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Abstract. We present a graph matching method that encompasses both
a model of structural consistency and a model of geometrical deforma-
tions. Our method poses the graph matching problem as one of mixture
modelling which is solved using the EM algorithm. The solution is then
approximated as a succession of assignment problems which are solved,
in a smooth way, using Softassign. Our method allows us to detect out-
liers in both graphs involved in the matching. Unlike the outlier rejectors
such as RANSAC and Graph Transformation Matching, our method is
able to refine an initial the tentative correspondence-set in a more flexible
way than simply removing spurious correspondences. In the experiments,
our method shows a good ratio between effectiveness and computational
time compared with other methods inside and outside the graphs’ field.

Keywords: correspondence problem, expectation-maximization, softas-
sign, affine registration

1 Introduction

The correspondence problem arises in many computer vision applications.
Tentative correspondences can be computed on the basis of the local image

contents around some interest points [8][14]. However, a refinement process is
often needed in order to remove erroneous correspondences in the tentative-set.

This is the case of RANSAC [6] and Graph Transformation Matching [2],
which remove outlying correspondences by enforcing some kind of global con-
sistency. The main drawback of these methods is that their success strongly
depends on the reliability of the tentative-set. Since they are unable either to
generate new correspondences or to modify the existing ones, a tentative-set
with few successes may lead to sparse estimates. This is illustrated in figure 1.

Attributed Graph Matching techniques are another approach to refine the
tentative correspondences which do not suffer from the aforementioned problem
of the outlier rejectors.

Hancock et al. [13][4][11] present graph matching approaches that jointly
solve the correspondence and alignment problems. The advantages of posing the
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(a) Tentative correspondences computed
by a matching by correlation method. The
red dots are unmatched points. There are
several misplaced correspondences.

(b) Only a few inliers are found by
RANSAC. This may not be suitable in the
cases when more dense correspondence-
sets are needed.

Fig. 1. Matching results for two sample images from the class Resid (from ref. [1]) with
superposed Harris corners [8]. Green lines represent the correspondences found by (a)
a correlation method and (b) RANSAC applied to the correlation results.

graph matching as a joint correspondence and alignment problem, are twofold.
On one hand, structural information may contribute to disambiguate the recov-
ery of the alignment. On the other hand, geometrical information may aid to
clarify the recovery of the correspondences in the case of structural corruption.

In [4][18][17], Hancock et al. propose a principled way of detecting outliers
that consists in measuring the net effects of a node deletion in a reconfigured
graph. This is a one-direction model, i.e., data-graph constraints are evaluated
on the model-graph side. This implies that outliers can only be detected in the
data-graph side, a practical limitation in computer vision where outliers can be
found indistinguishably in both sides.

Gold and Rangarajan present Graduated Assignment [7], an optimization
technique aimed at graph matching. They use Softassign [16][15][10] to handle
continuous correspondences and to provide two-way constraints satisfaction.

We propose a method to solve the graph matching problem as one of mixture
modelling [4][12]. Our mixture model evaluates the geometrical arrangement of
the nodes as well as their structural relations. We use the EM algorithm to
approximate the solution, in a principled way, as a succession of assignment
problems which are solved using Softassign. This allows us to gradually move
from continuous to discrete correspondences while being able to detect outliers
in both graphs in a smooth way. We provide computational time results sug-
gesting that our method can be used at specific moments during a real-time
operation (e.g., when the tentative-sets are insufficient). Figure 2 shows that our
approach arrives at a correct dense correspondence-state, while still leaving a
few unmatched outliers in both images.

2 A Mixture Model

Consider two graph representations G = (V, D, X) and H = (W, E, Y ), extracted
from two images (e.g., figure 2).
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Fig. 2. The green lines are the result of applying our method using, as starting point,
the tentative-set of figure 1(a). Nodes are placed in the locations of the Harris corners.
Blue lines represent the edges generated by means of Delaunay triangulations on the
Harris corners. Our method still detects a few outliers in both graphs.

The node-sets V = {va, ∀a∈I} and W = {wα, ∀α∈J} contain the symbolic
representations of the nodes, where I=1...|V | and J=1...|W | are their index-sets.

The vector-sets X = {xa = (xab

a , xor

a ) , ∀a∈I} and Y = {yα = (yab

α , yor

α ) , ∀α∈J},
contain the column vectors of the two-dimensional coordinates (abscissa and or-
dinate) of each node.

The adjacency matrices D and E contain the edge-sets, representing some
kind of structural relation between pairs of nodes (e.g., connectivity or spatial

proximity). Hence, Dab =

{

1 if va and vb are linked by an edge
0 otherwise

(the same ap-

plies for Eαβ).
We use continuous correspondence indicators S so, we denote as saα ∈ S,

the probability of node va ∈ V being in correspondence with node wα ∈ W .
It is satisfied that

∑

α∈J

saα ≤ 1 , ∀a ∈ I (1)

where, 1 −
∑

α saα is the probability of node va being an outlier.
Our aim is to recover the correspondence indicators S and the registration

parameters Φ that maximize the incomplete likelihood of the observed graph,
P (G|S, Φ). The standard procedure to build likelihood functions for mixture
distributions consists in factorizing over the observed data (i.e., observed graph
nodes) and summing over the hidden variables (i.e., their corresponding reference
nodes). Hence,

P (G|S, Φ) =
∏

a∈I

∑

α∈J

P (va, wα|S, Φ) (2)

where P (va, wα|S, Φ) is the conditional likelihood of correspondence between
nodes va ∈ V and wα ∈ W .

Following a similar development than Luo and Hancock [12] we factorize,
using the Bayes rules, the conditional likelihood in the right hand side of equation
(2) into terms of individual correspondence indicators, in the following way.

P (va, wα|S, Φ) = Kaα

∏

b∈I

∏

β∈J

P (va, wα|sbβ , Φ) (3)
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where Kaα = [1/P (va|wα,Φ)]
|I|×|J |−1

. If we assume that the observed node va is
conditionally dependant on the reference node wα and the registration parame-
ters Φ only in the presence of the correspondence matches S, then P (va|wα, Φ) =
P (va). Further assuming equiprobable priors P (va), we can safely discard these
quantities in the maximization of equation (2), since they do not depend neither
on S or Φ.

We propose a measure for the conditional likelihood of equation (3) that uses
the same model for the structural errors as in [12], augmented with a geometric
compatibility measure.

On one hand, given two corresponding pairs of points (va, vb) → (wα, wβ),
we consider that there will be lack of edge-support (i.e., Dab = 0 ∨ Eαβ = 0)
with a constant probability Pe. On the other hand, we consider that it is an
affine-invariant density measurement on the point position errors P (xb, yβ |Φ)
(for brevity Pbβ), that it is appropriate for weighting the conditional likelihood
in the case of correspondence between nodes vb and wβ . In the case of no corre-
spondence we assign a constant probability ρ that controls the outlier process.

Accordingly, our expression for the conditional likelihood is

P (va, wα|sbβ , Φ) =
[

(1 − Pe)Pbβ

]DabEαβsbβ
[

PePbβ

](1−DabEαβ)sbβ
[

Peρ
](1−sbβ)

(4)
Substituting equation (4) into equation (3), the final expression for the cor-

respondence likelihood between va and wα, expressed in the exponential form,
is

P (va, wα|S, Φ) = exp





∑

b∈I

∑

β∈J

sbβDabEαβ ln
(

1−Pe

Pe

)

+ sbβ ln
(

Pbβ

ρ

)

+ lnρ



 (5)

3 Expectation Maximization

The EM algorithm has been previously used by other authors to solve the Graph
Matching problem [4] [12]. We seek the affine registration parameters Φ and the
correspondence indicators S, that maximize the expected log-likelihood of our
mixture distribution. Dempster et al. [5] showed that this could be posed as an
iterative estimation of a weighted sum of log-likelihoods.

Accordingly, we seek the parameters Ŝ, Φ̂ that maximize the following objec-
tive function

Λ
(

Ŝ, Φ̂|S(n), Φ(n)

)

=
∑

a∈I

∑

α∈J

P (wα|va, S(n), Φ(n)) lnP
(

va, wα|Ŝ, Φ̂
)

(6)

where P (wα|va, S(n), Φ(n)) are the posterior probabilities of the missing data
given the most recent available parameters S(n), Φ(n).

The basic idea is to alternate between Expectation and Maximization steps
until convergence is reached. The expectation step involves computing the a
posteriori probabilities of the missing data using the most recent available pa-
rameters. In the maximization phase, the parameters are updated in order to
maximize the expected log-likelihood of the incomplete data.



Smooth Simultaneous Structural Graph Matching and Point-Set Registration 5

3.1 Expectation

In the expectation step, the posteriori probabilities of the missing data (i.e., the
reference graph measurements wα) are computed using the current parameter
estimates S(n), Φ(n).

The posterior probabilities can be expressed in terms of conditional likeli-
hoods, using the Bayes rule, in the following way

P (wα|va, S(n), Φ(n)) =
P (va, wα|S

(n), Φ(n))
∑

α′ P (va, wα′ |S(n), Φ(n))
≡ R(n)

aα (7)

We substitute the conditional likelihoods of the above equation by the ex-
pression of equation (5).

3.2 Maximum Likelihood Affine Registration Parameters

ML affine registration parameters and correspondence indicators are recovered
in separate steps.

We are interested in the registration parameters Φ(n+1) that lead to the max-
imum likelihood of equation (6). We use the expressions in equations (7) and (5)
for the posterior probability and conditional likelihood terms, respectively. Dis-
carding the terms that are constant w.r.t. the registration parameters we obtain
the following expression

Φ(n+1) = arg max
Φ̂







∑

a∈I

∑

α∈J

R(n)
aα

∑

b∈I

∑

β∈J

s(n)

bβ ln
(

P̂bβ

ρ

)







(8)

Rearranging and further removing other terms constant w.r.t. the registration
parameters, we get

Φ(n+1) =arg max
Φ̂

{

∑

b∈I

∑

β∈J

s(n)

bβ ln
(

P̂bβ

ρ

)

∑

a∈I

∑

α∈J

R
(n)
aα

}

=arg max
Φ̂

{

∑

b∈I

∑

β∈J

s(n)

bβ lnP̂bβ

}

(9)
We assume that the geometrical compatibilities P̂bβ follow a multivariate

gaussian distribution of the point errors.
Substituting P̂bβ by its appropriate expression and, removing constant terms,

we arrive to the minimization of the following objective function

F =
∑

b∈I

∑

β∈J

s(n)

bβ

(

x̃b − Φ̂ỹβ

)T

Σ−1
(

x̃b − Φ̂ỹβ

)

(10)

where x̃b and ỹβ are the augmented vectors of homogeneous coordinates, Φ =




φ11 φ12 φ13

φ21 φ22 φ23

0 0 1



 is the matrix of affine registration parameters and, Σ is diagonal

matrix of variances.
Affine registration parameters are computed by solving the set of linear equa-

tions δF/δφij = 0.
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3.3 Maximum Likelihood Correspondence Indicators

One of the key points in our work, is to approximate the solution of the graph
matching problem by a succession of easier assignment problems. As it is done
in Graduated Assignment [7], we use the Softassign [16][15][10] to solve the
assignment problems in a continuous way.

According to the EM development, we compute the correspondence indica-
tors S(n+1) that maximize equation (6). Substituting equations (7) and (5) into
(6) and, discarding the constant term lnρ of equation (5), we obtain

S(n+1) = argmax
Ŝ







∑

a∈I

∑

α∈J

R(n)

aα

∑

b∈I

∑

β∈J

ŝbβ

[

DabEαβ ln
(

1−Pe

Pe

)

+ ln

(

P
(n)
bβ

ρ

)]







(11)
Rearranging we obtain the following assignment problem [7]

S(n+1) = argmax
Ŝ







∑

b∈I

∑

β∈J

ŝbβQ(n)

bβ







(12)

where
Q(n)

bβ =
∑

a∈I

∑

α∈J

R(n)

aα

[

DabEαβ ln
(

1−Pe

Pe

)

+ ln
(

Pbβ

ρ

)]

(13)

is the benefit coefficient for the assignment vb → wβ .
Softassign computes the correspondence indicators in two steps. First, the

correspondence indicators are updated with the exponentials of the benefit co-
efficients

sbβ = exp (µ Qbβ) (14)

where µ is a control parameter. Second, two-way constraints are imposed by
alternatively normalizing across rows and columns the matrix of exponentiated
benefits. This is known as the Sinkhorn normalization and, it is applied either
until convergence of the normalized matrix or, a predefined number of times.

Note that, as the control parameter µ of equation (14) approaches to ∞, the
correspondence indicators sbβ tend to discrete values (sbβ = {0, 1}) after the
Sinkhorn normalization.

3.4 Outlier Rejection

Outliers can dramatically affect the performance of a matching and therefore, it
is important to develop techniques aimed at minimizing their influence [3].

According to our purposes, a node vb ∈ v (or wβ ∈ w) will be considered an
outlier to the extent that there is no node wβ , ∀β∈J (or vb, ∀b∈I) which presents
a matching benefit Q(n)

bβ above a given threshold.
Note that, ρ establishes the threshold at which the geometrical terms (i.e.,

ln (Pbβ/ρ)) contribute positively (i.e., ρ < Pbβ) or negatively (i.e., ρ > Pbβ) to
the benefit measure.
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Our strategy for controlling the outlier process is the following. We set the
outlying threshold to zero and, create an augmented benefit matrix Q̃(n) by
adding to Q(n) an extra row and column of zeros (the slack variables of the
Softassign [7]). Then, we apply the Softassign (exponentiation and Sinkhorn
normalization) to the augmented benefit matrix. Last, the slack variables are
removed leading to the resulting matrix of correspondence parameters S(n+1).

Note that, as the control parameter µ of the Softassing increases, the rows
and columns of S(n+1) associated to the outlier nodes, tend to zero. This fact
reduces the influence of these nodes in the maximization phases of the next
iteration that, in turn, lead to even lower benefits, and so on.

It is now turn to define the value of the outlying threshold ρ. Since ρ is to
be compared with Pbβ , it is convenient to define it in terms of a multivariate
gaussian of a distance threshold. This is,

ρ =
1

2π|Σ|1/2
exp

[

−
1

2
dTΣ−1d

]

(15)

where, Σ = diag
(

(σab)
2
, (σor)

2
)

is a diagonal variance matrix and, d = (dab, dor)

is a column vector with the abscissa and ordinate thresholding distances.
Cancelling the gaussian constant terms in the numerator and denominator

of the geometrical term and, expressing the thresholding distance proportionally
to the standard deviations of the data (i.e., d = (Nσab, Nσor)), the expression
of ρ to be compared with Pbβ becomes

ρ = exp

{

−
1

2

[

(

Nσab

σab

)2

+

(

Nσor

σor

)2
]}

= exp
(

−N2
)

(16)

So, we define ρ as a function of the number N of standard deviations permit-
ted in the registration errors, in order to consider a plausible correspondence.

4 Experiments and Results

In the first set of experiments, we have evaluated the effectiveness of our method
in front of non-rigid deformations in the positions of the features (i.e., nodes). In
each experiment, a pattern of 15 randomly generated points is matched against
a deformed version of itself. Deformations are introduced by applying gaussian
noise, independently, to each point. Graphs’ edges are generated by Delaunay
triangulations on the point-sets. Figure 3 shows the comparison of our method
(denoted as Smooth) to the graph matching + alignment methods in refs. [4]
(Dual-Step) and [13] (Unified). We have used the values Pe = 0.3 and ρ =
exp

(

−1.92
)

for our method. The parameters of the other methods have been
accurately set to have a good performance. All the methods have been initialized
by the correspondences obtained by simple nearest neighbour association.

The mean execution times of the MATLAB implementations of each method
are: Smooth 0.66 sec., Dual-Step 14.08 sec. and, Unified 0.91 sec. The Dual-step

method is run without the outlier detection scheme (otherwise it slows down).
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Fig. 3. Correct correspondence rate vs. noise level (represented as a proportion of the
data variance). Each point is the mean of 25 experiments (5 random patterns by 5
random deformations of each pattern).

The last set of experiments evaluates the matching performance on real im-
ages under zoom and rotation from the database in [1]. Features are extracted
with the Harris operator [8] and edges with Delaunay triangulations. Figure 4
show the results of applying our method to some images. We have used the val-
ues Pe = 0.3 and ρ = exp

(

−1.32
)

for our method. The value of ρ has been set
so as to enable an actual detection of outliers.

We have compared some methods with explicit outlier detection mechanisms.
These are the outlier rejectors RANSAC [6] and Graph Transformation Match-
ing (GTM ) [2] and, the graph matching method Dual-Step [4] (with the out-
lier detection scheme enabled). All the methods have been initialized with the
matching by correlation (Corr) results.

From the resulting correspondences of each method, we have estimated the
corresponding homographies with the DLT algorithm [9]. Since it is available the
ground truth homography between each pair of images, we have measured the
mean projection error (MPE) of the feature-points in the origin images. Table 1
shows the results.

Resid Boat NewYork Laptop Eastpark

Methods MPE time MPE time MPE time MPE time MPE time

Corr 835.4 1.5 24.48 1.5 31.1 0.98 0.28 1.34 463.4 1.62

Smooth 1.5 13.8 0.72 18.2 0.69 3.6 0.29 8.18 1.08 19.7

Dual-Step 1.33 3615 1.68 3794 0.69 1429 0.3 2693 153.46 3027

RANSAC 20.23 0.2 1.6 0.1 17.11 0.12 0.28 0.11 350.13 0.42

GTM 24.15 0.02 0.8 0.1 3.2 0.02 0.34 0.02 359.9 0.04

Table 1. Mean Projection Error (MPE, in pixels) and execution times (in seconds)
obtained by each method using a MATLAB implementation. In the case of accurate
correlation results (e.g., Laptop), slight errors may be introduced due to the approx-
imations done by each method in the model assumptions such as the affine one (in
Smooth and Dual-Step) or a purely structural one (in GTM ).
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(a) Boat

(b) New York

(c) Laptop

(d) Eastpark

Fig. 4. Right column shows the results of our method using the correlation results (left
column) as starting point.

5 Conclusions

We have presented a method that uses the EM algorithm to approximate the
graph matching problem as a succession of assignment problems which are then
solved in a smooth way using Softassign. Our method refines an initial tentative
correspondence-set in a more flexible way than the outlier rejectors such as
RANSAC and Graph Transformation Matching that are only able to remove
the spurious correspondences. Furthermore, it is capable of detecting outliers in
both graphs. Results show that our method performs faster and better than other
graph matching methods in the literature in the matching of synthetic graphs.
Results in the matching of real images show that our method performs generally
better than the others, within an admissible time. Methods with comparable
efficiency than ours show computational times of two orders of magnitude higher.
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