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Abstract

We propose an efficient method for object localization and 3D pose estimation. A
two-step approach is used. In the first step, a pose estimator is evaluated in the input
images in order to estimate potential object locations and poses. These candidates are
then validated, in the second step, by the corresponding pose-specific classifier. The
result is a detection approach that avoids the inherent and expensive cost of testing the
complete set of specific classifiers over the entire image. A further speedup is achieved
by feature sharing. Features are computed only once and are then used for evaluating the
pose estimator and all specific classifiers. The proposed method has been validated on
two public datasets for the problem of detecting of cars under several views. The results
show that the proposed approach yields high detection rates while keeping efficiency.

1 Introduction
The problem of efficiently testing multiple specific classifiers has recently gained popularity
for tackling the problem of detecting multiple object categories or specific objects seen from
different viewpoints. In these problems, each object class, or object view, is commonly
considered as a different topic represented by a distinct classifier. As a result, a large number
of discriminative and specific classifiers are computed. Although these classifiers can be
learned quite efficiently, testing each of them over an image is computationally expensive.

In this work we propose an efficient strategy for testing multiple specific classifiers for
object detection. We study the problem more closely on the detection of cars from mul-
tiple views. This category includes challenges such as high inter-class variations, lighting
changes, several car sizes or different aspect ratios of the bounding box. In order to address
all these issues, we use a decoupled approach consisting of (i) a pose estimator and (ii) a
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Figure 1: Efficient localization and pose estimation in the UIUC database [15]. Our approach
allows localizing cars and estimating their pose despite large inter-class variations and in
about 1 second. Correct detections are depicted by green rectangles, whereas false positives
are indicated by red ones. The ground truth is shown by a blue rectangle. The circle and car
toy located at top and left indicate the estimated viewpoint.

set of pose-specific classifiers. The estimator acts as filter and prevents of having to evalu-
ate all the specific classifiers at every position. Furthermore, we use feature sharing for the
estimator and all classifiers. Both these characteristics yield a remarkable efficiency to our
approach while keeping high detection rates. Fig. 1 depicts some detection results and the
corresponding estimated poses.

Related Work. Several strategies have been proposed in the past for an efficient object
detection. Some of them mainly rely on (i) features that can be calculated very fast over
images, and thus, increase the speed of the sliding window classifier that is evaluated at
multiple scales and locations [12, 21, 24]. Other methods use specific cascaded classifier
structures e.g. [17, 24] which allow rejecting background windows at early stages and hence,
also reduce the computational effort. In other words, these approaches aim for (ii) reducing
the search space during the detection phase. This is also achieved by means of branch and
bound techniques [8, 9], using object priors [1] or splitting the process in two consecutive
phases of object estimation and specific detection [11, 13, 14, 22]. Finally, other works (iii)
have proposed to share features across object classes or views [20, 23, 25].

Contribution. We propose an efficient method for the 3D object detection that integrates
synergically the strategies reviewed above. More specifically, our method computes fast
Random Ferns (RFs) [12] over local histograms of oriented gradients. These features are
simple comparisons whose binary outputs encode objects appearance. These Random Ferns
are shared among objects and used for the computation of the two-step detection approach,
that is, the pose estimator and the set of pose-specific classifiers. Unlike other previous works
that use Hough-based approaches as object classifiers [3, 4, 11], we use a novel Hough-RFs
for building an efficient and robust 3D pose estimator. This estimator uses the Hough trans-
form to learn and map the local appearances of objects (encoded by RFs) into probabilistic
votes for the object center. This methodology overcomes to previous works which compute
rough estimators or predict the object size at first [13, 22].

The resulting method is able to learn and detect objects in a straightforward and efficient
manner. In particular, the estimator and specific classifiers can be learned in a couple of
minutes, while the object detection is performed in about 1 second, using a non-optimized
code based on Matlab. In addition, this efficiency is accompanied with a high detection rate,
comparable and even better than existing approaches.
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2 Overview of the Method
The main ingredients of our approach are (i) a shared feature representation and (ii) an object
pose estimator that limits the search space for (iii) object pose specific classifiers. Fig. 2
depicts an overview of the method, which we describe in detail in the following sections.

Feature
Computation

Pose
Estimator

3D Voting Space

Non-Maxima
Supression
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Figure 2: Overview of the proposed approach. To detect the 3D pose, given an input image
we initially compute a set of shared RFs (Feature Computation). We then apply the pose
estimator to generate several object/pose hypotheses which are verified by the pose-specific
classifiers. Non-maximal potential detections are finally filtered out.

Since features are shared among classifiers, their computation is performed in an initial
step that is pose independent. This allows an efficient computation of both the pose estimator
and the classifiers. For the pose estimation step, each feature is evaluated over the entire
image, and casts probabilistic votes for the object/pose center. This yields a set of potential
hypotheses (clusters within the voting space), which are then validated according to a set of
specific classifiers. Finally, multiple detections are removed using non-maxima suppression.

3 Feature Computation: Random Ferns
The first key element of our approach are the kind of features we use: the Random Ferns.
They consist of sets of binary features resulting from simple comparisons on the intensity
domain [7, 12]. Yet, and drawing inspiration from [22], we compute RFs over local his-
tograms of oriented gradients (HOG), that is, our binary features are simple comparisons
between two bins of HOG. The co-occurrence of all feature outputs encodes different image
appearances that are used for building the estimator and each one of the classifiers. More
formally, each Random Fern z captures the co-occurrence of r binary features, whose out-
puts determine the Fern observation z. Therefore, each Fern maps the image appearances to
a K = 2r-dimensional space, z : x→ z where x is an image sample and z = 1,2, ...K.

In addition, in order to gain in efficiency we share the same RFs among different classes.
This was already proposed in [23], although as we will show in the results section, this
previous work does not scale properly for a large number of classifiers since every classifier
is independently tested.

4 The Pose Estimator
Based on the response of the RFs on an input image, the pose estimator will provide image
regions with a high probability of object/pose. For that, we will need to map from the feature
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Training Testing
Figure 3: The Hough-RFs Estimator. Left: The computation of the estimator is carried out
by selecting the most discriminative appearance locations against the background category
B. Each Fern output (zi = k) describes a specific image appearance that has associated a
list of distances dk

i indicating where this appearance has occurred over training samples.
Right: In runtime, each Fern is evaluated in every image location q to cast probabilistic
votes for diverse image locations according to its output. The result is a voting space where
its maximum values correspond to possible object instances.

domain of the RFs to spatial image locations. This is achieved by means of what we call
Hough-RFs.

4.1 Hough-RFs
In the spirit of Hough-Forests [4, 11], our Hough-RFs encodes the local appearance captured
by RFs and casts probabilistic votes about the possible location of object poses. Specifically,
for every Fern zi each output (zi = k) represents a specific image appearance that has as-
sociated a list of displacements {dk

i } where that appearance has occurred in images. These
displacements are measured from the image center and are extracted during the learning
phase as those ones with higher occurrence over training samples.

Training. The computation of the Hough-RFs is carried out by evaluating a fixed set of
m RFs for every image location of training samples and selecting the most discriminative
object appearances and their displacements. This is done for each object view Wj and an
additional background class B. Assuming probability independence among Ferns [12], we
can define the estimator EW j as:

EW j(x) = log
∏

m
i=1 P(g,zi|Wj,zi)

∏
m
i=1 P(g,zi|B,zi)

=
m

∑
i=1

log
P(g,zi|Wj,zi)
P(g,zi|B,zi)

, (1)

where x represents the possible location of the object (image center for training) and g de-
notes the image locations where the Fern zi is calculated. These locations are always mea-
sured from the image center of the object pose j.

The aim is to compute the estimator in order to maximize the ratio of probabilities be-
tween the object view and background classes (Eq. (1)) with the objective of selecting the
most important image appearances and their locations for the current pose. This is done
by selecting the most discriminative locations against the background samples. Fig. 3(Left)
shows a simple example where discriminative locations for Fern outputs k1 and k2 are cho-
sen. These locations form the lists of displacements {dk1

i } and {dk2
i } which are used to cast

probabilistic votes in runtime. These votes are weighted according to their occurrences over
training images,

P(dk
i,qn) = log

P(g = qn,zi = k|Wj,zi)
P(g = qn,zi = k|B,zi)

, k = 1,2, ...,K i = 1,2, ...,m (2)

where dk
i,qn

is a displacement in the list {dk
i }.
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Testing. Once the estimator has been constructed for every object pose, it is evaluated in
runtime as follows: given an input image, a HOG is computed over the whole image for
then to test the m RFs. For each image location q (in the HOG space), each Fern zi casts
votes for different image locations according to its observation zi(q) and its voting list {dk

i }.
This voting procedure is illustrated in Fig. 3(Right). The result of evaluating all RFs is a 3D
voting space where their maximum values correspond to object/pose candidates.

4.2 Efficient Pose Estimation
As it was exposed in the previous section, the cost of the estimator depends on the number
of poses given that each RF must cast votes for the different views. In order to speed up the
process, similar to the work of [2], we propose to evaluate the estimator in two consecutive
steps. For each Fern zi, the first step predicts the most likely object pose according to its
observation. The second step cast votes only for the estimated pose. In this way, the cost of
evaluating the estimator for multiple poses is reduced considerably.

The most likely object pose W i
∗ for a Fern zi tested in location q is calculated by

W i
∗ = argmax

j
P(zi(q) = k|W = Wj), j = 1,2, ...,J (3)

where W is the object pose variable and J is the total number of poses. Rewriting the Eq. 1
the estimator can be defined as:

E(x) =
m

∑
i=1

log
P({dk

i,q},zi(q) = k|W i
∗,zi)

P({dk
i,q},zi(q) = k|B,zi)

, (4)

being q every location in the image.

Search Space Reduction. In order to reduce the possible locations where a time-consuming
pose-specific classifier (see Sec. 5) has to be evaluated, we look for the most remarkable hy-
potheses. This is done by filtering the estimator output, E(x) > βe, being βe a sensitivity pa-
rameter. The choice of this parameter is, however, a trade-off between speed of the approach
and an increment of false negatives. For instance, if βe = 0 each pose-specific classifier is
tested on every image position. In this case, the object is not missed but it implies a high
computational cost given that all classifiers are tested. By contrast, for increasing values
of βe we speed up the detection phase but with the risk of filtering likely object locations.
The estimator in this case reduces the search space and may yield false negatives (missed
objects). The effects of this parameter are evidenced in more detail in Sec. 6.

5 The Pose-specific Classifier
Each one of the pose-specific classifiers is built independently using a boosting combination
of RFs [22]. Hereby, a classifier is a set of weak classifiers, where each one of them is
based on a Fern selected from the common pool of RFs. This pool is constructed at random
and is shared by all classifiers in order to reduce the cost of calculating a large number of
pose-specific features and to reuse features for constructing different weak classifiers.

The specific classifier HW j(x) is built in order to find the Ferns zi and locations gi that
most discriminate the positive class from the background. The positive class corresponds
to a collection of image samples extracted from the specific object view Wj, whereas the
background images B are used for extracting negative samples. The classifier computation
is done by means of the Real AdaBoost algorithm [16], that iteratively assembles weak
classifiers and adapts their weighting values with the aim of focusing all its effort on the
hard samples, which have been incorrectly classified by previous weak classifiers.
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Figure 4: UIUC Dataset. Car detection and pose estimation. Left: ROC curves using differ-
ent evaluation approaches. Center, Right: Confusion matrices for Test 1 and Test 2.

The boosted classifier is then defined as:

HW j(x) =
T

∑
t=1

h(t)
W j

(x) > βW j , (5)

where βW j is its threshold and h(t)
W j

is a weak classifier computed by

h(t)
W j

(x) =
1
2

log
P(zt |Wj,gt ,zt = k)+ ε

P(zt |B,gt ,zt = k)+ ε
, k = 1, ..,K , (6)

where zt is the selected RF that is evaluated at fixed location gt (measured from the image
center), and the parameter ε is a smoothing factor. At each boosting iteration t, the probabil-
ities P(zt |Wj,gt ,zt) and P(zt |B,gt ,zt) are computed using a distribution of weights D over
the training samples. This is done as follows,

P(zt |Wj,gt ,zt = k) = ∑
i:zt (xi)=k

yi=+1

Dt(xi), P(zt |B,gt ,zt = k) = ∑
i:zt (xi)=k

yi=−1

Dt(xi) (7)

being xi and i = 1,2, ..,N the set of training samples. To select the most discriminative weak
classifier at each iteration we use, as other previous works, the Bhattacharyya distance. In
this way, the weak classifier h(t)

W j
that minimizes this distance is chosen.

In the present work all pose-specific classifiers are learned using the same parameters,
that is, 300 weak classifiers and 10 shared RFs. Since they are learned independently for
extracting the most relevant features for each pose, the resulting classifiers are very discrim-
inative for each pose and focus on the most relevant object parts.

6 Experimental Results
We validated using two public and recent datasets: (i) The UIUC dataset [15], and (ii) EPFL
dataset [13]. Both datasets contain car instances under multiple views, scales and harsh
image conditions such as light changes.

6.1 UIUC car Dataset
Dataset. This dataset has multiple views of 10 cars in outdoor settings. For each car, images
under 8 different angles, 2 camera heights and 3 distances are available. We train and test our
detector using two different sets of images, Test 1 and Test 2, as done in other state-of-the-art
approaches[10, 15]. Test 1 is made by 320 car images without the largest distance, whereas
Test 2 contains the entire set of 480 images. For both tests, the first 5 cars of each set are
used for training and the rest are used for testing.
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Figure 5: UIUC Dataset. Comparison against state of the art. Left: ROC curves for our
method and some recent works. Center: The comparison is done using the Recall-Precision
plots. Right: Comparison in terms of the diagonal values of the confusion matrix.
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Figure 6: UIUC Dataset. Detection and efficiency in terms of the sensitivity parameter βe.
Left: Detection rates. Center: Detection times. Right: Computational reduction of the
proposed approach.

Results. The detection performance of our approach is shown in the ROC curves of
Fig. 4(Left). We depict the results of just detection (Test 1,2) and detection plus pose es-
timation (Test 1,2 + Pose Verif). Note that for images with the largest distance (Test 2) the
detection rates are slightly reduced. Fig. 4(Center,Right) show the confusion matrix both
for Test 1 and Test 2. Observe that only a small fraction of the detections are incorrect, and
usually correspond to confusions of the true with the symmetric pose.

Comparison. The ROC curves of Fig. 5(Left) and the Recall-Precision plots of Fig. 5(Cen-
ter) compare our approach with state of the art [5, 6, 10, 15, 18, 19]. In both cases, our
method outperforms the detection rates of other approaches. Fig. 5(Right) compares the
methods in terms of pose classification. Note again that the proposed method yields better
results. A few sample results are shown in Fig. 1.

Speedup. Fig. 6(Center), depicts the detection times of our approach for different values
of the sensitive parameter βe. We also show an additional method that would test all the
pose-specific classifiers (Indep. Classifiers). It can be seen that the efficiency of our method
is increased for larger magnitudes of βe (see Fig. 6(Right)). However, this is at expense of a
reduction in the recall rate, because the estimator misses correct object hypotheses. This can
be observed at Fig. 6(Left).

6.2 EPFL car Dataset
Dataset. This dataset contains cars under multiple views, light changes and varying back-
grounds. The set of images is formed by images collected from 20 specific cars rotating on
a platform. The first 10 cars are used for learning the estimator and each one of the pose-
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Figure 7: EPFL Dataset. Detection and efficiency. Left: Recall-Precision plots of the pro-
posed method and the state-of-the-art work of [13] . Center: Detection times for several
values of the parameter βe . Right: Computational reduction of the proposed approach.
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Figure 8: EPFL Dataset. Car pose estimation. Left: Confusion matrix. Incorrect pose
estimations occur mainly at opposite views because of their strong similarities. Right: Dis-
tribution of error for each pose bin.

specific classifiers. The remaining 10 cars are used for testing [13]. For this dataset, 32
pose-specific classifiers corresponding to 16 views and 2 different aspect ratios have been
learned.

Results. Detection rates for this dataset using several values of βe are shown in Fig. 7(Left).
Also the performance curve reported by [13] is depicted for comparison purpose. We see
that our method consistently outperforms this work. On the other hand, Fig. 7(Center)
plots the detection times, and shows the efficiency of our method by reducing the time of
evaluating the set of classifiers. This efficiency is also evidenced in Fig. 7(Right), where the
percentage of computational reduction across the values of βe are shown. We see that the
main computational reduction of our method lies in the evaluation of pose-specific classifiers.

Viewpoint Estimation. To measure the viewpoint estimation accuracy of our approach
on this dataset we build again the confusion matrix (Fig. 8(Left)). We can see that most
estimations are correct, showing a diagonal line. This performance is similar to the results
reported in [13], where most of incorrect estimations appear on symmetric points of view.
This is because there is a strong similarity among these views. This issue is represented
in Fig. 8(Right), where the distribution of error among pose bins is shown. Most of pose
estimations are correct (i.e., they belong to bin 0), but a few of them appear at opposite and
adjacent pose bins. Fig. 9 shows some sample detections on this database.

7 Conclusions
This work has presented an efficient strategy for testing multiple classifiers by means of
a decoupled approach consisting of a pose estimator and a set of pose-specific classifiers.
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Figure 9: EPFL Dataset. Sample Results. Please see Fig. 1 for the interpretation of the
results.

This method has reported high detection rates and efficiency for the problem of detecting car
under multiple views. The estimator filters out image locations to yield potential candidates
where specific classifiers are then evaluated.

To increase efficiency, it has been proposed to compute all the specific classifiers and
the estimator using a reduced set of features (Random Ferns). This allows to reduce the
cost of evaluating a large number of features and to decompose the detection process into
two stages. The first one tests the RFs over the input image, whereas the second one calcu-
lates the estimator and the corresponding specific classifier. The benefit lies in the feature
computation is independent of the number of classifiers.
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