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1 Statistical Machine Learning Group, NICTA, and the Australian National University
{julian.mcauley, tiberio.caetano}@nicta.com.au
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Abstract. The recently proposed ImageNet dataset consists of several million
images, each annotated with a single object category. However, these annotations
may be imperfect, in the sense that many images contain multiple objects belong-
ing to the label vocabulary. In other words, we have a multi-label problem but the
annotations include only a single label (and not necessarily the most prominent).
Such a setting motivates the use of a robust evaluation measure, which allows for
a limited number of labels to be predicted and, as long as one of the predicted la-
bels is correct, the overall prediction should be considered correct. This is indeed
the type of evaluation measure used to assess algorithm performance in a recent
competition on ImageNet data. Optimizing such types of performance measures
presents several hurdles even with existing structured output learning methods.
Indeed, many of the current state-of-the-art methods optimize the prediction of
only a single output label, ignoring this ‘structure’ altogether. In this paper, we
show how to directly optimize continuous surrogates of such performance mea-
sures using structured output learning techniques with latent variables. We use the
output of existing binary classifiers as input features in a new learning stage which
optimizes the structured loss corresponding to the robust performance measure.
We present empirical evidence that this allows us to ‘boost’ the performance of
existing binary classifiers which are the state-of-the-art for the task of object clas-
sification in ImageNet.

1 Introduction

The recently proposed ImageNet project consists of building a growing dataset using an
image taxonomy based on the WordNet hierarchy (Deng et al., 2009). Each node in this
taxonomy includes a large set of images (in the hundreds or thousands). From an object
recognition point of view, this dataset is interesting because it naturally suggests the
possibility of leveraging the image taxonomy in order to improve recognition beyond
what can be achieved independently for each image. Indeed this question has been the
subject of much interest recently, culminating in a competition in this context using
ImageNet data (Berg et al., 2010; Lin et al., 2011; Sánchez and Perronnin, 2011).

Although in ImageNet each image may have several objects from the label vocab-
ulary, the annotation only includes a single label per image, and this label is not nec-
essarily the most prominent. This imperfect annotation suggests that a meaningful per-
formance measure in this dataset should somehow not penalize predictions that contain
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legitimate objects that are missing in the annotation. One way to deal with this issue
is to enforce a robust performance measure based on the following idea: an algorithm
is allowed to predict more than one label per image (up to a maximum of K labels),
and as long as one of those labels agrees with the ground-truth label, no penalty is in-
curred. This is precisely the type of performance measure used to evaluate algorithm
performance in the aforementioned competition (Berg et al., 2010).

In this paper, we present an approach for directly optimizing a continuous surrogate
of this robust performance measure. In other words, we try to optimize the very measure
that is used to assess recognition quality in ImageNet. We show empirically that by
using binary classifiers as a starting point, which are state-of-the-art for this task, we
can boost their performance by means of optimizing the structured loss.

1.1 Literature Review

The success of visual object classification obtained in recent years is pushing computer
vision research towards more difficult goals in terms of the number of object classes and
the size of the training sets used. For example, Perronnin et al. (2010) used increasingly
large training sets of Flickr images together with online learning algorithms to improve
the performance of linear SVM classifiers trained to recognize the 20 Pascal Visual Ob-
ject Challenge 2007 objects; or Torralba et al. (2008), who defined a gigantic dataset of
75,062 classes (using all the nouns in WordNet) populated with 80 million tiny images
of only 32 × 32 pixels. The WordNet nouns were used in seven search engines, but
without any manual or automatic validation of the downloaded images. Despite its low
resolution, the images were shown to still be useful for classification.

Similarly, Deng et al. (2009) created ImageNet: a vast dataset with thousands of
classes and millions of images, also constructed by taking nouns from the WordNet
taxonomy. These were translated into different languages, and used as query terms in
multiple image search engines to collect a large amount of pictures. However, as op-
posed to the case of the previously mentioned 80M Tiny Images dataset, in this case
the images were kept at full resolution and manually verified using Amazon Mechan-
ical Turk. Currently, the full ImageNet dataset consists of over 17,000 classes and 12
million images. Figure 1 shows a few example images from various classes.

Deng et al. (2010) performed classification experiments using a substantial subset of
ImageNet, more than ten thousand classes and nine million images. Their experiments
highlighted the importance of algorithm design when dealing with such quantities of
data, and showed that methods believed to be better in small scale experiments turned
out to under-perform when brought to larger scales. Also a cost function for classi-
fication taking into account the hierarchy was proposed. In contrast with Deng et al.
(2010), most of the works using ImageNet for large scale classification made no use of
its hierarchical structure.

As mentioned before, in order to encourage large scale image classification using
ImageNet, a competition using a subset of 1,000 classes and 1.2 million images, called
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC; Berg et al., 2010),
was conducted together with the Pascal Visual Object Challenge 2010 competition.
Notoriously, the better classified participants of the competition used a traditional one-
versus-all approach and completely disregarded the WordNet taxonomy.
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Orchestra PitIron

Dalmatian African Marigold

Fig. 1. Example images from ImageNet. Classes range from very general to very spe-
cific, and since there is only one label per image, it is not rare to find images with
unannotated instances of other classes from the dataset.

Lin et al. (2011) obtained the best score in the ILSVRC’10 competition using a con-
ventional one-vs-all approach. However, in order to make their method efficient enough
to deal with large amounts of training data, they used Local Coordinate Coding and
Super-Vector Coding to reduce the size of the image descriptor vectors, and averaged
stochastic gradient descent (ASGD) to efficiently train a thousand linear SVM classi-
fiers.

Sánchez and Perronnin (2011) got the second best score in the ILSVRC’10 com-
petition (and a posteriori reported better results than those of Lin et al. (2011)). In
their approach, they used high-dimensional Fisher Kernels for image representation
with lossy compression techniques: first, dimensionality reduction using Hash Kernels
(Shi et al., 2009) was attempted and secondly, since the results degraded rapidly with
smaller descriptor dimensionality, coding with Product Quantizers (Jégou et al., 2010)
was used to retain the advantages of a high-dimensional representation without paying
an expensive price in terms of memory and I/O usage. For learning the standard binary
one-vs-all linear classifiers, they also used Stochastic Gradient Descent.

The difficulty of using the hierarchical information for improving classification may
be explained by the findings of Russakovsky and Fei-Fei (2010). In their work Ima-
geNet is used to show that the relationships endowed by the WordNet taxonomy do not
necessarily translate in visual similarity, and that in fact new relations based only on
visual appearance information can be established between classes, often far away in the
hierarchy.



4 J. J. McAuley, A. Ramisa, and T. S. Caetano

2 Problem Statement

We are given the dataset S =
{
(x1, y1), . . . , (xN , yN)

}
, where xn ∈ X denotes a feature

vector representing an image with label yn. Our goal is to learn a classifier Ȳ(x; θ) that
for an image x outputs a set of K distinct object categories. The vector θ ‘parametrizes’
the classifier Ȳ; we wish to learn θ so that the labels produced by Ȳ(xn; θ) are ‘similar
to’ the training labels yn under some loss function ∆(Ȳ(xn; θ), yn). Our specific choice
of classifier and loss function shall be given in Section 2.1.

We assume an estimator based on the principle of regularized risk minimization, i.e.
we aim to find θ∗ such that

θ∗ = argmin
θ

[
1
N

N∑
n=1

∆(Ȳ(xn; θ), yn)︸                    ︷︷                    ︸
empirical risk

+
λ

2
‖θ‖2︸ ︷︷ ︸

regularizer

]
. (1)

Our notation is summarized in Table 1. Note specifically that each image is annotated
with a single label, while the output space consists of a set of K labels (we use y to de-
note a single label, Y to denote a set of K labels, and Y to denote the space of sets of K
labels). This setting presents several issues when trying to express (eq. 1) in the frame-
work of structured prediction (Tsochantaridis et al., 2005). Apparently for this reason,
many of the state-of-the-art methods in the ImageNet Large Scale Visual Recognition
Challenge (Berg et al., 2010, or just ‘the ImageNet Challenge’ from now on) consisted
of binary classifiers, such as multiclass SVMs, that merely optimized the score of a
single prediction (Lin et al., 2011; Sánchez and Perronnin, 2011).

Motivated by the surprisingly good performance of these binary classifiers, in the
following sections we shall propose a learning scheme that will ‘boost’ their perfor-
mance by re-weighting them so as to take into account the structured nature of the loss
function from the ImageNet Challenge.

2.1 The Loss Function

Images in the ImageNet dataset are annotated with a single label yn. Each image may
contain multiple objects that are not labeled, and the labeled object need not necessarily
be the most salient, so the method should not be penalized for choosing ‘incorrect’
labels in the event that those objects actually appear in the scene. Note that this is not
an issue in some similar datasets, such as the Caltech datasets (Griffin et al., 2007),
where the images have been selected to avoid such ambiguity in the labeling, or all
instances of objects covered in the dataset are annotated in every image, as in the Pascal
Visual Object Challenge (Everingham et al., 2010).

To address this issue, a loss is given over a set of output labels Y , that only penalizes
the method if none of those labels is similar to the annotated object. For a training image
with label yn, the loss incurred by choosing the set of labels Y is given by

∆(Y, yn) = min
y∈Y

d(y, yn). (2)
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Table 1. Notation

Notation Description
x the feature vector for an image (or just ‘an image’ for simplicity)
xn the feature vector for the nth training image
X the features space, i.e., xn ∈ X

F the feature dimensionality, i.e., F = |xn|

N the total number of training images
y an image label, consisting of a single object class
yn the training label for the image xn

C the set of classes, i.e., yn ∈ C

C the total number of classes, i.e., C = |C|

Ȳ(x; θ) the set of output labels produced by the classifier
Ŷ(x; θ) the output labels resulting in the most violated constraints during column-generation
Ȳn shorthand for Ȳ(xn; θ)
Ŷn shorthand for Ŷ(xn; θ)
K the number of output labels produced by the classifier, i.e., K = |Ȳn| = |Ŷn|

Y the space of all possible sets of K labels
θ a vector parameterizing our classifier
θ

y
binary a binary classifier for the class y
λ a constant that balances the importance of the empirical risk versus the regularizer
φ(x, y) the joint parametrization of the image x with the label y
Φ(x,Y) the joint parametrization of the image x with a set of labels Y
∆(Y, yn) the error induced by the set of labels Y when the correct label is yn

d(y, yn) a distance measure between the two classes y and yn in our image taxonomy
Zn latent annotation of the image xn, consisting of K − 1 object classes distinct from yn

Yn the ‘complete annotation’ of the image xn, i.e., Zn ∪ {yn}

In principle, d(y, yn) could be any difference measure between the classes y and yn. If
d(y, yn) = 1 − δ(y = yn) (i.e., 0 if y = yn, 1 otherwise), this recovers the ImageNet
Challenge’s ‘flat’ error measure. If d(y, yn) is the shortest-path distance from y to the
nearest common ancestor of y and yn in a certain taxonomic tree, this recovers the
‘hierarchical’ error measure (which we shall use in our experiments).

For images with multiple labels we could use the loss ∆(Y,Yn) = 1
|Yn |

∑
yn∈Yn ∆(Y, yn),

though when using the ImageNet data we always have a single label.

2.2 ‘Boosting’ of Binary Classifiers

Many of the state-of-the-art methods for image classification consist of learning a series
of binary ‘one vs. all’ classifiers that distinguish a single class from all others. That is,
for each class y ∈ C, one learns a separate parameter vector θy

binary, and then performs
classification by choosing the class with the highest score, according to

ȳbinary(x) = argmax
y∈C

〈
x, θy

binary

〉
. (3)
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In order to output a set of K labels, such methods simply return the labels with the
highest scores,

Ȳbinary(x) = argmax
Y∈Y

∑
y∈Y

〈
x, θy

binary

〉
, (4)

where Y is the space of sets of K distinct labels. The above equations describe many
of the competitive methods from the ImageNet Challenge, such as Lin et al. (2011) or
Sánchez and Perronnin (2011).

One obvious improvement is simply to learn a new set of classifiers {θy}y∈C that opti-
mize the structured error measure of (eq. 1). However, given the large number of classes
in the ImageNet Challenge (|C| = 1000), and the high-dimensionality of standard image
features, this would mean simultaneously optimizing several million parameters, which
is not practical using existing structured learning techniques.

Instead, we would like to leverage the already good classification performance of
existing binary classifiers, simply by re-weighting them to account for the structured
nature of (eq. 2). Hence we will learn a single parameter vector θ that re-weights the
features of every class. Our proposed learning framework is designed to extend any
classifier of the form given in (eq. 4). Given a set of binary classifiers {θy

binary}y∈C, we
propose a new classifier of the from

Ȳ(x; θ) = argmax
Y∈Y

∑
y∈Y

〈
x � θy

binary, θ
〉
, (5)

where x � θy
binary is simply the Hadamard product of x and θy

binary. Note that when θ = 1
this recovers precisely the original model of (eq. 4).

To use the standard notation of structured prediction, we define the joint feature
vector Φ(x,Y) as

Φ(x,Y) =
∑
y∈Y

φ(x, y) =
∑
y∈Y

x � θy
binary, (6)

so that (eq. 4) can be expressed as

Ȳ(x; θ) = argmax
Y∈Y

〈Φ(x,Y), θ〉 . (7)

We will use the shorthand Ȳn B Ȳ(xn; θ) to avoid excessive notation. In the following
sections we shall discuss how structured prediction methods can be used to optimize
models of this form.

2.3 The Latent Setting

The joint parametrization of (eq. 6) is problematic, since the energy of the ‘true’ label
yn, 〈φ(xn, yn), θ〉, is not readily comparable with the energy of a set of predicted outputs
Y , 〈Φ(xn,Y), θ〉.

To address this, we propose the introduction of a latent variable, Z = {Z1 . . . ZN},
which for each image xn encodes the set of objects that appear in xn that were not
annotated. The full set of labels for the image xn is now Yn = Zn ∪ {yn}. If our method
outputs K objects, then we fix |Zn| = K − 1, so that |Yn| = K. It is now possible to
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meaningfully compute the difference between Φ(xn,Y) and Φ(xn,Yn), where the latter
is defined as

Φ(xn,Yn) = φ(xn, yn) +
∑
y∈Zn

φ(xn, y). (8)

The importance of this step shall become clear in Section 3.1, (eq. 13). Note that we
still define ∆(Y, yn) in terms of the single training label yn, as in (eq. 2).

Following the programme of Yu and Joachims (2009), learning proceeds by alter-
nately optimizing the latent variables and the parameter vector. Optimizing the param-
eter vector θi given the latent variables Zi is addressed in Section 3.1; optimizing the
latent variables Zi given the parameter vector θi−1 is addressed in Section 3.2.

3 The Optimization Problem

The optimization problem of (eq. 1) is non-convex. More critically, the loss is a piece-
wise constant function of θ.3 A similar problem occurs when one aims to optimize a 0/1
loss in binary classification; in that case, a typical workaround consists of minimizing
a surrogate convex loss function that upper-bounds the 0/1 loss, such as the hinge loss,
which gives rise to support vector machines. We will now see that we can construct a
suitable convex relaxation for the problem defined in (eq. 1).

3.1 Convex Relaxation

Here we use an analogous approach to that of SVMs, notably popularized in Tsochan-
taridis et al. (2005), which optimizes a convex upper bound on the structured loss of
(eq. 1). The resulting optimization problem is

[θ∗, ξ∗] = argmin
θ,ξ

 1
N

N∑
n=1

ξn + λ ‖θ‖2
 (9a)

s.t. 〈Φ(xn,Yn), θ〉 − 〈Φ(xn,Y), θ〉 ≥ ∆(Y,Yn) − ξn (9b)
∀n,Y ∈ Y.

It is easy to see that ξ∗n upper-bounds ∆(Ȳn, yn) (and therefore the objective in (eq. 9)
upper bounds that of (eq. 1) for the optimal solution). First note that since the constraints
(eq. 9b) hold for all Y , they also hold for Ȳn. Second, the left hand side of the inequality
for Y = Ȳn must be non-positive since Ȳ(x; θ) = argmaxY 〈Φ(x,Y), θ〉. It then follows
that ξ∗n ≥ ∆(Ȳn, yn). This implies that a solution of the relaxation is an upper bound on
the solution of the original problem, and therefore the relaxation is well-motivated.

The constraints (eq. 9b) basically enforce a loss-sensitive margin: θ is learned so that
mispredictions Y that incur some loss end up with a score 〈Φ(xn,Y), θ〉 that is smaller
than the score 〈Φ(xn,Yn), θ〉 of the correct prediction Yn by a margin equal to that loss
(minus the slack ξn). The formulation is a generalization of support vector machines for
the multi-class case.

3 There are countably many values for the loss but uncountably many values for the parameters,
so there are large equivalence classes of parameters that correspond to precisely the same loss.
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There are two options for solving the convex relaxation of (eq. 9). One is to explic-
itly include all N × |Y| constraints and then solve the resulting quadratic program using
one of several existing methods. This may not be feasible if N × |Y| is too large. In this
case, we can use a constraint generation strategy. This consists of iteratively solving the
quadratic program by adding at each iteration the constraint corresponding to the most
violated Y for the current model θ and training instance n. This is done by maximizing
the violation gap ξn, i.e., solving at each iteration the problem

Ŷ(xn; θ) = argmax
Y∈Y

{∆(Y, yn) + 〈Φ(xn,Y), θ〉} , (10)

(as before we define Ŷn B Ŷ(xn; θ) for brevity). The solution to this optimization prob-
lem (known as ‘column generation’) is somewhat involved, though it turns out to be
tractable as we shall see in Section 3.3.

Several publicly available tools implement precisely this constraint generation strat-
egy. A popular example is SvmStruct (Tsochantaridis et al., 2005), though we use
BMRM (‘Bundle Methods for Risk Minimization’; Teo et al., 2007) in light of its faster
convergence properties. Algorithm 1 describes pseudocode for solving the optimization
problem (eq. 9) with BMRM. In order to use BMRM, one needs to compute, at the
optimal solution ξ∗n for the most violated constraint Ŷn, both the value of the objective
function (eq. 9) and its gradient. At the optimal solution for ξ∗n with fixed θ we have

〈Φ(xn,Yn), θ〉 −
〈
Φ(xn, Ŷn), θ

〉
= ∆(Ŷn, yn) − ξ∗n. (11)

By expressing (eq. 11) as a function of ξ∗n and substituting into the objective function
we obtain the following lower bound on the objective of (eq. 9a):

oi =
1
N

∑
n

∆(Ŷn, yn) − 〈Φ(xn,Yn), θ〉 +
〈
Φ(xn, Ŷn), θ

〉
+ λ ‖θ‖2 , (12)

whose gradient with respect to θ is

gi = λθ +
1
N

∑
n

(Φ(xn, Ŷn) −Φ(xn,Yn)). (13)

3.2 Learning the Latent Variables

To learn the optimal value of θ, we alternate between optimizing the parameter vector θi

given the latent variables Zi, and optimizing the latent variables Zi given the parameter
vector θi−1. Given a fixed parameter vector θ, optimizing the latent variables Zn can be
done greedily, and is in fact equivalent to performing inference, with the restriction that
the true label yn cannot be part of the latent variable Zn (see Algorithm 2, Line 5). See
Yu and Joachims (2009) for further discussion of this type of approach.
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Algorithm 1 Taxonomy Learning
1: Input: training set {(xn,Yn)}Nn=1
2: Output: θ
3: θ B 0 {in the setting of Algorithm 2, θ can be ‘hot-started’ with its previous value}
4: repeat
5: for n ∈ {1 . . .N} do
6: Ŷn B argmaxY∈Y

{
∆(Y, yn) + 〈φ(xn,Y), θ〉

}
7: end for
8: Compute gradient gi (equation (eq. 13))
9: Compute objective oi (equation (eq. 12))

10: θ B argminθ
λ
2 ‖θ‖

2 + max(0,max
j≤i

〈
g j, θ

〉
+ o j)

11: until converged (see Teo et al. (2007))
12: return θ

Algorithm 2 Taxonomy Learning with Latent Variables
1: Input: training set {(xn, yn)}Nn=1
2: Output: θ
3: θ0 B 1
4: for i = 1 . . . I do
5: Zn

i B
{
argmaxY∈Y

〈
Φ(xn,Y), θi−1

〉}
\ {yn} {choose only K − 1 distinct labels}

6: θi B Algorithm1
({(

xn,Zn
i ∪ {y

n}
)}N

n=1

)
7: end for
8: return θI

3.3 Column Generation

Given the loss function of (eq. 2), obtaining the most violated constraints (Algorithm 1,
Line 6) takes the form

Ŷn = argmax
Y∈Y

min
y∈Y

d(y, yn) +
∑
y∈Y

〈φ(xn, y), θ〉

 , (14)

which appears to require enumerating through all Y ∈ Y, which if there are C = |C|

classes amounts to
(

C
K

)
possibilities. However, if we know that argminy∈Ŷn d(y, yn) = c,

then (eq. 14) becomes

Ŷn = argmax
Y∈Y′

d(c, yn) +
∑
y∈Y

〈φ(xn, y), θ〉

 , (15)

where Y′ is just Y restricted to those y for which d(y, yn) ≥ d(c, yn). This can be solved
greedily by sorting 〈φ(xn, y), θ〉 for each class y ∈ C such that d(y, yn) ≥ d(c, yn) and
simply choosing the top K classes. Since we don’t know the optimal value of c in
advance, we must consider all c ∈ C, which means solving (eq. 15) a total of C times.
Solving (eq. 15) greedily takes O(C log C) (sorting C values), so that solving (eq. 14)
takes O(C2 log C).
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Although this method works for any loss of the form given in (eq. 2), for the spe-
cific distance function d(y, yn) used for the ImageNet Challenge, further improvements
are possible. As mentioned, for the ImageNet Challenge’s hierarchical error measure,
d(y, yn) is the shortest-path distance from y to the nearest common ancestor of y and yn

in a taxonomic tree. One would expect the depth of such a tree to grow logarithmically
in the number of classes, and indeed we find that we always have d(y, yn) ∈ {0 . . . 18}. If
the number of discrete possibilities for ∆(Y, yn) is small, instead of enumerating each
possible value of c = argminy∈Ŷn d(y, yn), we can directly enumerate each value of
δ = miny∈Ŷn d(y, yn). If there are |L| distinct values of the loss, (eq. 14) can now be
solved in O(|L|C log C). In ImageNet we have |L| = 19 whereas C = 1000, so this is
clearly a significant improvement.

Several further improvements can be made (e.g. we do not need to sort all C values
in order to compute the top K, and we do not need to re-sort all of them for each value
of the loss, etc.). We omit these details for brevity, though our implementation shall be
made available at the time of publication.4

4 Experiments

4.1 Binary Classifiers

As previously described, our approach needs, for each class, one binary classifier able
to provide some reasonable score as a starting point for the proposed method. Since the
objective of this paper is not beating the state-of-the-art, but rather demonstrating the
advantage of our structured learning approach to improve the overall classification, we
used a standard, simple image classification setup. As mentioned, should the one-vs-all
classifiers of Lin et al. (2011) or Sánchez and Perronnin (2011) become available in the
future, they should be immediately compatible with the proposed method.

First, images have to be transformed into descriptor vectors sensible for classifica-
tion using machine learning techniques. For this we have chosen the very popular Bag
of Features model (Csurka et al., 2004): dense SIFT features are extracted from each
image xn and quantized using a visual vocabulary of F visual words. Next, the visual
words are pooled in a histogram that represents the image. This representation is widely
used in state-of-the-art image classification methods, and despite its simplicity achieves
very good results.

Regarding the basic classifiers, a rational first choice would be to use a Linear SVM
for every class. However, since our objective is to predict the correct class of a new
image, we would need to compare the raw scores attained by the classifier, which would
not be theoretically satisfying. Although it is possible to obtain probabilities from SVM
scores using a sigmoid trained with the Platt algorithm, we opted for training Logistic
Regressors instead, which directly give probabilities as output and do not depend on a
separate validation set.

In order to deal with the computational and memory requirements derived from
the large number of training images, we used Stochastic Gradient Descent (SGD) from

4 see http://users.cecs.anu.edu.au/˜julianm/

http://users.cecs.anu.edu.au/~julianm/
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Bottou and Bousquet (2008) to train the classifiers. SGD is a good choice for our prob-
lem, since it has been shown to achieve a performance similar to that of batch training
methods in a fraction of the time (Perronnin et al., 2010). Furthermore, we validated
its performance against that of LibLinear in a small-scale experiment using part of the
ImageNet hierarchy with satisfactory results. One limitation of online learning methods
is that the optimization process iterations are limited by the amount of training data
available. In order to add more training data, we cycled over all the training data for 10
epochs.

With this approach, the θy
binary parameters for each class used in the structured learn-

ing method proposed in this work were generated.

4.2 Structured Classifiers

For every image xn and every class y we must compute 〈φ(xn, y), θ〉. Earlier we defined
φ(x, y) = x � θy

binary. If we have C classes and F features, then this computation can be
made efficient by first computing the C×F matrix A whose yth row is given by θy

binary�θ.
Similarly, if we have N images then the set of image features can be thought of as an
N × F matrix X. Now the energy of a particular labeling y of xn under θ is given by the
matrix product

〈φ(xn, y), θ〉 =
(
X × AT

)
n,y
. (16)

This observation is critical if we wish to handle a large number of images and high-
dimensional feature vectors. In our experiments, we performed this computation using
Nvidia’s high-performance BLAS library CUBLAS. Although GPU performance is of-
ten limited by a memory bottleneck, this particular application is ideally suited as the
matrix X is far larger than either the matrix A, or the resulting product, and X needs to
be copied to the GPU only once, after which it is repeatedly reused. After this matrix
product is computed, we must sort every row, which can be naı̈vely parallelized.

In light of these observations, our method is no longer prohibitively constrained
by its running time (running ten iterations of Algorithm 2 takes around one day for a
single regularization parameter λ). Instead we are constrained by the size of the GPU’s
onboard memory, meaning that we only used 25% of the training data (half for training,
half for validation). In principle the method could be further parallelized across multiple
machines, using a parallel implementation of the BMRM library.

The results of our algorithm using features of dimension F = 1024 and F = 4096
are shown in Figures 2 and 3, respectively. Here we ran Algorithm 2 for ten itera-
tions, ‘hot-starting’ θi using the optimal result from the previous iteration. The reduc-
tion in training error is also shown during subsequent iterations of Algorithm 2, showing
that minimal benefits are gained after ten iterations. We used regularization parameters
λ ∈ {10−1, 10−2 . . . 10−8}, and as usual we report the test error for the value of λ that re-
sulted in the best performance on the validation set. We show the test error for different
numbers of nearest-neighbors K, though the method was trained to minimize the error
for K = 5.

In both Figures 2 and 3, we find that the optimal θ is non-uniform, indicating that
there are interesting relationships that can be learned between the features when a struc-
tured setting is used. As hoped, a reduction in test error is obtained over already good
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Test error:
1nn 2 3 4 5

Before learning 11.35 9.29 8.08 7.25 6.64
After learning 10.88 8.85 7.71 6.93 6.36

Fig. 2. Results for training with 1024 dimensional features. (a) feature weights; (b)
reduction in training error during each iteration of Algorithm 2; (c) error for differ-
ent numbers of nearest-neighbors K (the method was trained to optimize the error for
K = 5). Results are reported for the best value of λ on the validation set (here λ = 10−4).
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(c)

Test error:
1nn 2 3 4 5

Before learning 9.27 7.29 6.23 5.53 5.03
After learning 9.02 7.08 6.05 5.38 4.91

Fig. 3. Results for training with 4096 dimensional features. (a) feature weights; (b)
reduction in training error during each iteration of Algorithm 2; (c) error for differ-
ent numbers of nearest-neighbors K (the method was trained to optimize the error for
K = 5). Results are reported for the best value of λ on the validation set (here λ = 10−6).

classifiers, though the improvement is indeed less significant for the better-performing
high-dimensional classifiers.

In the future we hope to apply our method to state-of-the-art features and classifiers
like those of Lin et al. (2011) or Sánchez and Perronnin (2011). It remains to be seen
whether the setting we have described could yield additional benefits over their already
excellent classifiers.

5 Conclusion

Large scale, collaboratively labeled image datasets embedded in a taxonomy naturally
invite the use of both structured and robust losses, to account for the inconsistencies
in the labeling process and the hierarchical structure of the taxonomy. However, on
datasets such as ImageNet, the state-of-the-art methods still use one-vs-all classifiers,
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which do not account for the structured nature of such losses, nor for the imperfect
nature of the annotation. We have outlined the computational challenges involved in
using structured methods, which sheds some light on why they have not been used
before in this task. However, by exploiting a number of computational tricks, and by
using recent advances on structured learning with latent variables, we have been able to
formulate learning in this task as the optimization of a loss that is both structured and
robust to weak labeling. Better yet, our method leverages existing one-vs-all classifiers,
essentially by re-weighting, or ‘boosting’ them to directly account for the structured
loss. In practice this leads to improvements in the hierarchical loss of already good
one-vs-all classifiers.
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