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Robot Companions for Guiding People in Urban Areas

Anais Garrell, Andren Corominas Murtra and Alberto Sanfeliu

Abstract—In this paper we explain some developments on
robot guidance of people and how we manage the robust
navigation in urban areas. This work is part of the research
of ongoing EU and national research projeets (URUS, Rob-
TaskCoop, CONET). We describe the Discrete Time Model for
people guidance by robots, how we optimize the tasks of the
robots for doing the guidance mission and how we have verified
the model comparing the model results apainst the ground
truth of people and robot motions. In this verification we have
assumed that people are not afraid by the robol motiens. We
also describe the robust navigation method that is used by the
robots that perform the guiding mission showing some examples
of navigation in the Barcelons Robot Lab, an outdoor lab of
10,000m sq mr.

1. INTRODUCTION

Robot Companions is a new concept which can be seen
as an ecology of sentient machines that will help and assist
humans in the broadest possible sense to support and sustain
our welfare. Robot Companions must be cognizant and aware
of their physical and social world and respond accordingly.
One of the areas where they can assist people is in urban
sites, where a great number of scientific, technological,
security, ethical, etc. issues must be solved. From the techno-
logical point of view, reducing the areas of free circulation of
cars in the cities will imply a revolution in the planning of
urban settings, imposing new challenges for transportation
of goods to the stores, security issues, human assistance,
etc. Several research projects, the Netwotk Robot project in
Japan, the URUS project in Evrope [17] and the DustBot
project also in Europe [ 14] have started to search for answers
to these challenges from the technological point of view.
They have analyzed the issue with the idea of incorporating
robots, sensors and ubiguitous communication devices in the
urban areas,

In one of these projects, the URUS project [17], [18],
the general objective was to analyze and develop techniques
to enable a networked robot to cooperatively interact with
humans and the environment on guidance and assistance
tasks, transportation of goods, and surveillance in urban
areas. Specifically, we designed and developed a cogni-
tive networked robot architecture that integrates cooperating
urban robots, intelligent sensors (video cameras, acoustic
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sensors, etc.), intelligent devices (PDA, mobile telephones,
etc) and a communications network. Some technological
challenges addressed included: design and development of
the cognitive networked robot architecture; navigation and
motion coordination among rebots; cooperative environment
perception; cooperative map building and updating; task
scheduling and negotiation within cooperative systemns; hu-
man rebot interaction; and wireless communication strategies
between users (mobile phones, PDAs), the environment
(cameras, acoustic sensors, etc.), and the robots. The project
was tested in the Barcelona Robot Lab, a 10,000 sq m area
located in the Campus Nord of the Universitat Politécnica
de Catalunya, equipped with video cameras and Gigabit
Ethernet connection, and in the Passeig de Sant Joant street
in Barcelona, transporting and guiding people from one place
to another.

In this article we touch vpon two technical issues which
were especially relevant during these outdoor urban mobile
robot experiments: robot services for people guidance and
robust navigation, People guidance by robots is a key issue in
the relation between humans and robots, which is commonly
performed when people is walking with other people or for
typical tourism of business tours. Robust navigation is of
paramount importance for robots that share the sidewalks
with pedestrians. Safety is the number one concemn, and our
methods for navigation and path planning have as number
one priorities like human safety and robot reliability, We
discuss in this paper the techniques used to model the
guidance of people by robots denominated the Discrete
Time Model, how we optimize the tasks of the robots for
doing the guidance mission and how we have verified the
model comparing the model results against the ground truth
of people and robot motions. In this verification we have
assumed that the people are not afraid by the robot motions.
We also describe the robust and safety navigation method
that is used by the robots that perform the guiding mission
showing some examples of navigation in the Barcelona
Robot Lab.

II. REPRESENTATION OF THE GUIDANCE MODEL

In the following section, we will present the modelization
we use in the guidance mission using several robots and
working with a group of people [6]. We use a group of robots
working in a cooperative way, one as a tour guide (the leader
robot) and the other one, as a shepherd robot. The mission
of the leader robot is to guide a group of people from an
origin to a destination. The other robot is used as an assistant
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based on shepherd dog theory [4], [13] and its objective
is to regroup people who move away from the the crowd
formation. The strategy followed is, firstly, the computation
of the estimate people’s velocity with a particle filter [1], [2],
and secondly, the computation of the optimal path from the
shepherd robot to the estimated position of people that are
moving away.

The key element is the “Discrete Time Motion” (DTM),
whose goal is to estimate at each time instance the position
and velocity of every person, as well as to predict their
future states. The DTM evaluates these data in discrete time
instances, every N units of time (seconds or milliseconds),

The DTM mode] has two components: The Discrete Time
component and the Discrete Motion component, The former
estimates position, orientation and velocity of the robots and
persons, and the position of the obstacles at a time instance £.
It will be used to estimate the intersection of the people with
the obstacles and detect if someone is leaving the group. The
Discrete Motion component estimates the change of position,
orientation and velocity of people and robots between two
time instances £ and k4 p. It will be used to compute the
robots” trajectory to reach the goal while preventing people
leaving the group.

A. The Discrete Time Component

The first task of the Discrete Time component is fto
estimate position, otientation and velocity of the robots
and people who are being guided. This is done with a
standard particle filter formulation. Then, the Discrete Time
component aims to represent the areas where the robots will
be allowed to move, by means of potential fields.

In order to decide the trajectories the robots will follow
we will define a potential ficld over the working area, and
perform path planning in it [12]. To this end we will define
a set of attractive and repulsive forces. In particular, the goal
the robots try to reach will generate an attractive force pulling
the robots towards it, On the other hand, the cbstacles will
generate a repulsive potential pushing a given robot away.
The rest of robots and persons will generate similar repulsive
forces, although with less intensity than the obstacle’s forces,

We parameterized all these attractive and repulsive forces
by Gaussian functions. For instance, the repulsive forces for
people will be:
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where iy = (Up,. tp,) is the center of gravity of the
person, and Z, is a covariance matrix whose principal axes
(0., Gy} represent the size of an ellipse surrounding the
person which is used as a security area. A similar expression
defines the potential map associated to each robot.

These repulsive forces may be interpreted as continuous
probability functions over the entire space. Once they are
defined, the tensions at each point of the space may be
computed as the intersection of these Gaussians.
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We can then define people and robots by the set
{ (e 1ty). (05, 6,).v,0. T}, where v and @ are the velocity
and orientation computed by the particle filter and T is
the associated tension. As we said, the variances (ox,0y)
represent the security area around each individual. This could
be set to a constant value. However, for practical issues one
may need larger security areas when the robots or persons
move faster, As a consequence, we changed appropriately the
values of the variances o and o, depending on the velocity
parameter v.

In the case of the obstacles, we define their tension as a set
of Gaussian functions collocated at regular intervals around
their boundaries. Let us denote by X = {(x1.01).- ... (xa.¥0)}
the set of points evenly spaced around the boundary. Then
this boundary will be defined by: {(x;.y:},(0y.0,). i} for
i=1,...,n, where T; follows Equation 1,

After having defined the tensions for each of the compo-
nents of the environment —i.e. robots, persons and obstacles-
we are ready to define the potential field. This is easily
computed as the intersection of all the Gaussian functions
for a given variances.

Once the potential field is known, we will define the
trajectories of the robots, based on the position of the persons
and the goal and following the paths with minimum energy
in the potential field. This will be explained in the following
section.

B. Discrete Motion Component

The Discrete Motion Component will decide the motion
strategies to be followed by the robots in order o achieve
their goals, which are following a path to reach a specific
position while preventing people from leaving the group.
Therefore, we will consider two different motion strategies:
(i) path planning tili the goal, and (ii) shepherding strategies
for avoiding people leaving the group.

In the first case the robot motion is computed using a
simple path planning algorithm [11]. We first compuie all the
possible paths to reach the goal, i.e, the roadnap. Among all
these paths, we then select the shortest one, and each node of
this path will be considered as a subgoal. The robots will then
move between consecutive subgoals avoiding people leaving
the group. This path planning is only performed by the leader
robot who transmits the computed path to the rest of the
robaots.

The second case is the study of shepherding algo-
rithms [3], which are inspired in the shepherd dogs. The
shepherding task is performed by all the robots except the
feader, that only carries out the function of a guide. The
method that we have developped to decide which is the
behavior of the robots when one person o several people
move away from the formation will be explained in the
following section,

Figure 1 show a simulation in which a group of people is
guided throught the Barcelona Robot Lab.
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Fig. . Lefi: simulation of cooperative people guidance on the Barcclona
Robor Lab, Righ side: Values of the tensions values in specific insiants of
time.

111. LocAL OPTIMIZATION FUNCTION OF COOPERATIVE
RoBoT MOVEMENTS FOR GUIDING MISSION

One important situation we must carefully consider is the
case when people move away from the group [5]. The main
goal of the rebots that work in the especific task of guiding
a group of people is to accompany everyone to the goal. So,
the possibility of loose people is not considered, We are not
aware of any approach tackling this problem. The solution
we adopt for this situation is to choose one of the robots
and bring him back to the formation. For computing the
trajectory that will be considered for intercepting the person
who escaped from the group, we first used a Particle Filter to
estimate the position and velocity of the person and compute
the interception point. Once the interception point Oy at time
k is obtained, it will become the next subgoal for the closer
robot, called Ry. Then, the trajectory the robot must follow
is computed as shown in Fig. 2: This trajectory is simply the
line passing through the robot Ry and tangent to a 2 meters
diameter circle centered at the interception point,

The main purpose of our work is to analyze which is
the best strategy in the following situation: “Given a fixed
number of robots (usually 2 or 3), assign robots’ tasks that
will minimize the work required by them, and, also, will
produce the minimum displacement problems for guiding
people™. The cost function, described below, speaks in Work
terms, and it can be divided into two blocks: (i) Robot work
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Fig. 2, (a) Environment represciiation with people and robols. (b)

Computation of the convex hull. (¢) Tmcrpolation of the convex hull with
Newlon Backward Divided Difference Formula, {(d) Compuation of the
trajeclory for rescuing the individual, Lhis trajeclory is composed by two
tangenis of the function {{x) at point p: (1) passing through the shepherd
robot {2} passing through the individual is escaping.

motion, and (#) Human work motion.

Nonetheless, robots must be able to solve this task while
they are navigating and avoiding obstacles and do not infer in
people’s living space, Furthermore, there are other situations
that can happen, however they have not been considered in
the present work, for instance, one robot is used as a barmier
in a comer, in order that people do not miss the way.

The Robot tasks that we are considering are:

¢+ Leader task: Leader robot computes a path planning
and moves to the next point. We also assume that there
exists a drag force that will attract people behind the
robot. In case that a robot, that is not the leader, takes
its role, this robot will have first to move still leader’s
present position and then carry out this task.

Looking for a person that goes away task: The robot
moves to the estimated position of the individual who
goes away from the crowd formation. In this case, the
robot has to compute all possible paths to reach the
estimate position and then, take the one which minimize
the itinerary.

Pushing task: The robot pushes a person that has gone
away in order to reach the crowd formation, This task
can be also applied when a robot pushes a person (or a
group of people) who is (are) going behind the crowd
formation in order to regroup people when the formation

-
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is broken down. We assume that there exists a repulsion
force that pushes the person to follow the direction of
the robot.

Crowd traversing task: The robot has to move through
the formation to achieve the estimated position of the
person that goes away from the crowd formation. This
task implies that the robot has to push people away from
their path, which creates a set of repulsion forces from
the robot to people. We do not consider this task due to
security reasons,

In order to compute the dragging, pushing and crowd
traversing forces, we use the equations defined in previous
works on human behavior with other individuals [8], [9),
[10]. People movements are determined by their desired
speed and the goal they wish to reach. In our case, the
direction of the person movement (¢} is given by:

1) = Eupor (1) + 1) @

where & is the noise. Usually, people do not have a
concrete goal and should follow the leader robot, thus, its
direction is determined by the robot’s movement or the
individual that they have in front, if the robot is not in their
visual field.

In following sections we will describe the different forces
for the computation of the cost function.

A. Robot Work Motion

Working with autonomous mobile robots, the robot i work
maotion is expressed by:

I = ma
mmur —j;"wAh

(3)
4

where m; is the mass of the i-th robot, g; its acceleration
and Ax; the space traversed by the robot to achieve its goal.

B. Human Work Motion

In Human Robot Interaction, it is necessary to consider the
dragging, pushing and crowd intrusion forces that robot’s
motion produces and that can affect on people’s behavior.
This component is called Human Work Motion, and it is
the expense of people’s movements as a result of robot’s
motions. As it has been menticned several times in this
paper, the group follows the robot guide/leader, and there is
a set of robots that help to achieve their goal. The effect of
robots on people as forces works as follows: (i) leader robot:
atiractive (dragging) force, it is inversely proportional to
the distance, until a certain distance. (i) shepherding robot:
Repulsive (pushingtraversing) force, has a repulsive effect
inside people’s living space,

1) Dragging Work: The dragging force is necessary when
the leader robot guides the group of people from one place to
another. It acts as an attractive force, hence the force applied
by robot leader / to each person j is:
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—Cynylt) = ij%

[|x:40) = x|

(5)
(6)

el
dy(t)

where dj;(¢) is the normalizated vector pointing from
person j to robot i at instant £. See [7] for more information
about the parameter C;; , which reflects the attraction coef-
ficient over the individual j, and it depends on the distance
between the robot leader and person .

Thus, the dragging work that robot leader applied to each
individual is defined by:

>

¥ person j

j:jnrg ASJ (7)

Worag =

Where As; is the distance traveled by the person j.

2)  Pushing Work: The Pushing force is piven by the
repulsive effect developed by shepherding robot on the group
of people, for regrouping a person {or the broken crowd)
in the main crowd formation. This repulsive force is due
by the intmusion of the robot in the people’s living space,
which is five feet around humans. The territorial effect may
be described as a repulsive social force:

" i} /B~ 1+ cos(p;y
Pt Ajexp Ty By (Jl.‘+(1 +L)%) (8)

Whete A; is the interaction strength, #;; ~ #;+r; the sum
of the radiis of robot ;/ and person J, usually people has radii
of one meter, and robots 1.5 m, B, parameter of repulsive
interaction, ;;{t) = ||xi(¢) —x;(¢)|| is the distance of the mass
center of robot 7 and person j. Finally, with the choice L < 1,
the parameter reflects the situation in front of a pedestrian has
a larger impact on his behavior than things happening behind,
The angle ¢;(¢) denotes the angle between the direction &:(r)
of motion and the direction - #;,(7) of the object exerting the
repulsive force. See [7].

So we can write pushing work by:

)3

v person in £;

Umh ( ’) ij (9)

Wprr:h =

Where £, is the set of people in which one of the helper
robots have reached the living space, if an individual is at
certain distance from the robot, more than two meters, it
is considered that the robot does not penetrate in his living
space, and therefore is not affected by the drag force.

3) Traversing Work: And last but not least, the Traversing
Jorce is determined by the forces applied by the robot
when is traversing the crowd. For security reasons, we have
considered in this research that the value of this force is
infinity, so we will ensure that a robot will not cross the
crowd in order to avoid any damage on people.



ISBN-xXX-y-ZZ-yyyyyyy-x

C. Total Cost for One Robot

The cost function for robot J, given a specific task, is the
following one;

Wi = Boe W+ Sitrg W™ + B WP" o B W™ (10)

1 if this task is assigned

where & = { ¢ if this task is not assigned

Where & could be pushing, dragging, traversing or motion.
For each period of time, the leader and shepherded robots
will be given a task in the guiding mission, which will imply
one or several robot motion works and human robot works.

D. Optimal Robor Task Assignment

Finally, the task assignment for the robots will be the one
which minimizes the minimum assigned work cost required
to do the global task. It is computed by the following way:

C = argmin{Wy,,(c}}, ¥V configuration ¢ (m

where the Configurations mean how the tasks are dis-
tributed among the robots, for each configuration ¢ robots
compute #),,,; which is the addition of all W; for all robots
i that are working cooperatively,

Once we have this cost function, we can determine which
are the optimal trajectories the robots must follow to achieve
their goal, and which are the roles for each robot.

In Fig.3 we show the evolution of the work performed by
the group of robots while they guide a group of people. The
two local maxima represents the instant of time when one
person tries to move away from the formation.

[V. VERIFICATION OF TIE GUIDANCE MODEL

Here, we present the validation of the DTM model de-
scribed previously. The articles presented in the literature
show their contributions for groups of robots that interact
with people using simulations. However, realistic situations,
such as the existence of obstacles or dealing with people
leaving the group are not considered, and their models were
not validated. In [13] several types of robot formations and
different strategies for approaching the robots to people
are considered. However. all these issues and the general
movements of the robots are ruled by a large number of
heuristics which makes the system impractical,

Before the experimentation of the DTM with real robots,
it is necessary to validate the functionality of the model
throught simulations. For the validation of this research, we
used the network of cameras installed in the Barcelona Robot
Lab, in the Universitat Politécnica de Catalunya (UPC), an
area of 10.000 m? in the north Campus. We performed a
set of experiments where a group of people were guided by
three people playing the role of the guide robots. They have
performed 9 experiments following the same path, but there
were some differences in each experiment. The group made
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Fig. 3. Evolution of the cost function alony time of different behaviors

of robois when people arc escaping in two different instants of time.
Behavior 1: Robot Leader looks for people who are moving away. Behavior
2: Shepherd Robot look for people whe are escaping withow choosing
the shortest way. Behavior 3: Shepherd Robots interchange their positions
before looking for people who are escaping. Behavior 4: Shepherd robot
which is nearest of people who arc escaping is the respensible for resolving
this mission without considering the forces presented before. Behavior 5:
Robots choose the configuration which minimizes the cost function.

the same trajectory nine times, and in each one the group
presented different behaviors, for instance, a person escaped
from the group and must be regrouped, or some people
escaped in different directions, These human behaviors were
simulated and we studied how the behavior of the robots
should be for achieving their objective, this is, lead the
group towards the goal. in the present paper, we validate
the DTM model by analyzing the position and velocity errer
differences of people and robots.

Model validation is used for verifying that the model,
within its domain of applicability, behaves consistently with
the objectives. Model validation deals with building the right
model. In model testing, the model is subjected to test data
or tests cases to determine if it functions properly. Test failed
implies the failure of the model, not the test.

For data collection we use the camera network mounted
on the Barcelona Robot Lab, composed by 21 interconnected
cameras, see Fig. 4, which took a set of video sequences of
the group of people being guided by three other people (who
play the role of guide robots). The tour, was petformed nine
times and in each one of the trials, some people of the group
behaved in different ways.

For the model validation process, the trajectory of every
person has to be taken into account in the complete path,
as well as the trajectory of all the group. This trajectories
are then compared against the estimation obtained by the
simulations using the DTM model. The comparison is based
on the quadratic error of the real {from the video sequence)
and estimated (from the simulation) positions.

For robots, several cases were analyzed. For the leader
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Fig. 4. Images fo the set of cameras, a group of people is being guide i
the Barcelona Robot Lab.

we examine the motion trajectory that it has followed for
guiding the group and the velocity at each position, For the
shepherd we compute the motion trajectory for following
the group and the motion trajectory to look for a person that
escapes from the formation and he has to be regrouped. For
the guided people we compute the estimated trajectory using
the particle filter against the observations obtained from the
camera network,

All this comparison are done in the areas where the camera
network have information of the position of people and
robots. There are some areas where the cameras are not able
to see people’s trajectories due to environment constraints. In
the areas where there are not real data, we only can estimate
their positions, and the error will be computed at the next
position obtained from the camera network. See Figure §
to see the comparation of the trajectories performed by the
simulated Leader and the real Leader.

V. ROBUST NAVIGATION IN URBAN AREAS

All robotic mobility services, be these people guidance,
surveillance or transportation of goods, share a common
basic module, that of robust autonomous navigation. This
module is in charge of executing go fo requests coming
for task driven higher-level modules, or directly from an
operator. The requests come typically in the form of 2D point
coordinates with respect to a given reference map. The map
comes either from a previously executed mapping session,
or from a CAD model provided by city authorities. Either
way, these maps are usually not complete models and robust
navigation must deal with such lack of detail, as well as with
other contingencies such as scene dynamics, non-modeled
obstacles, or unreliable or imprecise GPS coverage.

We have built a map-based robust autonomous navigation
system able to cope with these requirements for our two
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Fig. 5. Lecader Robot behavior in three differemt scenes are shown, on

lefi hand the comparison crror between the simulated behavior and the
observation data are represented. In (a) and {b) it must be considered that
point | shows a greal crvor due o the obscrvation trajectory performs a
curvilinear pah while the simulated rajectory perforns a rectilinear onc,
both trajectories arc correet. In (¢) and (d) occurs a similiar behavior, al
points | and 2 different path produce a higher error, again, both trajectorics
can be considered right.

robots Tibi and Dabo. These robois are two-wheel self-
balancing units with near holonomic motion capabilities.
Dexterous mobility of self-balancing platforms comes at the
cost of difficult terrain perception and control issues [19].
Their primary sensors for navigation are three laser scanners
and the platform embedded wheel encoders, gyroscopes and
inclinometers. Two laser scanners are mounted in the fromt
and rear to scan a 360 deg fov horizontal plane at a height of
40 cm from the floor, and the third laser scanner is mounted
at a height of 80 cm to scan a vertical plane in front of the
robot.

Figure 6 shows a diagram with all processes involved in
the autonomous navigation module. The approach is based
on two loops that iterate concurrently at different rates: a
reactive loop and a deliberative one. The reactive loop runs
at 10 Hz and is in charge of safe local navigation. The process
receives point goals expressed as local robot coordinates and
computes platform velocity commands to direct the robot
towards such poals while avoiding obstacles perceived by
front horizontal and vertical lasers. The deliberative loop
runs at a Jower speed of 3 to 5 Hz and is in charge of
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global path planning on the map, and of translating global
way points into local robot coordinates. This coordinate
transformation is possible only thanks to a robust map-based
Montecarlo localization process, that continuously updates
the robot position estimate integrating all data available from
laser scanners and platform embedded sensors.

Our first version of the full autonomous navigation module
was based on a 2D model of the environment producing
3 degrees of freedom localization output estimates {x,y. 8).
Using this approach, a series of experimental sessions were
accomplished with more than 3Km of autonomous navigation
in real outdoor pedestrian environments, resulting in a final
success rate of about 79% navigation tasks completed [15].
Main failures can be attributed to localization failures be-
cause the 2D map was not rich enough in areas with high
presence of 3D elements such as ramps, holes or steps.
From these results, a second version of the navigation
approach was developed, using a 3D geometric model of
the environment and with a localization output estimate of
the full 6 DOF robot pose (x,y.z,0,¢, ). This new version
allowed us to run a new series of expetimental sessions in
two outdoor pedestrian scenarios, accomplishing more than
6Km of autonomous navigation, with a success ratio of about
99% completed go ro requests [19].

Such results for 3D navigation in real time were only
possible thanks to a key software module that was developed
to compute expected laser range observations by means of
rendering the 3D environment model in a rendering window
resized from the laser device specifications [16]. These
expected range measurements were compared to true laser
measurements in the comrection loop of the particle filter-
based localization module. Clever optimizations in the code
allowed us to run the filter with a sufficiently large number
of particles without loosing real-time performance and with
low latency on the localization estimate,

Figure 7 shows the graphical user interface used to moenitor
all the components of the real-time autonomous navigation
experiments made in our urban scenarios. Starting from the
top left and clockwise: (1) simulated 3D environment model
view from the estimated robot position, (2) scene image of
the experiment from a hand held camera, (3) projection of
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the vertical laser scanner data on the local xz plane, (4)
projection of the horizontal back and front laser data on
the local xy plane in green, and expected range data for
the front laser in red, (5) institutional logos, (6) inputs and
outputs of the local planner shown on the local xy plane:
laser hit points are shown in red (front) and in gray (back),
the local goal and RRT segments are also plotted; the green
mesh represents slopped region of the local xy plane detected
thanks to vertical laser processing, (7) Zoomed region of
the global xy plane: in blue the particle set projected to that
plane, and in red, way points of the global path, (8) Global xy
plane with the 2D map representation with the whole planned
path for the current go to request in red, the accumulated
odometry path in green and robot localization estimates in
blue,

Future Reguirements

The URUS project allowed us to gain valuable experience
during the field sessions of autonomous navigation in urban
pedestrian areas. This experience poinis out a set of future
requirements and research lines that should be addressed to
improve autonomous navigation in such environments. We
divide these either with respect to the local reactive loop or
the global deliberative one.

[n the local robot plane, full 3D perception and planning
becomes mandatory for robust and reliable navigation in
an urban pedestrian scenario. To this end, 3D sensors with
reliable outdoor response, and real-time processing methods
for local planning are both key modules to be implemented in
the near future. Also in the reactive loop, on-board pedestrian
detection and tracking, and execution of socially acceptable
trajectories are two research topics to need to be addressed
by urban pedestrian mobile robotics research.

In the deliberative loop, the key module was that of
localization. In the case of densely populated outdoor en-
vironments, the localization approach should combine an
improved odometry technique (such as visual odometry) with
a map-based one, in order to cope with large periods where
real and expected observations would differ due to the pres-
ence of pedestrians, Moreover, when a sensor network will
be available in the environment, an extra global localization
layer, running at low rate and fusing remole observations
from the sensor network, should be envisaged to provide a
final solution with a greater level of robusmess,

VI. CONCLUSIONS

We have presenied in this work recent research results of
people guidance by robots in large urban sites and robust
navigation. All the techniques have been validated with
field experiments in the Barcelona Robot Lab, a 10.000 sq
m, outdoor site. Results are promising, however, we have
realized that one important issue that have to be solved
before we can massively deploy service robots in urban
pedestrian areas. Robust navigation requires good sensors
that give 3D information in real time along with real time
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Fig. 7. Graphical user interface for real-time monitoring of autonomous navigation experiments in urban scenarios The figure shows a moment in which

the robot was avoiding two pedestrians in a sloped ara.

information of the environment sensors. People guidance
research results are quite good but still premature, since
we have not considered the human robot interaction with
unpredictable human behavior in urban spaces.
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