. Escobet, “Effitieptimal sensor
placement for model-based FDI using and incremental dfguori in

either analytically or by using numerical techniques. Proc. 46th |EEE Conference on Decision and Conirdlew Orleans,
One way to avoid solving non-linear systems of equations USA, Dec. 12-14, 2007, pp. 2590-2595.

; ; ; : [15] M. Krysander and E. Frisk, “Sensor placement for faidpadosis,”|IEEE
is to take into account causal information an look for realdu™™> - ° Syst., Man, Cybern. &ol. 38, no. 6, pp. 1398-1410. 2008,

generators where the unknown variables are computed Usif¥J J. T. Pukrushpan, “Modeling and control of fuel cell &yms and
direct back substitution. Such back substitution soligiane fuel processors,” Ph.D. dissertation, Univ. of MichigannnAArbor,

; ; _ Michigan, 2003.
only possible under strong requirements on the model Sm’ﬂ&] L. Travé-Massuyes, T. Escobet, and X. Olive, “Diagability analysis

ture. The basic idea in this paper is to extend back sulistitut based on component supported analytical redundancyamsatiEEE
techniques to allow linear loops. This alleviates the madel Trans. Syst., Man, Cybern,, &ol. 36, no. 6, pp. 1146-1160, 2006.

; s mif ; ;- [18] S. Ploix, A. A. Yassine, and J. M. Flaus, “An improved @dighm for the
straints but does not S|gn|f|cantly increase the computatlo design of testable subsystems,” ser. Proc. of 17th IFAC d\@Gdngress,

complexity of the residual generators. A main contributidn Seoul, Korea, 2008.
this paper is a structural framework and algorithms to ifignt [19] B. Pulido and C. A. Gonzalez, “Possible conflicts: a cdatjon

; ; technique for consistency-based diagnosiEEE Trans. Syst., Man,
sets of model equations where the unknown variables can Cybern. B vol. 34, no. 5, pp. 21922206, Oct. 2004.

be solved either by back substitution or by solving lineago) c. svard and M. Nyberg, “A mixed causality approach tsidual
loops. In addition, a sensor placement algorithm has been generation utilizing equation system solvers and difféa¢algebraic

; ; ; equation theory,” ser. 19th International Workshop on ¢ipies of
develope.d that. selects _vyh|ch sensors to include in order_to Diagnosis (DX-08), Blue Mountains, Australia, 2008,
meet a given diagnosability requirement under the ass@mpti21] L. Lovasz and M. PlummeMatching Theory AMS Chelsey Publish-
that all residual generators are designed using the exende ing, 1986. _ _
back substitution approach. [22] go|(-:||ae|t|y \(/3)? rfgre;spenztzt_l\é%s (igzlébsetkjwnal of London Mathematical
A case study of a fuel cell stack system is used to illustraggs) a. L. Dulmage and N. S. Mendelsohn, “Covering of bi-ftargraph,”

the approach. With no causal restrictions on the residual Canada J. Mathvol. 10, pp. 527-534, 1958. o

generator, less sensors are needed to meet the diagrttysalﬁﬁ] gbol\gurota, Matrices and Matroids for Systems Analysis Springer,
requirement, but this comes at the price of having to solyg;) J. T Pukrushpan, H. P., and A. G. Stefanopoulou, “Asialyfor
large non-linear systems of equations. Utilizing the chusa automotive fuel cell systemsTransactions of the ASMEol. 126, pp.

; o ; ; 14-25, 2004.
information in the model results in a set of residual 98NEG, A Rosich, R. Sarrate, and F. Nejjari, “Fuel cell systeenchmark”

ators, fulfilling the isolability requirements, that carsiya be Automatic Control Department, Tech. Rep., 2008. [Onlin&lailable:
computed by a simple back substitution approach and/or by http://sac.upc.es

solving linear loops.

VIIl. CONCLUSIONS
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