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Abstract

We present a real-time technique for the spatiotemporal
segmentation of color/depth movies. Images are segmented
using a parallel Metropolis algorithm implemented on a
GPU utilizing both color and depth information, acquired
with the Microsoft Kinect. Segments represent the equilib-
rium states of a Potts model, where tracking of segments
is achieved by warping obtained segment labels to the next
frame using real-time optical flow, which reduces the num-
ber of iterations required for the Metropolis method to en-
counter the new equilibrium state. By including depth infor-
mation into the framework, true objects boundaries can be
found more easily, improving also the temporal coherency
of the method. The algorithm has been tested for videos of
medium resolutions showing human manipulations of ob-
jects. The framework provides an inexpensive visual front
end for visual preprocessing of videos in industrial settings
and robot labs which can potentially be used in various ap-
plications.

1. Introduction

Video segmentation aims at representing image se-
quences through homogeneous regions (segments), where
the same object part should carry the same unique label
along the whole movie. The segmented visual data can be
used for higher-level vision tasks which require temporal
relations between objects to be established, including ob-
ject tracking, action recognition, and content-based image
retrieval [1, 2, 3]. The major challenges faced in video
segmentation are processing time, temporal coherence, and
robustness. In this work, we focus on scenarios showing
object manipulations in a robot lab scenario, which are suit-
able for color and depth segmentation, and demonstrate that

a coherent and robust video segmentation can be achieved
under these conditions in real-time.

In the past, joint segmentation and tracking of segments
in videos have been addressed in various works. Many
methods for video segmentation are usually performing in-
dependent segmentations of each frame and then matching
segments for tracking [4, 5, 6], having the disadvantage that
segmentations need to be computed from scratch for each
frame, affecting the efficiency of the method. Another prob-
lem is that the partition of the image may have changed in
the new frame, leading to temporal consistency problems
between segmentations. To resolve these problems, Grund-
mann et al. (2010) used a graph-based model to construct
a consistent video segmentation from the over-segmented
frames [7]. The over-segmentations however are still com-
puted independently of each other, and processing times
only reach frame rates of 1 Hz. Wang et al. (2009) formu-
lated a joint object segmentation and tracking problem as
a Markov random field energy minimization problem [8].
Observed and hidden variables of objects are defined in the
first frame, and then the objects are tracked and segmented
through the sequence. The method performs well but has
the drawback that energy minimization is computationally
very expensive, resulting in large processing times up to
minutes per frame.

The described methods are based on color cues alone. In
this paper, we show that the inclusion of depth information
can greatly improve video segmentation. We extended a
recently developed framework for parallel color video seg-
mentation by Abramov et al. (2010) [9] by including depth
information to the segmentation kernel. In this method, im-
ages are segmented using the method of superparamagnetic
clustering of data, which finds the equilibrium states of a
Potts model. Consistency of segmentations along the movie
is obtained through label transfer from one frame to the
next using warping based on real-time optical flow. This
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Figure 1. (A) The Kinect device. (B) Original frame acquired by RGB camera. (C) Depth data derived from IR image (in meters). White
patches in the image denote pixels for which acquisition of depth information failed. (D) Color pixels having depth values.

way, the segmentation kernel can be initialized with solu-
tions obtained at previous frames, improving the efficiency
of the method significantly and allowing a soft tracking of
segments to be carried out.

For depth acquisition, the Microsoft Kinect device,
which was first released in the fall of 2010 for the XBox
videogame platform 1, is used. The new device has im-
mediately attracted the attention of the computer vision so-
ciety because of its technical capabilities and its very low
cost compared to time-of-flight sensors. The Kinect de-
vice features an IR projector for generating infrared images
and two cameras: an RGB camera for capturing color im-
ages and an IR camera for capturing infrared images un-
der various light conditions (see Fig. 1(A)). The IR cam-
era is based on a monochrome CMOS sensor used in some
time-of-flight cameras [10]. For indoor environments the
Microsoft Kinect proves to be an inexpensive and suitable
device for acquiring depth/color videos.

The structure of the paper is as follows. In Section 2,
the calibration of the Kinect is explained. In Section 3, the
framework for real-time video segmentation is presented.
In Section 4, the algorithm is tested for several indoor sce-
narios showing a human manipulating objects. In Section 5,
the results are discussed and directions for future research
are given.

2. Kinect calibration

In a normal stereo setup, images derived from the cali-
brated cameras are rectified in order to obtain correspondent
horizontal lines. In such a system, the relation between dis-
parity and depth is given by z = b·f/d, where z is the depth
value (in meters), b is the baseline between two cameras (in
meters), f is the focal length of the cameras (in pixels) and
d is the disparity value (in pixels). Thus in the case of zero
disparity values, the rays from both cameras are parallel and
depth is infinite. However, the Kinect device returns raw
disparity data which is not normalized in this way. So zero
disparity values do not correspond to infinite distances. The
relation of raw Kinect disparity to a normalized disparity
is given by d = 1/8 · (doff − kd), where d is the normal-

1Kinect for XBox 360: http://www.xbox.com/en-US/kinect

ized disparity, kd is the Kinect disparity and doff is the offset
value particular to a given Kinect device. Values for kd and
doff are found at the calibration stage. Consequently, the re-
lation between disparity and depth for the Kinect is given
by

z =
b · f

1/8 · (doff − kd)
. (1)

In order to relate color and depth images (see
Fig. 2(A,B)), pixels of the color image need to be matched
to pixels of the depth image. Therefore, a calibration be-
tween IR and RGB cameras needs to be performed 2. In the
current work, the OpenNI toolbox 3 was used for the Kinect
calibration and mapping of color pixels with range values
(see Fig. 2(C,D)).

Figure 2. Calibration of the Kinect with OpenNI toolbox. (A)
Original frame acquired by RGB camera. (B) Depth data derived
from IR image (in meters). (C) Mapping of depth and color pixels
without calibration. (D) Mapping of depth and color pixels after
calibration.

3. Depth-supported video segmentation
We describe a method for the joint segmentation and

tracking of segments in color/depth movies. The segmen-
tation corresponds to the equilibrium state of a Potts model,

2for more details see http://cv4mar.blogspot.com
3available under http://www.openni.org
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which is computed using a parallel Metropolis algorithm on
the GPU [9]. Consistent video segmentation and segment
tracking is achieved by transferring the solutions obtained
at the precedent frame to the current frame. The resulting
Potts configuration can then be used to find the current equi-
librium state requiring only a few Metropolis iterations to be
applied. This technique allows us to maintain labels along
the sequence and to reduce computation times by recycling
of already established solutions at earlier frames. We incor-
porated depth information into both the Potts model and the
label transfer technique in a manner that is consistent with
the color information, providing the main cue for segmen-
tation. The inclusion of depth provides important additional
information about object boundaries which improves video
segmentation.

3.1. Image segmentation kernel

In this section, the image segmentation method is de-
scribed. We developed a highly parallel method which can
run in real time on a Graphics Processing Unit (GPU). We
enhanced the segmentation kernel such that the Kinect’s
range data can be exploited providing improved segmen-
tations.

The image segmentation kernel proceeds as follows. The
original frame is represented by the Potts model where
a spin variable σk, which can have q discrete values
w1, w2, . . . , wq , called spin states, is assigned to each pixel
of the image. The parameter q should be chosen as large as
possible since the spin states need to serve also as segment
labels. In our experiments, we used q = 256. It is im-
portant to note that this choice of q has no influence on the
performance and computation time of the image segmen-
tation kernel itself. The energy of the system is described
by

E = −
∑
<ij>

Jijδij , (2)

where <i,j> denotes the closest neighborhood of spin
i with ||i, j|| 6 `, where ` is a constant. 2D bonds (i, j)
between two pixels with coordinates (xi, yi) and (xj , yj)
are created only if |(xi−xj)| < ` and |(yi−yj)| < `. In the
current work we use ` = 1. Jij is an interaction strength or
coupling constant and the Kronecker δij function is defined
as δij = 1 if σi = σj and zero otherwise, where σi and σj
are the respective spin variables of two neighboring pixels
i and j. A coupling constant, determining the interaction
strength between two pixels i and j, is given by

Jij = 1− |gi − gj|/∆ (3)

where gi and gj are the respective color vectors of the
pixels and ∆ is the mean distance averaged over all bonds
in the image.

Figure 3. Color differences for the 8-connectivity case in HSV
color space. (A) Original frame. (B) Depth data (in meters). (C -
F) Matrices with coupling constants computed for horizontal, left
diagonal, vertical and right diagonal directions (τ = 30 cm).

Different from the original method, in the presented
study coupling constants are computed in the HSV color
space instead of the camera input RGB format. In the HSV
space a pixel is represented by three values: hue (h), satu-
ration (s) and value (v). Intensity (value) is separated from
the color information (hue and saturation) which makes the
method more consistent for objects having shadows and
changes in lightness. The difference between two pixels i
and j in the HSV color space is computed as the difference
between two color vectors gi = (sivi coshi, sivi sinhi, vi)
and gj = (sjvj coshj , sjvj sinhj , vj) using the following
metric [11]:

|gi − gj| = [(sivi coshi − sjvj coshj)
2

+(sivi sinhi − sjvj sinhj)
2

+(vi − vj)2]1/2. (4)

Since the current method uses 8-connectivity of pixels,
interaction strengths for one pixel need to be computed in
four different directions: vertical, horizontal, left diagonal,
right diagonal. The depth data acquired along with the color
image (see Fig. 3(A,B)) is used to prevent interactions be-
tween pixels having a large range difference. This is done
by replacing all coupling constants having a displacement
larger than a predefined threshold τ with the maximum pos-
sible value Θ = 250 according to

Jij =

{
Jij if |zi − zj | 6 τ,
Θ otherwise, , (5)
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where zi and zj are range values of pixels i and j, re-
spectively. Matrices containing color differences involved
in the formation of segments (see 3) are shown in Fig. 3(C
- F). Excluded interactions, marked by dark red, prevent in
most cases neighboring pixels to be assigned to the same
segment.

Once the interaction strengths are determined, the spin
state configuration is iteratively updated by the Metropolis
algorithm with annealing choosing the state with the mini-
mum energy at every iteration [12]. The update process runs
until no more spin flips towards a lower energy state are be-
ing observed. The equilibrium state of the system, achieved
after several Metropolis iterations, corresponds to the im-
age partition or segmentation. The computation of coupling
constants and the update of spin variables involve only the
nearest neighbors of the respective pixels. Therefore the
image segmentation kernel with the use of range data is ap-
propriate for implementation on a GPU architecture. The
method guarantees that every segment carries a spin vari-
able which is unique within the whole image, thereby the
terms spin and label are equivalent in this work.

3.2. Linking of segments

In the current study only the first frame of the video
stream is segmented completely from scratch, i.e., all spin
variables are initialized by random values. Consecutive
frames are initialized by spin state configurations taken
from previous frames taking into account spatial shifts due
to motion. For these frames the image segmentation kernel
is used in the relaxation mode, where the initial spin state
configuration, warped from the previous frame using opti-
cal flow, needs to be adjusted to the current color image. To
estimate the motion we use the real-time dense optical flow
algorithm proposed by Pauwels et al. (2010) [13]. This
algorithm runs on a GPU as well and belongs to the class
of phase-based methods, which feature high robustness to
changes in contrast, orientation and speed. The algorithm
provides a vector field at each pixel indicating its motion

u(x, y) = (ux(x, y), uy(x, y)). (6)

An estimated optical flow vector field for two adjacent
frames t and t + 1 is shown in Fig. 4(A - C). Having
segments with correspondent average range values for a
time step t (see Fig. 4(D)) estimated optical flow vector
field, labels of segments St are transferred to frame t + 1
(see Fig. 4(E)), excluding transfers between pixels having a
range difference larger than a pre-defined threshold τ . We
obtain

St+1(xt+1, yt+1) =

{
St(xt, yt) if λ 6 τ,

0 otherwise. , (7)

λ = |zt+1(xt+1, yt+1)− zt(xt, yt)|,
xt+1 = xt + ux(xt, yt),

yt+1 = yt + uy(xt, yt),

(8)

where z is a range data obtained from the Kinect. Label
transfers between segments having large range differences
are excluded as well, which yields:

St+1(xt+1, yt+1) = 0 if ξ > τ, (9)

ξ = |zt+1(xt+1, yt+1)− zt(xt, yt)|, (10)

and z being a matrix containing average range values for
each segment (see Fig. 4(D)). Spin variables of pixels with-
out correspondences are initialized with random values (see
Fig. 4(E)). Then, the initial labels are adjusted to the data
of frame t + 1 by equilibrating the system further, resolv-
ing erroneous bonds that can take place during the transfer
of labels and assignment of randomly initialized labels to
found segments (see Fig. 4(F)). Our experiments showed
that 20 - 60 Metropolis updating iterations are sufficient to
obtain satisfactory segmentation results depending on the
complexity of the scene.

The final result after equilibration for the given exam-
ple is shown in Fig. 4(F). Only segments larger than a
pre-defined minimum size are extracted, thereby small seg-
ments at borders of the blue cup and at edges of the big
blue box formed due to reflections and changes in contrast
are excluded (see Fig. 4(D,F)). The use of range data allows
us to distinguish between objects having very similar color
values like between the white moving object and the wall
and between the blue cup and the big blue box (see Fig. 3).

3.3. Detection of new objects

Appearance of new objects is characterized by absence
of pixel correspondences with the previous frames. As was
mentioned before (see Section 3.2), those regions will be
filled by random spin values except already assigned seg-
ment labels. After some iterations of the segmentation ker-
nel new homogeneous regions will be covered by new la-
bels. For those regions the kernel in the relaxation mode
operates as initial segmentation (see Section 3.1).

3.4. Experimental environment

The proposed method was tested on a PC with Intel(R)
core (TM) i7 3.33 GHz CPU (multiple cores) with 11.8 GB
RAM using the Nvidia card GTX 295 (with 896 MB de-
vice memory) consisting of two GPUs for acceleration of
the segmentation kernel and optical flow estimation.

4. Results
We present results of our method obtained for several

depth/color movies acquired with the Kinect showing hu-
man manipulations of objects. The method is compared
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Figure 4. Segmentation of two adjacent frames in a sequence. Numbers at arrows show the sequence of computations. (A,B) Kinect data
acquired at time steps t and t + 1, respectively. (C) Estimated optical flow vector field (sub-sampled 11 times and scaled 10 times) (step
1). (D) Extracted segments St with correspondent average range values z (step 1). (E) Initialization of frame t+ 1 after the label transfer
from frame t (step 2). (F) Extracted segments St+1 (step 3).

with another state-of-the-art video segmentation method.
Our approach is evaluated in terms of the quality of the seg-
mentation, coherency of the video segmentation, and com-
putational speed.

4.1. Video segmentation results

Fig. 5 shows video segmentation results for the sequence
“Moving an object” obtained without and with support of
the depth data. The first and second rows show the original
color frames and estimated optical flow for a few selected
frames. The third row shows results obtained without usage
of the range data. We can see that object tracking fails for
fast moving objects. The optical flow method has a limit of
2 pixels per scale, so using 4 scales, the limit is 24 = 16
pixels [13]. For this reason the white wooden object cannot
be tracked along the whole movie and some of its parts are
initialized improperly in frame 530 by the label taken from
the background. It occurs due to the lack of pixel corre-
spondences between adjacent frames. Such erroneous ini-
tializations cannot be resolved by the segmentation kernel.
Note that both the moving object and the wall have in some
frames very similar color values which make the tracking
extremely difficult.

Including range data (shown in the fourth row) in the seg-
mentation kernel and on the label transferring stage can re-
solve such problems (see Sections 3.1 and 3.2). Segmenta-
tion results of the same frame sequence derived with range-

data support are presented in the last row. Fast moving pix-
els cannot be initialized by labels of pixels having range dif-
ferences larger than τ (see Eq. 7). In the current experiment,
we used τ = 30 cm. Similar pixels having large range dif-
ferences do not tend to interact with each other (see Eq. 5).
Thereby the segmentation kernel can recover even poorly-
initialized segments which makes the tracking of the fast
moving white object consistent along the whole sequence.

Next, the segmentation results for a 2 min frame se-
quence of the sample action “Building a pyramid” are
shown in Fig. 6. The first and second rows show original
color frames with depth data from the Kinect. The third row
shows segmentation results obtained by the proposed depth-
supported video segmentation method. Results derived by
the hierarchical graph-based video segmentation [7] at 90%
and 70% of the highest hierarchy level 1 are shown in the
fourth and the fifth row, respectively. Our method pro-
vides a temporally coherent video segmentation, in which
all segments carry their initially assigned labels along the
whole movie. For comparison, we show segmentation re-
sults for the same sequence obtained with a recent graph-
based video-segmentation method [7]. Depending on the
hierarchy level of the graph-based method, a coarser or finer
segmentation is obtained. At coarse levels, merging prob-

1The online version of the hierarchical graph-based video segmenta-
tion for 90% and 70% of the highest hierarchy level is available under
http://neumann.cc.gt.atl.ga.us/segmentation/.
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Figure 5. Segmentation of frame sequence “Moving an object”. Original frames and estimated optical flow for selected time points are
shown in the first and the second rows, respectively. Segmentation results without usage of range data are shown in the third row. The forth
row shows depth data obtained from the Kinect. Segmentation results obtained using fusion of image and range data are depicted in the
last row.

lems leading to under-segmentation are observed, while at
finer levels, more segments are formed, leading however to
some temporal coherency problems.

To measure the quality of video segmentations we use
the segmentation covering metric introduced by Arbeláez et
al. (2009) [14]. The idea of the metric is to evaluate the
covering of a human segmentation S′, called also ground
truth segmentation by a machine segmentation S. A hu-
man segmentation, is a manual annotation of a video se-
quence showing how humans perceive the scene, whereas a
machine segmentation is an output result of the considered
video segmentation algorithm. For one frame, the segmen-
tation covering metric is defined as

C(S′ → S) =
1

N

∑
R∈S

|R| · max
R′∈S′

O(R,R′), (11)

where N is the total number of pixels in the image, |R|
the number of pixels in region R, and O(R,R′) is the over-
lap between regions R and R′. The segmentation covering

for the video sequence is computed by averaging of the seg-
mentation coverings over all frames in the sequence. Fig. 7
shows the performance of the system for frame sequence
“Building a pyramid” as segmentation covering against the
current frame number for frames 430−630. As we can see,
the color/depth sequence is segmented with high accuracy
(the average segmentation covering value is 0.825).

4.2. Time performance

The total processing times, frame rates for various im-
age resolutions are summarized in Table 1. The proposed
method runs in real-time for medium image resolutions and
can process video sequences of arbitrary length, while the
graph-based video segmentation needs about 20 min to pro-
cess a 40 sec video and only sequences that are not longer
than 40 sec (with 25 fps) can be processed in the hierarchi-
cal mode [7].
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Figure 6. Results for frame sequence “Building a pyramid”. Original frames and range data from the Kinect for selected time points are
shown in the first two rows. The third row shows the segmentation results of our method. Graph-based video segmentation results obtained
at 90% and 70% of the highest hierarchy level are presented in the last two rows, respectively.
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Figure 7. Segmentation covering for frame sequence “Building a
pyramid”.

resolution (px) msec / frame frame rate (Hz)

128× 160 9 – 17 111 – 59
256× 320 21.5 – 39.5 47 – 25
512× 640 72.5 – 145.5 14 – 7

Table 1. Processing times and frame rates obtained for different
image resolutions (for 20 - 60 iterations).

5. Conclusion

In the current study we presented a novel real-time tech-
nique for the spatiotemporal segmentation of depth/color
videos. The proposed method performs a homogeneous
video segmentation, i.e. all objects visible in the scene
carry the same unique labels along the whole video se-
quence. A Kinect device was used as a hardware setup for
simultaneous real-time acquisition of color images and cor-
respondent range data. The used image segmentation ker-
nel based on the superparamagnetic clustering of data [9]
exploits color/range data for consistent video segmentation.
Usage of depth data makes it possible to track relatively fast
moving objects by preventing interactions between pixels
having significant range differences. Our method can be
considered to be at match with the graph-based method [7]
in terms of segmentation quality for the types of movies
considered. However, some differences exist, which would
have to be evaluated in more detail in the future. In terms of
computational speed, we passed the graph-based method,
which works at lower frames rates than ours. However,
for complex actions and scenes, the coherency of the seg-
mentation may be impaired due to the following problems:
(i) objects are getting partly or completely occluded dur-
ing the action, (ii) objects are getting joint/disjoint, (iii) ob-
jects move extremely fast, causing optical flow to fail. In
the future, we aim to improve performance of the proposed
method under these circumstances.
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