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(CSIC-UPC)
Llorens i Artigas, 4-6

08028 Barcelona, Spain
Email: fmoreno@iri.upc.edu

Alba Perez-Gracia∗
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ABSTRACT
In this paper, we explore the idea of designing non-

anthropomorphic multi-fingered robotic hands for tasks that
replicate the motion of the human hand. Taking as input data
a finite set of rigid-body positions for the five fingertips, wede-
velop a method to perform dimensional synthesis for a kinematic
chain with a tree structure, with five branches that share three
common joints.

We state the forward kinematics equations of relative dis-
placements for each serial chain expressed as dual quaternions,
and solve for up to five chains simultaneously to reach a number
of positions along the hand trajectory. This is done using a hy-
brid global numerical solver that integrates a genetic algorithm
and a Levenberg-Marquardt local optimizer.

Although the number of candidate solutions in this problem
is very high, the use of the genetic algorithm allows us to perform
an exhaustive exploration of the solution space to obtain a set of
solutions. We can then choose some of the solutions based on the
specific task to perform. Note that these designs match the task
exactly while generally having a finger design radically different
from that of the human hand.

NOMENCLATURE
b Number of kinematic chains branches.
n Number of joints.
m Number of end-effector positions for all branches consid-

ered.
ε Dual unit such thatε2 = 0.

∗Address all correspondence to this author.

v A vector.
Q̂ A dual quaternion.
S Plücker coordinates of a line:S= s+ εs0

INTRODUCTION
There are many applications for which a robotic system is

needed to work in human environments and to perform tasks that
are designed for the human hand. In most cases, the solution
adopted for grasping and manipulation consists of anthropomor-
phic robotic hands, which imitate to a certain extent the topology
and joint location of the human hand. See [1] for a review of
applications and concept definition.

It is difficult to match the complexity of the human hand,
commonly accepted to have 26 degrees of freedom when count-
ing the motion at the wrist and the pronation/supination of the
forearm. The anthropomorphic design must include a complex
mechanical system, actuation and sensing in a small space [2].
In order to reduce complexity, current designs limit the active de-
grees of freedom, through simplification of the mechanical struc-
ture or by designing underactuated hands. The design of simpli-
fied grippers limits the tasks of the robotic end-effector tosome
grasping and manipulation actions. Pairing these designs with
some degree of underactuation and compliance, it is then pos-
sible to perform robust grasping of objects of unknown shape.
Dollar and Howe [3] present a simplified, underactuated design
for reliable grasping. Ciocarlie and Allen [4] optimize an under-
actuated, non-anthropomorphic gripper for performing a series
of grasps from a database. A more thorough review on underac-
tuated hands can be found in [5].

In order to perform some of the more complex functions



of the human hand (not only grasping and manipulation, but
also perception through surface exploration), it seems that an
end-effector with several independently-actuated fingersmay be
needed. There are many examples of anthropomorphic robotic
hands, see for instance [6] for a relatively recent review. How-
ever, for complex multi-fingered designs, it may not be necessary
that the robotic fingers mimic those of the human hand in orderto
perform human-like tasks. We want to explore these alternative
designs with the use of kinematic synthesis.

These alternate designs may have multiple applications. One
possible usage is on the design of exoskeletons. These exoskele-
tons move the finger tips exactly like a human hand, while being
able to be mounted on a hand without interfering with the hand’s
movement. Another application is the improvements of exist-
ing designs. Solutions can be chosen with additional criteria like
equal distribution of joint velocities for a given task or location
criteria for the joint axes. This can allow, for instance, designs
optimized for particular actuators.

Kinematic design of robotic hands has focused on the de-
sign of individual motion of fingers or parts of the hand. Dai and
Wang [7] use kinematic synthesis to design a spherical mech-
anism to act as the palm of a metamorphic hand. Van Var-
seveld and Bone [8] designed a finger mechanism for a non-
anthropomorphic dexterous hand. Walkeret al. [9] also design
planar linkages for the fingers of a non-anthropomorphic, dexter-
ous hand. Schafer and Dillman [10] present the kinematic design
of a humanoid robotic wrist.

In this paper, we develop a method for the design of a full
non-anthropomorphic multi-fingered robotic hand for tasksthat
replicate the motion of the human hand at the fingertips. Taking
as input data a finite set of rigid-body positions for the human fin-
gertips, we perform dimensional synthesis for a kinematic chain
with a tree structure, with three common joints and five branches.
As a whole, the process entails the simultaneous solution ofup
to five serial chains, two of them having four independent joints
and three of them with five independent joints, plus three com-
mon joints for all of them. The total degrees of freedom of the
non-anthropomorphic hand design is 26, similar to the human
hand.

We state the forward kinematics equations of relative dis-
placements for each serial chain expressed as dual quaternions,
and solve for all five chains simultaneously to reach a numberof
positions along the hand trajectory. The synthesis of spatial se-
rial chains for up to five degrees of freedom using this technique
was developed in [11]. We use a similar methodology together
with a hybrid global numeric solver, composed of a genetic al-
gorithm paired with a Levenberg-Marquardt local optimizer. For
the tree-like kinematic structure, a high number of positions can
be defined to perform exact synthesis, obtaining a good approxi-
mation for the desired trajectory.

Finding the complete solution set for the synthesis of com-
plex kinematic chains is an unsolved problem. Only dyads, such

FIGURE 1: HAND SKELETON USED TO GENERATE POSI-
TIONS.

as the RR kinematic chain [12, 13], and some triads with partic-
ular characteristics [14], have been fully studied. Even the 3R
kinematic chain has not been completely solved with a closedal-
gebraic expression [15]. The complexity of a tree-like kinematic
chain with a total of 26 revolute joints, and our numerical results,
lead to believe that there will be a very large amount of solutions.
This is an issue that has been found before even for simpler kine-
matic chains, see [14]. In order to deal with this, additional con-
straints may be added to help in the selection of the final design,
depending on the task. We present two of the solutions for a hand
task that was synthetically generated. The designs exactlymatch
the task while having a finger design radically different from that
of the human hand.

KINEMATIC HAND MODEL

The human hand has 5 fingers formed by 14 joints. These
joints are created at the contact surface of the 27 major bones
forming the hand. The joints do not exactly match the motion
of a classical lower pair, and some of them present more than
one degree of freedom. However, they can be modeled fairly
precisely using only simple revolute kinematic joints. Theaxes
of these revolute joints do not necessarily have to intersect within
the same joint.

The full hand can be modeled using a total of 26 joints if we
consider the wrist and the pronation/supination of the forearm
to be formed by 3 revolute joints. The index and middle finger
have 4 revolute joints, while the third, fourth and thumb have 5
revolute joints. The dimensions are taken from the literature [16,
17]. The skeleton can be represented by drawing the common
normals of the joint axes as shown in Fig. 1.



TABLE 1: JOINT ANGLES USED TO GENERATE THE TRA-
JECTORY.

Chain Hand task revolute joint limits [θmin-θmax]

Common [-90◦,90◦],[-90◦,90◦],[-90◦,90◦]

Index [-10◦,90◦],[-10◦,10◦],[0◦,100◦],[0◦,90◦]

Middle [-10◦,90◦],[-10◦,10◦],[0◦,100◦],[0◦,90◦]

Third [-10◦,10◦],[0◦,20◦],[-10◦,10◦],[0◦,100◦],[0◦,90◦]

Fourth [-10◦,10◦],[0◦,20◦],[-10◦,10◦],[0◦,100◦],[0◦,90◦]

Thumb [-25◦,25◦],[-25◦,25◦],[-10◦,10◦],[0◦,70◦],
[-10◦,85◦]

Hand Task Generation
The task is defined as a series of finite positions (locations

and orientations) for each finger tip, created by assigning aset of
joint variables to the kinematic model. The range of motion of
each joint varies greatly among the population and it is therefore
impossible to assign a precise range to each joint. In this paper,
we will evaluate our solver using synthetically generated trajec-
tories. These trajectories are generated from random positions
within the joint angle ranges defined in Table 1 to simplify the
convergence of the solver.

KINEMATIC SYNTHESIS
The goal of the dimensional kinematic synthesis is to find

the location and orientation of a set of joint axes able to per-
form a given motion, where the number and type of joints are
pre-defined. This is also known as the motion-to-form problem
in which we are given a motion, defined by a sequence of end-
effector positions, as an input and must calculate the form as a set
of joints and angles that can perform the motion. In this paper,
we follow the original idea of [18] of using the forward kinemat-
ics equations of the kinematic chain, but formulated as relative
displacements and expressed as dual quaternions, see [11] for a
complete description of this approach.

The input data for the synthesis are them−1 relative trans-

formationsP̂1 j = cos
∆φ̂1 j

2 + sin
∆φ̂1 j

2 P1 j , j = 2, . . . ,m, defining
the task; the output are the Plücker coordinatesSi = si + εs0

i =
si + εci × si, i = 1, . . . ,n, of then joints that define the kinematic
chain at a reference configuration, and also thej = 2, . . . ,m sets
of joint variables∆∆∆θ̂θθ j = θi j −θi1+ε(di j −di1), i = 1, . . . ,n, used
to reach the task positions, measured from the reference config-
urationθ̂θθ 1 = θi1+ εdi1, i = 1, . . . ,n.

Forward Kinematics
We can represent each individual branch of a tree-like topol-

ogy as an individual kinematic serial chain, which shares a num-
ber of joints with other branches. Given a kinematic serial chain
with n joints, we can write the kinematics equations using the
product of exponentials of the screws corresponding to the joint
axes, as described in [19]. In this paper, instead of calculating
the exponentials using matrix algebra, we do the exponentials
for the Clifford even subalgebra of the projective space, inwhich
the unit elements, also known as dual quaternions, express spa-
tial displacements. The exponential of a screw representedby
the Clifford algebra elementJ= (1+µε)S of axisS, whereµ is
the pitch relating the slided and the rotationθ along and about
the screw, yields a finite displacement,

e
θ
2 J =(cos

θ
2
−

d
2

sin
θ
2

ε)+ (sin
θ
2
+

d
2

cos
θ
2

ε)S

=cos
θ̂
2
+ sin

θ̂
2
S. (1)

For a serial chain withn joints, in which each joint can rotate
an angleθi and slide a distancedi, around and along the axisSi ,
i = 1, . . . ,n, we calculate the forward kinematics of relative dis-
placements (with respect to an arbitrary reference configuration),

Q̂(∆∆∆θ̂θθ ) =e
∆θ̂1

2 S1e
∆θ̂2
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∆θ̂n

2 Sn
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2
S1) · · · (cos
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2
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2
Sn),

(2)

where∆∆∆θ̂θθ = θθθ j −θθθ 1+ε(d j −d1) contains the joint variables, as
relative values with respect to the joint parameters of the chain
θθθ 1 andd1 when in the reference configuration.

Synthesis Design Equations
The dimensioning of the articulated system has to be done

so that the forward kinematics equations in Eqn. (2) can reach all
the desired task positionŝP1 j ,

P̂1 j = e
∆θ̂1 j

2 S1e
∆θ̂2 j

2 S2 · · ·e
∆θ̂n j

2 Sn, j = 2, . . . ,m (3)

where j = 1 is reserved for the reference configuration.
This results in 8(m− 1) design equations, considering the

fact that we are using dual quaternions which have 8 compo-
nents. The design variables that determine the dimensions of the
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FIGURE 2: TOPOLOGY OF THE KINEMATIC CHAIN.

chain are then joint axesSi , i = 1, . . . ,n, in the reference config-
uration. In addition, the equations contain then(m−1) pairs of
joint parameters∆θ̂i j = ∆θi j + ε∆di j , which are also unknown.

NON-ANTHROPOMORPHIC HAND SYNTHESIS

In this paper, we are interested in the synthesis of robotic
grippers for human-hand tasks. We do not impose any explicit
limitation on the link dimensions or placement. The resulting
design should be able to perform a given human-hand task while
having a non-anthropomorphic aspect.

System Topology

As input topology, we define a tree-like kinematic chain with
three common joints in series at the base, connected to five serial
chains arranged in parallel, two of them with four degrees of
freedom and three of them with five degrees of freedom. This
structure follows the generally accepted joint arrangement of the
human hand plus the wrist motion. Figure 2 shows the topology
of the kinematic chain to be synthesized.

Note that, to our knowledge, no previous approach has ad-
dressed the synthesis of tree-like structures. In addition, tree
topologies can also be used to represent pure serial topologies,
when there is only one branch, and loop topologies, when end-
effectors of multiple branches are placed at the same position.

Design Equations

We state the design equations by adapting Eqn. (3) to our
particular topology. For each one of the serial chains in thepar-
allel arrangement we state a set of design equations, to obtain the

total system of equations

P̂k
1 j = e
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, k∈ {3,4,5},

j = 2, . . . ,m.

(4)

Herek identifies the kinematic chain andj = 2, . . . ,m is the index
of the task position. The fingers are denoted by: index,k = 1;
middle,k= 2; third,k= 3; fourth,k= 4 and thumb,k= 5.

Each of the five serial chains, taken individually, has a total
of seven or eight degrees of freedom, depending on the finger
it corresponds to. Even though the exact dimensional synthesis
does not apply to serial chains with six or more degrees of free-
dom, by having three common degrees of freedom we are able to
state the design equations of the system as a whole.

Notice that even though each individual finger has more than
six degrees of freedom, the tree-like architecture is not kinemat-
ically redundant when defining the motion of several branches at
the same time.

KINEMATIC SOLVER
In order to deal with the large system of equations presented

in the previous section, the selected solver aims to minimize the
error in Eqn. (4) for each kinematic chain. In principle, problems
with selection of the metric does not apply to this case, as weare
targeting exact synthesis.

The objective of the solver is to perform general inverse
kinematics, that is, adjust both joint angles and joint axesto fol-
low a motion. However, by making the joint axes constant it can
also perform inverse kinematics.

Objective Functions
Given a vectorv= {4,4,5,5,5}with the number of indepen-

dent joints for each finger, the design equations from Eqn. (4) can
be written as a set of unconstrained functions,

F̂k
j (S

k
,∆∆∆θ̂θθ k

j) =
3

∏
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e
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3+vk

∏
i=4

e
∆θ̂k

i j
2 S

k
i

︸ ︷︷ ︸

individual

−P̂k
1 j ,

j = 2, . . . ,m
k= 1, . . . ,5

(5)

where we can separate the product of the common joints from
the individual joints that belong to each branch.



The global objective of the solver is to solve the design equa-
tions defined in Eqn. (4). This can be written as,

m

∑
j=2

5

∑
k=1

|F̂k
j (S

k
,∆∆∆θ̂θθ k

j)|= 0 (6)

In order to avoid falling into local minima we will use
a hybrid solver composed of both a genetic algorithm and a
Levenberg-Marquadt optimizer.

Genetic algorithms behave better with defined positive max-
imization objective functions. We can convert Eqn. (6) to a min-
imization function and invert it to obtain,

maximize
S,∆∆∆θ̂θθ

(
m

∑
j=2

5

∑
k=1

|F̂k
j (S

k
,∆∆∆θ̂θθ k

j)|

)−1

(7)

which we can see is defined positive if the domain of Eqn. (5) is
finite. This single function is also known as the fitness function.

For the Levenberg-Marquadt local optimizer we use the
minimizing least squares objective function,

minimize
S,∆∆∆θ̂θθ

m

∑
j=2

5

∑
k=1

F̂k
j (S

k
,∆∆∆θ̂θθ

k
j)

2 (8)

Dimension of the Equation Set
The equations and variables in the objective functions

Eqn. (5) are not all linearly independent. The equations are
formed by unit dual quaternionŝQ = q̂+ εq̂0 which have a di-
mension of eight, but are subject to the two implicit constraints
q̂q̂∗ = 1 andq̂ · q̂0 = 0, which reduce the independent dimension
of the dual quaternion to 6. Similarly, only four of the six Plücker
components of each line are independent as they are subject to
the two implicit constraints‖s‖ = 1 ands · s0 = 0. The number
of variablesx and independent variablesx0 can be written as,

x=n(6+(m−1))

x0 =n(4+(m−1)) (9)

The number of equationsf and independent equationsf 0

can be written as,

f =8b(m−1)

f 0 =6b(m−1) (10)

An important question remaining is how many task positions
mare required for the system to have a finite number of solutions,
see [20] for details. This can be obtained by imposingf 0 = x0

and solving to obtain,

m=
4n

6b−n
+1 (11)

The number of task positions obtained is the amount needed
to have a finite solution for non-degenerate tree topologies. Non-
degenerate tree topologies are those where no kinematic chain
segment, that is the smallest kinematic serial chain from anend-
effector to a fork or from the origin to a fork, has fewer than 6
degrees-of-freedom and that no serial chain from the originto an
end effector has fewer joints than the largest kinematic chain seg-
ment from a fork to an end-effector. Degenerate tree topologies
have redundant equations and thus Eqn. (10) is no longer valid.

More task positions can be provided although this overde-
termines the system. If the system is overdetermined by task
positions from the same workspace it will still have solutions,
otherwise an exact match will generally not exist. Overdeter-
mined systems can lead to problems of convergence and much
slower performance.

Applying Eqn. (11) to our model withb = 5 branches and
n = 26 revolute joints, three of them being shared by all the
branches, we obtain that we can solve exactly for a task defined
by m= 27 finite positions for each finger. This gives a total of
156 structural parameters and 676 joint variables for our set of
equation.

Solver Implementation
Note that the complexity of the problem that we are trying

to solve is especially challenging. However, the use of Clifford
algebra allows reducing the number of equations and variables,
compared to a matrix-based approach. In particular, we represent
the entire equation system with only 832 input variables between
both structural and joint variables. This is a reduction of 33% in
the number of variables compared to using homogeneous matrix,
only considering the 3x4 submatrix containing the rotationand
translation information.

Genetic algorithms have already been used in many kine-
matic problems [21, 22]. The genetic algorithm performs an ex-
haustive exploration of the solution space in order find a solution.
However, due to complexity of the system a pure genetic algo-
rithm would have convergence problems past a certain fitness.
This problem was overcome by reducing the solution space used
by the genetic algorithm to only the local minima. This con-
verts the solution space from a continuous domain to a discrete
finite domain that improves the behaviour of the genetic algo-
rithm. The local minima are found by a Levenberg-Marquardt



optimizer.

The genetic algorithm chromosomes consist of sets of vari-
ables that belong to the full solution space. After being generated
they are then converged to a local minima. This local optimiza-
tion is also computed when chromosomes are crossed or mutated
to ensure each chromosome always represents a local minima of
the search space.

The fitness is calculated as the inverse of the sum of the er-
ror as seen in Eqn. (7). This makes the fitness a continuous posi-
tive function, which allows the usage of roulette-wheel selection
when choosing pairs from the genetic algorithm population to
crossover. It also converts the genetic algorithm to a maximiza-
tion problem. The crossover rate is kept low to encourage diver-
sity in the population, since the strong convergence is provided
by the Levenberg-Marquardt optimizer.

To avoid explicit constraints the chromosomes are generated
in the proximity of the ideal kinematic solution. This playsthe
role of a soft limit for the possible shapes of the robotic hand.
However, it is not unusual for the Levenberg-Marquardt mini-
mizer to move far from the generation space and find extremely
non-anthropomorphic solutions.

The solver is executed until the fitness surpasses the value of
1010 at which it is considered to have arrived to a solution. The
error is attributed to the imprecision in the computer representa-
tion of real numbers.

Kinematic Subsystems
It is worth noting that it is possible to solve a subsystem

of the full kinematic chain tree. These subsystems are indepen-
dently solvable as long as they have a finite number of task posi-
tionsmneeded for a finite number of solutions. To havem∈Q+

the subsystem must satisfy the following inequality,

6b− r > 0 (12)

which is obtained from imposingm> 0 in Eqn. (11). Table 2
shows all the possible subsystems of the hand model that can be
solved.

The most interesting configurations to solve are the 5 kine-
matic chains at once, to minimize the needed positions, and the
configuration with only two 4R branches to reduce the amount of
variables needed. The two 4R branches are the index and middle
fingers and can be seen in Fig. 3. Afterwards, the remaining fin-
gers can be solved individually as the common revolute joints are
now identified. There are also other systems that can be solved
that are a compromise between the number of positions and the
number of variables needed.

FIGURE 3: TOPOLOGY OF THE SOLVABLE (4R, 4R) FIN-
GERS SUBSYSTEM.

TABLE 2: SOLVABLE SYSTEMS OF EQUATIONS FOR DIF-
FERENT COMBINATIONS OF CHAINS.

b r x f m Notes

5 26 832 1092 27 Full model

4 22 1100 1452 45 (5R, 5R, 5R, 4R) fingers

4 21 714 938 29 (5R, 5R, 4R, 4R) fingers

3 17 1258 1666 69 (5R, 5R, 4R) fingers

3 16 608 800 33 (5R, 4R, 4R) fingers

2 11 550 726 45 (4R, 4R) fingers

1 5 130 170 21 5R finger, common solved

1 4 56 72 9 4R finger, common solved

RESULTS
It is very important for the solver to converge that the end-

effector positions, for all branches describing the task, do not
follow an equation for the movement. This can lead to implicit
equations that can lower the dimension of the system so that
Eqn. (11) no longer guarantees a finite number of solutions. It
is also important for the difference between end-effector posi-
tions to be large to aid in the solver convergence, and that all the
joints present movement in the generated task.

The algorithm presented in this paper has a parallel nature
and can be adjusted to run on supercomputers or other distributed
computing systems to increase the calculation speed. This is due
to the nature of the genetic algorithm which forms part of the
hybrid solver presented.

We have obtained best results when using a population size
of 100 for the genetic algorithm. This is much lower than what
would be expected to be needed for a pure genetic algorithm for
an equation system of this size. The crossover rate was set at0.2
while the mutation rate was set extremely high at 0.5. This is



TABLE 3: SOLVER EXECUTION INFORMATION.

Solution Generations Time (hours)

1 13 20.8

2 5 20.5

3 10 16.5

4 12 85.0
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FIGURE 4: CONVERGENCE OF A SOLVER EXECUTION.

due to the fact that our hybrid solver uses a Levenberg-Marquadt
optimizer which provides the strong convergence. Therefore the
genetic algorithm must explore as much of the solution spaceas
possible and not focus on local convergence.

Runtime information can be found in Table 3 for the vari-
ous solutions found. These results were obtained on an IntelR©
CoreTM i7-870 CPU running at 2.93 GHz. The solver was us-
ing all 4 cores of the CPU by using 5 threads for the local op-
timization of the chromosomes, which is the slowest part of the
algorithm. An example of the solver’s converge can be seen in
Fig. 4.

We present two example solutions that can be seen in Fig. 5
and Fig. 6. The non-anthropomorphic solutions are renderedon
top of the anthropomorphic skeleton used to generate the data,
and both are drawn as joint axes linked along their common nor-
mal lines. The anthropomorphic skeleton is represented by thick
gray lines while the non-anthropomorphicsolution is represented
using thinner green lines.

CONCLUSIONS
In this paper we have presented a method for the kinematic

synthesis of tree-like articulated systems, with an application
in the design of a robot to perform human-hand tasks. To our

knowledge this is the first time kinematic synthesis has beenap-
plied to tree topologies. This methodology allows obtaining non-
anthropomorphic designs that can perform an anthropomorphic
finite-position task exactly, while having a very differentjoint
distribution and motion. These designs have applications in ex-
oskeleton design, as they could be mounted on the hand without
physically interfering with it.

The presented methodology is not limited to anthropomor-
phic tasks and hand models. It can be applied to generic serial,
loop and tree topologies of articulated systems, making thesolver
a powerful tool.

Our hybrid solver has managed to successfully find solu-
tions to kinematic synthesis problems much larger than previ-
ously considered. This has been accomplished by using Clifford
algebra to provide a more compact system of equations that is
then solved by the application of both meta-heuristics and clas-
sical math optimization.

From the dimensional synthesis point of view, an interest-
ing result is that, due to the tree structure, we can perform exact
synthesis for general serial chains with more than five degrees of
freedom. We may conclude from this that, despite common be-
lieve that the human wrist/hand is a redundant mechanical sys-
tem, it may not be so when we consider a task in which several
fingers must act.

The dimensional synthesis for articulated systems like the
one presented here, with a high number of joints, yields many
solutions. A good selection process is required in order to choose
a solution from the pool of candidates. For instance, for theap-
plication presented in this paper, additional constraintscould be
imposed either in the solving process or in the post-processing
phase in order to find a suitable design. Among others, we can
cite size or location restrictions for exoskeletons mounted on the
human hand, or dexterity conditions at given configurationsfor
manipulation in human environments. Future work will take into
consideration possible link collisions that may be presentin some
of the solutions of the kinematic synthesis.

In order for the designs to be able to perform realistic human
tasks, not only fingertip positions, but also fingertip forces and
infinitesimal motion need to be considered. Future work will
focus on including task velocities and accelerations in order to
define grasping actions.
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