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Abstract—In general, rearranging the legs of a Stewart- 1) If the singularity locus of the platform at hand has
Gough platform, i.e., changing the locations of its leg attach- already been characterized, it could be interesting to
ments, modifies the platform singularity locus in a rather modify the location of its legs to optimize some other

unexpected way. Nevertheless, some leg rearrangements have

been recently found to leave singularities invariant. In this platform characteristics without altering such locus.

work, a summary of the some of such singularity-invariant leg 2) If the singularity locus of the analyzed platform has
rearrangements are presented, and their practical consequees not been characterized yet, it could be of interest
are illustrated with several examples including well-known to simplify the platform’s geometry by changing the

architectures. location of its legs, thus easing the task of obtaining

this characterization.

In [5] it is shown how, for a leg rearrangement to be

The Stewart-Gough platform triggered the research osingularity-invariant, it is necessary and sufficient thiae
parallel manipulators, and it has remained one of the molihear actuators’ velocities, before and after the reayean
widely studied because, despite its geometric simplicisy, ment, are linearly related. It is important to realize that,
analysis translates into challenging mathematical proble if this condition is satisfied, a one-to-one correspondence
[19], [12]. One important part of this analysis correspondbetween the elements of the platform forward kinematics
to the characterization of its singularities. solution sets, before and after the rearrangement, exists.

The singularities of a Stewart-Gough platform are thoséctually, the invariance in the singularities and the adsigm
poses for which the manipulator loses stiffness. Charagrodes of a parallel platform are two faces of the same coin.
terizing such unstable poses has revealed as a challengifgese ideas are closely related to those that made possible
problem during the last decades, resulting in an extensi¥ge development of kinematic substitutions [18]. They are
literature in the scientific kinematic world [15], [23], [L14 general in the sense that they can be applied to any kind of
[3], [13]. mechanism, not only parallel platforms.

The Stewart-Gough platform is defined as a 6-DoF parallel This paper shows how the application of singularity-
mechanism with six identical SPlegs. The geometric and invariant leg rearrangements to well-studied platfornzsite
topological characterization of its singularity locus is $ix-  to interesting new results.
dimensional configuration space is, in general, a huge taskSection Il introduces the notation used in the paper and
which has only been completely solved for some speciafection lll defines a singularity-invariant leg rearrangein
izations —.e., designs in which some spherical joints inin mathematical terms. Then, three case studies are pegsent
the platform, the base, or both, coalesce to form multipléSections 1V, V and VI), with particular numerical examples

. INTRODUCTION

spherical joints [2], [1]. showing interesting results and the development and imple-
The kinematics group at the Institut de Rwioa i In- Mmentation of two prototypes based in them.
formatica Industrial at Barcelona studies new approaches Il. NOTATION

to the singularity analysis of parallel platforms. This wor

presents one of their indirect approaches: even when therg” 9eneral Stewart-Gough platform is a 6Splatform. In
is no known solution to a given mathematical problem, it i9ther words, it has six actuated prismatic legs with lengths
always possible to try to find the set of transformations & th! = 1+ - - - - 6, connecting two spherical passive joints centered

. ; Y b, — (r. s t)7. qiven i
problem that leave its solution invariant. Although thissdo &t & = (44, 2i)" andb; = (ry,5i,1,)", given in base

not solve the problem itself, it provides a lot of insightant @nd platform reference frames, respectively (see Fig. 9. T

its nature. This way of thinking is the one applied herein foP2S€ Of thj‘? platform is defined by a position vector=
the characterization of the singularity loci of Stewarte@h ~ (Pz:Py,=)" and a rotation matriR

platforms. In this context, this approach means finding leg iz Jo ka
rearrangements in a given Stewart-Gough platform thaeleav R=(iLjk) =i, Jj, ky]|,
its singularity locus invariant. - j; kz

Such singularity-invariant leg rearrangementsre useful

for two main reasons: (a) so that the platform attachments can be written in the base

reference frame ab;, = p + Rb;, fori = 1,...,6 (Fig. 1).

Institut de Robbtica i Informatica Industrial (CSIC-UPC), Barcelona, To simplify Fhe notgtion, t_h_e same name will be used to
Spain{j borras, fthomas, ctorras}@ri.upc.edu denote a point and its position vector.
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Despite of this, recently, we have been able to identify leg
rearrangements that do not modify the singularity locus of
the platform, nor the solution of its forward kinematics. In
other words, for the rearranged platform, the location ef th
singularity poses within the workspace of the manipulator
remain at the same position. This kind of rearrangement are
called singularity-invariant leg rearrangementsand where
characterized in detail in [5].

In Fig. 1 we show the rearrangement of the jedn other
words, we relocate the attachments and b; to the new
coordinatesa = (z,y, )7 andb = (r,s,t)7. In [5], it was
shown how such leg rearrangement is singularity invariant i
and only if, the coordinate&r, y, z, r, s,t) make the matrix
P in (1) to be rank defective.

Note that the first 6 rows oP contain only geometric
Fig. 1. A general Stewart-Gough platform with base attachsan and parameters OT the manipulator, Wh”e,the last row depends
platform attachments &;, i = 1, ..., 6. A single leg rearrangement consist ON the coordinates of the new location of the rearranged
in the substitution of one of the legs by a new one, in gray endrewing. leg. The 6 first rows ofP where used in [11], [21] to

characterize architectural singularities. With this &ddial
row, we are able to characterize any singularity-invarlagt

There are three types of parameters that fully define @arrangement by studying the rankBf
Stewart-Gough platform Gaussian Elimination uses elementary row operations to
reduce a given matrix into a rank-equivalent one, with an
upper triangular shape. After it is applied to a matrix, rank

Pose parameters:

X= (pz’_pyvpz’imvjf’kf’iy’jyvkyviz’jwkz) deficiency occurs when all the elements of the last row

Geometric parameters: are zero. MatrixP is 7 x 16 and, if we apply Gaussian

G = (21,Y1,21,71, 51,15 - -, T6, Y6 26, 765 565 16) Elimination, the last row of the resulting matrix can be

Joint parameters: expressed as:

©=(l1,....ls) 00000O0O0TP .. Py, (@2
Finally, it will be useful to introduce a 6-dimensional spac Where Pi, for i = 1,....10, are polynomials in the un-

knowns(z,y, z,r, s,t), and we can state th& is rank de-
gfective if, and only if, the 10 polynomials are simultanelgus
vanished.

In conclusion, if any of the legs is relocated to the new
attachmenta = (z,y, 2)7 andb = (r, s, t), the resulting leg
1. SINGULARITY-INVARIANT LEG rearrangement is singularity-invariant if, and only{f; =

REARRANGEMENTS 0,...,P10=0}.
This is an overdetermined system that has no solution for

A leg rearrangement consists in a relocation of the attacla— generic case. We need to impose at least 5 more scalar
ments of the manipulator, without modifying the pose of the,q, ations to obtain a 1-dimensional set of solutions. Next

platform, and thus, leading to new leg lengthsds, ..., ds e will see several cases for which matiixis simplified

(Fig. 1). In general, such rearrangement completely mmjifi%nd solutions of dimension 1 and 2 are obtained.
the kinematics of the manipulator and also the location

of its singularities, because the forward kinematics of the IV. CASE STUDY I: DOUBLY-PLANAR

rearranged platform must be solved again, which leads to a STEWART-GOUGH PLATFORMS

different number of assembly modes and to a different set For any doubly planar Stewart-Gough platform, the coor-
of singularities. dinates of the base and platform attachments can be written,

defined by the coordinates, y, 2, , s,t), calledthe space
of leg attachmentsEach point of this space defines a le
that goes from base attachment= (z,y, z)” to platform
attachmenb = (r, s, ).



without loss of generality, aa; = (z;,y;,0) and b; =
(z:,t:,0). In this case, a leg rearrangement with coordinates
(z,y, z,t) stands for the substitution of any of the legs by
another one going from the base attachment located-at
(7,,0)T to the platform attachment &t = p+R(z,¢,0)7.
In this case, matri@¥ can be simplified to

—z1 —t1 X1 Y1 T121 Y121 2ty yat 1
—zo —lo Ta Y2 Taza Y22z Taly Yotz 1
—z3 —l3 T3 Y3 T323 Y32z T3ty ysts 1
P=| —2z4 —t4 T4 ys ®424 yszqa Tty Yaly 1l
—z5 —t5 T5 Y5 T525 Ys25 Xsts  Ysts 1
—z5 —te To Y6 T626 Y626 Lels Yele 1
-z —t vy xz Yz xt yt 1 Fig. 2. A general singularity-invariant leg rearrangememt & doubly-
) planar Stewart-Gough platform
Consider the example with attachment local coordinates
appearing in Table .

|

TABLE | B b by
ATTACHMENT COORDINATES (a; = (z4,v:,0)T, b; = (zi,:,0)7T). ] @6
5
Ll [yilat]

1] 3 5 5 6

21 7 9 7 8

3| 8 9 9 8

4112 | 5 9 | 6

5| 5 2 6 | 4

6| 9 2 9 | 5

To check rank deficiency, Gaussian Elimination is applied
on P with the corresponding numerical values substitutedig- 3. The base and the platform curves of the doubly-pl@tawart-
In this case, the last row of the resulting matrix has only $°ud" platform depicted in Fig. 2.
nonzero terms dependent an y, z and t. Different but
equivalent equations arise dependmg on 'the order 9f tr?)%t with different monomials. As the system is linear, both
COll.JmnS' For gxample,_ Gaussian Elimination on maix ;. (z,y) and in(z,t), it can be rewritten in matrix form as
as it appears in equation (3) leads to a matrix whose last

row is z 0
1 Sp|t|=10], 5)
—(0 00 0 0 O ng P7g P78)7 1 0
789
whereP,; is the determinant of the submatrix obtained fromVNereSs is
P after deleting columns and j, and P, the determinant =27743 | 3706, _ 338, g4 19302 22713, 1096,
of the submatrix formed by the first 6 rows @& after ,

. . . . . 10519, _ 87557 _ ﬂx + 51343 61662, 13274%‘
deleting columnsi, j and k. With the corresponding nu- 3045 Y 7 3045 609% ¥Y T Tois 1015 ¥ ~ 71015
merical valuesPrsg = —12180 and the singularity-invariant ELANE TS 71 —192 4 ST 191y
leg rearrangements are defined by the condition defined by °%" 097 = ©09 203 2037 208
{Psy = Prg = P75 = 0}, which reads as which only dgpends om andy (b refers tobase asx andy

438 4706 1096 29713 are the coordinates of the base attachments). The other way

—gog Tz T xt+ 5545Y2 A TR round, the system can also be written as

—S0a5 ¢ T To15¢ =0
T 0
470 10519 13274 61662 S =10 6
— 50907 + SoE Yz +yt + 1015 T — ;%iy p | Y ) (6)
_ o?z 45 3t =0 1 0
3045 1015
17 38 67 194 wheres, is
509%% ~ 609Y% — 2037 1 203 ¢4 1096 _ 338 —22713 | 3706 27743 , _ 193024
+%Z _ %ggt +1 =0 1015 ~ 609 1015 3045 3045 1015
4 13274 470 —61662 10519 87557 51343
“) 015 — 609° 1015 T 3045 2Tt 5045 %~ Tois ¢

Note that any equation consisting of a submatrix determi-

.. 1 ili i —67 17 —38 194 —247 192
nant P;; equated to zero will be bilinear in the unknowns, ST+ Az B+ 247, + 19241




Fig. 4. Griffis-Duffy type | platform with the attachment camates given in in Table Il (left), and its equivalent oadhal manipulator after applying
a leg rearrangement (right).

that only depends on andt (p refers toplatform asz and representation of these manipulators can be found in Fig. 4-

t are the coordinates of the platform attachments). (left).
From equation (5) it is clear that the system has a solution
for (z,t) only for those(z,y) that satisfydet(S;) = 0, TABLE I

and this solution is unique (assuming ti#t has rank 2).

In the same way, there exists a solution fery) only for
those(z, t) that makedet(S,) = 0. Both determinants define
cubic curves on the base and platform planes, respectively.
other words, system (4) defines a one-to-one correspondence
between generic points on two cubic curves. However, the

COORDINATES OF THE ATTACHMENTSa; = (w4, y;,0) AND
b; = p + R(z;,t;,0)T FOR THE ANALYZED ROBOTS

1 V3 1 0

(]
1
_ - 2 2 0 1/2 0
correspondence may be not one-to-one for special points on 3] 2/3 0 1 0
the cubics for non-generic examples (see details in [10]). 4 —2 0 —1/2 | V3/2
For this particular example, the equations of the cubic on 5] -2/3](4/3v3] 0 V3
the base is 6] 0 2v3 1/2 | V3/2
16 5 293 5 253 o 142 5 1061 ,
1457 609" YT 1015 T 6097 T 3045 _ _ _ _
4343 2313 , 17888 26032 261691 In this case, the system obtained by applying Gaussian
AT T Y = eliminati h di X results in :
1015 1015 1015 1015 3045 Imination on the corresponding matiX results in :
and on the platform
9 5 3% o, 293, 1925 282, 1877 2t —y+yztat =0
145° 1015 1015 203 203" " 1015 (V3z+t—-V3)y =0
2229, 17799 98097, 32922 —2v3z 44t + 3z —y+V3zz+3yz — 23 =0
145 1015 1015 145 (7)

which have been plotted in Fig. 3. The curves attached t‘Bhe resolution of this system gives correspondences batwee
the manipulator base and platform are shown in Fig. 2 base and platform attachments that leave the singularities

Depending on the placement of the attachments the'gg/ariant. The base and platform cubic curves, in this case,
curves can be generic curves of degree 3, or a line and'@rtorize into the 3 lines:

conic, or even 3 lines crossing 2 by 2. In the next example,
one of these degenerate cases is analyzed. (\/gz —— \/g)(\/gz 4t \/§)t -0,

A. An octahedral manipulator implementation

In 1993, Griffis and Duffy patented a manipulators namednd
thereafter Griffis-Duffy platform [17]. The platform have
his attachments distributed on triangles, three attactsnen (=3z 4+ V3y — 6)(3z + 3y — 6)y = 0,
on the vertexes and three on the midpoints of the edges,
and platform is formed by joining the attachments on the )
midpoints on the base to the vertexes on the platform, as tFspectively.
example with attachment coordinates given in Table Il. A Actually, it can be checked that system (7) has 6 sets of



Fig. 5. Contrary to what happens to the Stoughton-Arai appration,
the proposed modification leads to a 6-6 platform kinematicadjuivalent
to the octahedral manipulator.

solutions
Abl - {(337.% th) |
_ _ . o . Fig. 6. This platform consists of six extensible legs cotingca moving
r=A\y = ()‘1 + 2)\/57 z=0,t= \/5, A1 € R}’ platform to a fixed base. We avoid the use of multiple sphejaats (that
Aps = {(x, Y, 2, t) | is, spherical joints sharing the same center) without lapsite properties

of the celebrated octahedral architecture.
T =X,y =(2-X)V3,2=1,t =0;\s € R},

Ab3 = {(xvyaz7t) |
x=A3,y=0,2=—-1,t=0; 3 € R},
Apl = {(.’L’,y,Z,t) |

kinematics and singularities to the widely studied octahked
manipulator (see more details in [20], [6]).

V. CASE STUDY II: ADECOUPLED
r==2,y=02=X,t = V3 + 1M R}, STEWART-GOUGH PLATFORM

Apz ={(@y. 2 1) | Consider the manipulator in Fig. 7. It contains a tripod and
2 =0,y =2V3,2=X,t =V3(1=Xs5); \s €R}, 3 more legs, with all the base attachments coplanar. Thus,
Az =A{(z,y,2,1) | without loss of generality, we can write the coordinates of
2 =2y=02=X,t=0;\ € R} the attachments as; = (z;,¥;,0)” andb; = (r;,s;, ;)7
This manipulator is said to be decoupled because the three
legs forming the tripod give the position of the platform,
In other words, these are 6 point-line correspondences, thghile the three remaining ones orient it. When the tripod is
is, to each vertex of the base (platform) triangle corregigon rigid, i. e, fixed at a position, this manipulator is also known
a line on the platform (base) triangle. This means that,Her t &S SPherical [4], [16]. _ _ _ _
Griffis-Duffy type manipulator, we can fix the attachments Consider the example with numeric coordinates appearing
at the vertexes of the platform (base), and then rearran{fe Table Ill. After performing Gaussian Elimination on
the opposite attachments along a line in the base (platform)
without modifying the kinematics of the platform.
As a result, by moving the six midpoint attachments along
their supporting lines, the manipulator can be rearrangted i
the manipulator depicted in Fig. 4-(right), which is the eligl

TABLE Il
ATTACHMENT COORDINATESa; = (z;,y;,0) AND
b; = p + R(rs, si,t:)7

known octahedral manipulator. This is an interesting tesul | ; | 9”2 | yl | Tz | 52 | ’Z’ |
because we can avoid the use of multiple spherical joints > T 5 T2 1212710
(that is, spherical joints sharing the same center) without 3142|210
loosing the properties of the celebrated octahedral achit 4] 7]2]5]0]1
ture [14]. A manipulator has been constructed following the g 23 72 21 g 1

design in Fig. 5 in the Laboratory of Parallel Robots, at the
Institut de Rolbtica i Informatica Industrial [22] (Fig. 6).
Its advantage is that it is a 6-6 manipulator with the samthe corresponding matri¥, only six non-zero elements



a1 a4 a4

Fig. 8. Singularity-invariant leg rearrangements from tkaneple in Fig. 7

VI. CASE STUDY III: PENTAPODS

A pentapod is usually defined as a 5-degree-of-freedom
ay fully-parallel manipulator with an axial spindle as moving
Fig. 7. A decoupled manipulator with non-planar platform. loe its Platform' This km(_j of mampulators have.revea'led ?s an
singularity-invariant leg rearrangement lines. interesting alternative to serial robots handling axisygtnn
tools. The moving platform can freely rotate around the axis
defined by the five aligned revolute joints, but if this ratati
remain at the last row. That is, a leg rearrangement will baxis is made coincident with the symmetry axis of the tool,
singularity-invariant if it fulfills the following 6 condibns  the uncontrolled motion becomes irrelevant in most cases.
Their particular geometry permits that, in one tool axis,
large inclination angles are possible thus overcoming the

ai

_2x7«+y7~+4x—2y+67“—68+18t:07

—dzr/3+xs+2x/3+6r —6s+ 12t =0, orientation limits of the classical Stewart-Gough platfior
1/5(17zr + ys — 34z — 10y — 34r + 34s — 207t) = 0, A pentapod involves only 5 of the 6 legs of the Stewart-
5ar/3 + at — 1023 — 5r + 5s — 17t = 0, Gough platform, with the platform attachments collinear.

This 5 legs form a rigid component by itself that can be
9xr/5 +yt —18x/5 — 18r/5 + 185/5 — 89t/5 =0, studied separately. In addition to the platform attachment

—lzr/2+x+7r—3s/24+9t/24+1=0 collinearity, if we consider all the base attachments aogia
then we can write the coordinates of the attachments as
a; = (2;,v:,0)7 andb; = (2;,0,0)T for i = 1..5 and the

This system of equations has 4 sets of solutions: corresponding matrilP after some simplifications reads as

T = {(a?,y)7 (T,S,t) ‘

z1 1 Y1 Tk iz 1
r=Ny=wur=2s=2t=0,\pecR} % @3 Wy Zazz Yoza 1
Ay = {(Ia y)7 (Tv S7t) ‘ P— Z3 X3 Y3 X323 Yszz 1 (8)
r=2,y=T;r=2,5=2+3\1t=\\€eR}, Z4 T4 Ys Taza Yazg 1
AQ = {(.’I}, )7 (T787t) ‘ T = 77y = _2; Z5 Ts5 Y5 TsZs Yscs 1
z x Yy xz yz 1
r=5-3\2,s=\Nt=1-)\/2,A € R}, _ . _ _ N .
Ay ={(z,y), (r,s,0) |z = 3,y = —2; In this caseP is a square matrix, so its rank deficiency is

characterized only by the equatidat(P) = 0. In [9] it was
r=2-3\s=2-2\1=AAER} shown that such condition defines a one-to-one correspon-

The first one corresponds to the tripod component and gence between the platform attachments and the lines of a
means that base attachments can be rearranged to any pgﬁzﬁncil attached at the base. The center of this pencil,ctalle
of the base plane as long as its corresponding platforfPoint in [9], [7], plays an important role in the geometric
attachment is the vertex of the tripod. The other 3 segharacterization of the manipulator singularities.
correspond to point-line correspondences as before, wepic  Consider the example with numerical coordinates appear-
as red lines in Fig. 7. This means tHaf, b; andbg can NG in table VI.
be relocated to any other point of the red lines (as long as After substituting the numerical values 1, we get that
their corresponding base attachment remains the same). the condition for the singularity invariance is

In Fig. 8 we show two ppssible singularity-invariant leg det(P) =z — z = 0. 9)
rearrangements of the manipulator at hand. For all of them,
the decoupling properties remain the same as they are @lis means that any leg can be rearranged to a leg going
equivalent manipulators. from the base attachmeat= (), y,0)” to b = (),0,0)T



Fig. 9. Pentapod analyzed in Section VI. Note that it is in pside-down
configuration, so that the platform is located under the base

TABLE IV
ATTACHMENTS a; = (a4, y;,0) AND b; = (z;,0,0)

~=

L2 [y [ =] Fig. 10. Prototype of the reconfigurable guadraticallyable pentapod
1] -2] 2 | -2 and its joint implementations.
2| —1 —2 —1
3 0 3 0
4 1 —2 1
5 2 2 2

We have presented a tool to detect equivalences between
manipulators, which means that we can use previous known
geometric interpretations of singularities to new ardhite
without modifying the singularity locus (where for a fixedtures. That is the case of the Griffis-Duffy platform at Sewti
A, the y coordinate can take any value). This correspondd/. The 6-6 Stewart-Gough platform prototype shown in
to the rearrangements plotted in Fig. 9, that is, a one-®-orrig. 6 has the same kinematic properties than the octahedral
correspondence between the attachments at the platform andnipulator, that is, the same geometric interpretatiorit$o
a pencil of parallel lines attached at the base. In this cassipgularities applies, as well as all other kinematic prepe
the center of the pencil lies at infinity. ties studied in the extensive literature about the octatiedr

This particular architecture was proved to be quadragicallmanipulator.

solvable in [8], [9], that is, its forward kinematics can be e have also shown how decoupled manipulators can
solved by solving only 2 quadratic polynomials. If we fixpe rearranged to equivalent and apparently non-decoupled

the attachments of the platform, the corresponding bagganipulators, with different configurations of their spbat
attachments can be relocated to any point of the red lingsints that might be easy to construct.

plotted in Fig.9. Taking advantage of that idea, at Labayato
of Parallel Robots at IRl we have developed a reconfigéu
urable manipulator prototype based on this structure. ICE

Also, the hidden geometric structure reveled by these
rves of singularity-invariant leg rearrangements calp he
the simplification of the forward kinematics resolution.

base attachments can be reconfigured along actuated gui example, in the case study Ill, we show a manipulator

W|th0_ut m0d_|fy|ng the nature of its forward klnematlcs NOMp ot is quadratically solvable.
the singularities of the manipulator, and thus increashe t i o i ) .
versatility of the manipulator, as for each task, the legs ca Finally, new geometric interpretation of singularitiessba

be reconfigured to equally distribute the forces among if3€€n found thanks to singularity-invariant leg rearrange-
legs (Fig. 10). ments. For example, for pentapods with planar bases, the

identified pencil of lines at the base of the manipulator
VIlI. CONCLUSIONS reveals to be crucial for the geometric interpretation ef it
The present work shows how the application osingularities. Similar interpretations represent a @aje for
singularity-invariant leg rearrangements provide a new géhe future work.
ometric approach to the study of Stewart-Gough platform In conclusion, this indirect approach to the analysis of
singularities. Indeed, we have presented three case stud&ewart-Gough platform singularities has succeed in fipdin
that illustrate several new results. new results in a topic with an extensive previous literature



VIIl. ACKNOWLEDGMENTS

The authors gratefully acknowledge

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]

(9]
[20]

[11]

(12]

(23]

[14]

[15]
[16]
[17]
(18]
[19]
[20]

[21]

[22]

[23]

REFERENCES

M. Alberich-Carramiiana, M. Garolera, F. Thomas, and C. Tor-
ras, “Partially-flagged parallel manipulators: Singulagharting and
avoidance,"|IEEE Transactions on Roboticsol. 25, no. 4, pp. 771-
784, 2009.

M. Alberich-Carramiiana, F. Thomas, and C. Torras, “Flagged parallel
manipulators,”|IEEE Transactions on Roboticyvol. 23, no. 5, pp.
1013-1023, 2007.

P. Ben-Horin and M. Shoham, “Singularity condition of siegree-
of-freedom three-legged parallel robots based on Grassi@Gagley
algebra,”"IEEE Transactions on Roboticgol. 22, no. 4, pp. 577-590,
2006.

I. A. Bonev and C. M. Gosselin, “Analytical determinatiaf the
workspace of symmetrical spherical parallel mechanisniBEE
Transactions on Roboticsol. 22, no. 5, pp. 1011-1017, 2006.

J. Bormas, “Singularity-invariant leg rearrangements in Stev&otigh
platforms,” Ph.D. dissertation, Spanish National ReseaCcuncil
(CSIC)- Technical university of Catalonia (UPC), 2011.

J. Borras, F. Thomas, and C. Torras, “OA-transforms,” IEEE
Transactions on Roboticsol. 25, no. 6, pp. 1225-1236, 2009.
——, “Architectural singularities of a class of pentaggdviechanism
and Machine Theory2010, to appear.

——, “A family of quadratically-solvable 5-UB parallel robots,” in
IEEE International Conference on Robotics and Automati?®10,
pp. 4703-4708.

——, “Singularity-invariant families of 5-SB platforms,” IEEE
Transactions on Robotic2010, to appear.

——, “Singularity invariant leg rearrangements in doublanar
Stewart-Gough platforms,” iRobotics: Science and Systems Vihe
MIT Press, 2010.

R. Bricard, “Mémoire sur les éplacements trajectoires spriques,”
Journal de IEcole Polytechniquevol. 11, no. 2, pp. 1-93, 1906.

B. Dasguptaa and T. Mruthyunjayab, “The Stewart platfananipu-
lator: a review,"Mechanism and Machine Thegmol. 35, pp. 1540,
2000.

P. Donelan, “Singularities in robot kinematics - a puahtions
database,” 2007, [Online; accessed 1-December-2008].iHé&nl
Available: http://www.mcs.vuw.ac.nz/"donelan/cgi-bbgifmain

D. Downing, A. Samuel, and K. Hunt, “Identification of ttepecial
configurations of the octahedral manipulator using the panglition,”
International Journal of Robotics Researalol. 21, no. 2, pp. 147—
159, 2002.

C. Gosselin and J. Angeles, “Singularity analysis ofseld-loop
kinematic chains,JEEE Transactions on Roboticsol. 6, no. 3, pp.
281-290, 1990.

C. M. Gosselin and E. St.-Pierre, “Development and erpentation
of a fast 3-DOF camera-orienting devicdtiternational Journal of
Robotics Researctvol. 16, no. 5, pp. 619-630, 7997.

M. Griffis and J. Duffy, “Method and apparatus for corilirgy geo-
metrically simple parallel mechanisms with distinctive conimers,”
US Patent 5,179,5251993.

K. Hunt, Kinematic Geometry of Mechanisms Oxford University
Press, 1978, p. 323.

J.-P. Merlet,Parallel Robots Springer, 2000.

N. Rojas, J. Bo@s, and F. Thomas, “A distance-based formulation
of the octahedral manipulator kinematics,”IifToMM Symposium on
Mechanism Design for Robotic2010.

O. Roschel and S. Mick, “Characterisation of architecturalhaley
platforms,” in International Symposium on Advances in Robot Kine-
matics 1998, pp. 465-474.

F. Thomas, “Laboratory of parallel robots,” 2011. [Om]. Available:
http://www.iri.upc.edu/people/thomas/ID-Robots.htm

D. Zlatanov, “Generalized singularity analysis of magtsms.” Ph.D.
dissertation, University of Toronto, 1998.



