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Abstract—Pose SLAM is the variant of SLAM where only the
robot trajectory is estimated and in which landmarks are solely
used to compute relative constraints between robot poses. In
previous work, we have developed efficient methods to build
Pose SLAM maps that ponder the information content on
odometry and measurement links to keep the graph of poses
sparse. In this paper we show results of Pose SLAM mapping
with our custom built 3D laser and an outdoor all-terrain
mobile robot. Finally, we argue that Pose SLAM graphs can
be directly used as belief roadmaps and, thus, used for path
planning under uncertainty. We show how to plan trajectories
with the lowest accumulated robot pose uncertainty, i.e., the
most reliable path to the goal, taking into account the encoded
uncertainty in the map. Results of this navigation strategy are
demonstrated with our outdoor robot.

I. INTRODUCTION

State of the art simultaneous localization and mapping

(SLAM) methods can now manage thousands of features [6],

[14], [21]. Unfortunately, feature-based representations can

not be directly used for collision-free path planning since

they do not provide much information about which routes in

the map have been previously traversed safely, or about the

nature of the obstacles they represent. Feature-based maps

could be somehow enriched with obstacle or traversability-

related information [15], but at the expense of a significant

increase in complexity.

Further scalability is possible with trajectory-based rep-

resentations [4], [10], [12]. In this case only the robot

trajectory is estimated and landmarks are solely used to

produce relative constraints between robot poses. In this

context we have developed Pose SLAM, a very efficient

trajectory-based representation that ponders the information

content on odometry and measurement links to keep the

graph of poses sparse [7].

An added advantage of Pose SLAM is that the poses stored

in the map are, by construction, reachable and obstacle-free

since they were already traversed by the robot when the map

was originally built. Furthermore, since the robot trajectories

are usually human-driven, they even satisfy mobility con-

straints not usually modeled in the robot controller, such

as the existence of restricted traversable regions (grass or

sidewalks), or the right of way along paths.

This work has been partially supported by the Mexican Council of
Science and Technology with PhD Scholarships to E.H. Teniente and R.
Valencia, by the Spanish Ministry of Science and Innovation under projects
PAU (DPI2008-06022) and MIPRCV Consolider Ingenio (CSD2007-018),
and by the CEEDS (FP7-ICT-2009-5-95682) and INTELLACT (FP7-
ICT2009-6-269959) projects of the EU.

Fig. 1. A close in on the computed 3D range map and the robot trajectory.

In that sense, Pose SLAM graphs can be used to plan

safe navigation paths, and we showed recently how this can

be achieved for 2D laser-based maps [22]. We present in

this paper results of the same technique for 3D laser-based

mapping as shown in Fig. 1.

From the point of view of SLAM, this approach constitutes

a step forward to actually use the output of the mapping pro-

cess for path planning. Other approaches that attempt to use

SLAM for path planning either ignore the uncertainty in the

robot pose [11], [18] or in the map [3] whereas our approach

takes both of them into account. From the point of view of

motion planning, this algorithm contributes with a method

to generate belief roadmaps without resorting to stochastic

sampling on a predefined model of the environment [17].

Remapping and replanning, situations that arise upon

contingency between expectations and measurements, should

also be taken into account. We decide to keep these issues

out of the scope of this contribution.

In Section II we summarize Pose SLAM and describe in

Section III how to plan navigation paths using as roadmap

the PoseSLAM graph. We show in Section IV an experiment

that exemplifies the method with real data, and finally, in

Section V we give some concluding remarks.

II. 3D MAPPING WITH POSE SLAM

The Pose SLAM algorithm belongs to the variant of

SLAM algorithms where only the robot trajectory is esti-

mated and landmarks are solely used to produce relative

constraints between robot poses. Pose SLAM maintains a

compact state representation by limiting the number of links

and nodes added to the graph using information content

measures [7].



Formally, in Pose SLAM, the state vector x =
[x⊤0 , x

⊤

1 , ..., x
⊤

n]
⊤, contains the history of robot poses from

time 0 to n, which is estimated from the history of odometric

observations U and proprioceptive observations Z using a

canonical parameterization of Gaussian distributions

p(x|Z,U) = N−1(x;η,Λ) , (1)

where η is the information vector, and Λ is the information

matrix.

Predictions and updates using this parametrization lead

to an information filter, which compared to the traditional

Kalman form, has the advantage of being exactly sparse for

trajectory-based state vectors, such as ours [4].

New poses are added to the state vector as a result of

the composition of odometric observations un with previous

poses,

xn = f(xn−1, un) = xn−1 ⊕ un. (2)

And, for highly uneven and unpredictable terrain, such as the

one in the experiments reported here, odometric data from

the platform is unreliable and odometric observations are in

fact computed by running the Iterative Closest Point (ICP)

algorithm over two consecutively acquired point clouds.

As said, to keep the graph of poses sparse, redundant

poses are not fed to the estimator. A new pose is considered

redundant when it is too close to another pose already in the

trajectory, and not much information is gained by linking this

new pose to the map. However, if the new pose allows the es-

tablishment of an informative link, both the link and the pose

are added to the map. The result is a uniform distribution

of poses in the information space, as opposed to other more

common methods that trim the number of odometric relations

by distributing them uniformly in Euclidean space [10].

To determine if the current pose xn is close to any

other pose in the trajectory xi, we estimate the relative

displacement between them

d = h(xi, xn) = ⊖xi ⊕ xn (3)

as a Gaussian with parameters

µd = h(µi, µn) (4)

Σd = [ Hi Hn ]

[

Σii Σin

Σni Σnn

]

[ Hi Hn ]⊤ (5)

where Σii and Σnn are the marginal covariances for the

state variables at stake, Σin is their cross correlation, and

Hi and Hn are the measurement Jacobians of the relative

displacement d with respect to poses xi and xn, respectively.

Marginalizing the distribution on the displacement for each

one of its dimensions we get a set of 1-D Gaussian distribu-

tions that allow to compute the probability of each variable in

pose xi of being closer than a threshold to its corresponding

variable in pose xn. If, for all dimensions, these probabilities

are above a given threshold s, then pose xi is considered

close enough to the current robot pose xn, and there is no

need to include xn in the map, unless it establishes a highly

informative link.

The amount of information of a link between any two

poses is decided in terms of the amount of uncertainty that

is removed from the state when such link is added to the pose

graph; and measured as the mutual information gain, which

for Gaussian distributions is given by the logarithm of the

ratio of determinants of the covariance prior to performing

the state update, and after the state update is made [2],

[24]. This ratio is a multiple of the number of times state

uncertainty shrinks once a loop is asserted. In [7] we show,

that despite being a measure of global entropy reduction,

it can be computed in constant time with a single compact

expression:

I =
1

2
ln

|S|

|Σy|
, (6)

where S = Σd+Σy , and Σy is the measurement covariance.

Sensor registration is an expensive process, and in prac-

tical applications, it is convenient to hypothesize whether a

candidate link is informative enough before actually aligning

sensor readings. To that end, Eq. 6 is first evaluated using

an approximation of the measurement covariance. If the

result is above a given threshold g, sensor registration is

needed to assert data association. The real sensor covariance

is computed during sensor registration and can be used to

recompute the gain measure to ultimately decide whether or

not to update the state with the new link.

When establishing such a link, the update operation only

modifies the diagonal blocks i and n of the information

matrix Λ, and introduces new off-diagonal blocks at loca-

tions in, and ni. These links enforce graph connectivity, or

loop closure in SLAM parlance, and revise the entire state,

reducing overall uncertainty. The operation has linear time

complexity but takes place very sparsely. Hence Pose SLAM

can be executed in amortized constant time [8].

III. PATH PLANNING WITH POSE SLAM

Originally, research in motion planning assumed deter-

ministic setups where a perfect model of the environment

was available and where the configuration of the robot was

known too. Many extensions have been introduced recently

to deal with different sources of uncertainty, either in the

model of the environment [13], by estimating the collision

probability of drawn samples using a multivariate probability

density of the world model; in the robot configuration [16],

or in the effect of robot actions [1]. The extension that

best matches the stochastic nature of the SLAM problem

is the Belief Roadmap (BRM) [17]. In this approach, the

edges defining the roadmap include information about the

uncertainty change when traversing such edge. However, the

main drawback of BRMs is that it still assumes a known

model of the environment.

We overcome this limitation arguing that the map gener-

ated by Pose SLAM, or any other trajectory-based SLAM

algorithm, is perfectly suited to be used as a belief roadmap.

And have shown recently that using this map, planning can

take place in belief space, allowing to compute optimal

paths to previously visited locations taking into account the

uncertainty along the path [22].



The main advantage of this method is that, marginal poses

with small uncertainty estimates lead to more reliable sensor

registration. Therefore, a plan to navigate through these

areas would suggest lower risk of becoming lost during path

execution.

We assume maximum likelihood actions and measure-

ments during path planning. This implies that the mean

estimate after a sequence of controls will lie at the mean

of a node in the Pose SLAM graph and that the observation

previously obtained at that position will be repeated. Given

the Pose SLAM graph, and a goal destination, the objective

of path planning is then to find an optimal collision-free path

in the graph from the current robot pose to the goal.

Thus, the task at hand is to search for the minimum

uncertainty path on the graph implicitly defined by the

neighboring relations between the poses stored in the map

built by Pose SLAM. Two considerations are necessary:

a) graph connectivity must be increased with guaranteed

reachability, and b) we need to define a cost function of

cumulative uncertainty along a path.

A. Increasing graph connectivity

Note that only odometry-based links ensure the existence

of collision-free transitions between poses. However, a graph

with only odometry-based edges is too sparse. Loosely

connected graphs are not best suited for path planning and we

need to increase the number of edges to allow the system to

jump from one exploration sequence to another in the quest

for an optimal path. Thus, besides odometry related poses,

we consider the possible transition to all neighboring nodes

during path planning.

We use Eq. 3 to measure the distance between candi-

date neighbor nodes in the very same way it is used to

decide whether two nodes are sufficiently close to add a

measurement link between them. If for all dimensions, the

probability of nodes xi and xn is above a given threshold s,

then configuration xi is considered kinematically reachable

from configuration xn.

Adding these node transitions to the graph does not

guarantee a collision free path between them. These cases,

however, can be easily detected during path execution, the

poses be removed from the list of neighbors, and a re-plan

process be triggered. One advantage of the method is that

the original odometry-based links present in the Pose SLAM

map ensure the existence of collision-free way-outs for every

pose, thus guaranteeing reachability.

Given that candidate paths lie on top of the graph, we can

safely assume that, after path execution, sensor registration

will close a loop and the final robot uncertainty will be close

to the original marginal at that node. Thus, a cost function

that only evaluates the belief state at the goal is unsuitable.

We are interested instead in those paths that maintain the

robot well localized throughout the whole trajectory.

B. Minimum uncertainty along a path

In [22] we developed a cost function that considers cumu-

lative relative uncertainty during localization, independent of

the map reference frame. Finding trajectories that accumulate

the least uncertainty can be seen as searching for a path

of minimal mechanical work in an information surface over

the space of robot poses [9], [19]. In this case, the cost of

traversing a link from node xi to node xj is proportional to

the conditional entropy at node j given full confidence about

node i, H(xj |xi), which for Gaussians is proportional to

|Σ̄jj−Σ̄jiΣ̄ii−1
Σ̄ij |, where Σ̄ is the compound localization

estimate of the pair (xi, xj).
For a discrete trajectory u1:T , the cumulative relative

uncertainty can thus be computed as the sum of relative

entropy increments ∆Hi = H(xi+1|xi)−H(xi|xi−1) along
the path

W (T ) =
T
∑

i=1

∆Hi ∀∆Hi > 0. (7)

With these two considerations, increased graph connec-

tivity and a suitable cost function, we have the necessary

tools to search for the minimum uncertainty path in the Pose

SLAM graph. We perform breadth first search from an initial

configuration to a goal configuration. The distance between

two nodes is computed from relative entropy measures ob-

tained simulating maximum likelihood localization estimates.

If for a node transition from i to j the so far computed path is

cheaper than the best known, the cost to reach j is updated,

we set i as the predecessor of j, we update the marginal

covariance for the best path to the node, and we store the

marginal entropy for this node. When the goal is reached,

the minimum uncertainty path to the goal is reconstructed

using the chains to predecessor nodes.

Finally, should a map change significantly during path

execution (i.e., a new highly informative loop closure is

found), re-planning is enforced. Note that this is seldom

the case since the optimal path traverses already visited

regions in the environment as best localized as possible.

Moreover, re-traversing a path on an already optimized map

will seldom lead to map improvements as no new information

is introduced. The map can only be improved or extended

by joining different paths closing a loop or when exploring

new paths to cover a larger area. However, exploration is out

of the scope of this work.

IV. EXPERIMENTS

Exhaustive experiments that demonstrate the benefits of

Pose SLAM and the viability of using Pose SLAM for path

planning for the 2D case were presented in [7] and [22],

respectively. The goal of the experiment shown here is to

demonstrate that the method is also applicable to dense

3D mapping using range data, and in particular, to plan a

minimum uncertainty escape route on a previously mapped

area.

The experimental data, acquired at the interior plaza of

the FME building at UPC, encompasses a 100 × 40 sqm.

rectangular area with various terrain types (gravel, earth,

grass) and ramps. The robot used is Teo, a Segway RMP

400 platform equipped with a custom built 3D scanner with

Hokuyo UTM-30LX sensor mounted on a slip ring (see



Fig. 2. Our robot Teo at the FME plaza.

Fig. 3. 2D projection of the 3D pose graph. The robot trajectory is shown
in red, and the sparse loop closures are shown in green.

Fig. 2). Each aggregated laser scan has 194, 500 points with

resolutions of 0.5 deg azimuth and 0.25 deg elevation and

range of 30m, with a noise level of 5 cm in depth. The

Pose SLAM map built contains 30 dense point clouds with

a maximum separation between consecutive poses of 18m.

The robot was teleoperated during data collection.

For the experiment reported in this paper, sensor registra-

tion is computed in the very same way as odometric relations,

by aligning the range scans with hierarchical ICP. The point

clouds were subsampled uniformly using a voxel size of

35 cm and noise was removed using a density policy [20].

Sensor covariance is approximated with first order error

propagation by computing the implicit function Jacobian for

ICP’s point-to-point unconstrained minimization as shown

in [5]. Two factors make this computation suboptimal. On

the one hand, it is only a first order approximation, thus

conservative. On the second hand it is formulated only for the

point-to-point error metric, whilst our ICP implementation

is optimized for performance with a hierarchical structure

that uses a point-to-plane error metric at the coarsest level

and a point-to-point metric at finer levels, and that weights

differently rotations and translations [20]. Our experiments

have shown empirically that the computation of Σy is

Fig. 4. Planning in configuration space we obtain the shortest path to the
goal and related covariances.

Fig. 5. Planning in belief space we obtain the minimum uncertainty path
to the goal.

accurate enough and does not jeopardize the rest of the

method.

A 6DOF version of Pose SLAM is used to map the

environment [23]. Given the relative small size of the pose

graph, and that interval-based data association as described

in [7] is not mature for 3D mapping yet, data association

was asserted manually. The resulting Pose SLAM is shown

in Fig. 7. The map contains one situation between poses 20

and 21 for which the displacement is so large it precludes

sensor registration. For that case, the link in the graph was

updated purely with platform odometry data and constant

noise covariance Σu = diag(0.0158m, 0.0158m, 0.0791m,

0.0028 rad, 0.0028 rad, 0.0001 rad)2. The covariance of the

initial pose was set to Σ0 = diag(0.01m, 0.01m, 0.01m,

0.0087 rad, 0.0087 rad, 0.0087 rad)2.
During path planning, neighboring poses are linked for a

threshold of ±5m in x and y and no orientation restriction,

thanks to the omnidirectional characteristic of our range

sensor. Path search is performed over a 2D projection of the

3D pose graph, marginalizing the x, y and θ variables from

the full state vector and state covariance for the computation

of the cost function and other path-planning related routines.

Fig. 3 shows the 2D pose graph used for path planning.

The task at hand is to plan a minimum uncertainty escape
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Fig. 6. Accumulated cost along the shortest path (red) and the minimum uncertainty path (blue).

route from the center of the plaza to the exit of the building.

A plan in configuration space finds the shortest path to the

goal (see Fig. 4). This route is about 130 meters long, but

had the drawback of having higher localization uncertainties

at the beginning of the path, as shown by the projected hy-

perellipsoids of equiuncertainty. Taking this route to escape

has higher probability of failure getting the robot lost.

A safer route is a path searched in belief space. The plan

is a little longer, about 160 meters, but with higher guarantee

of good sensor registration during path execution, and hence

good localization estimates throughout the trajectory (see

Fig. 5). The covariances shown in the plots indicate absolute

localization uncertainty.

The savvy reader might note how the covariance in robot

pose at the start of the plan is not zero, but that of the

precomputed PoseSLAM map. This is not counterintuitive

and refers to the fact that even at the start of the plan,

absolute localization can only be guaranteed to a certain

level. In consequence, the method is capable of finding an

escape route even when no full certainty about the initial

robot pose is available.

The plot in Fig. 6 compares the cost of executing both the

shortest path and the minimum uncertainty path as well as

the corresponding path lengths.

V. CONCLUSIONS

This paper shows how pose graphs that are built with Pose

SLAM can readily be used to plan minimum uncertainty

navigation routes. The proposed metric has two advantages

over previous approaches: on the one hand it is defined

in belief space, and thus it takes into account localization

uncertainties along the path; and secondly, it encodes only

relative information about the poses and thus is independent

of the chosen reference frame. Results are demonstrated

densely mapping an outdoor setting with a range sensing

device, and then planning an evacuation route. The final

path obtained is the safest evacuation route with the highest

guarantee of good sensor registration during path execution.
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