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Abstract

Despite the significant advances in path planning methods, highly constrained problems are still challeng-
ing. In some situations, the presence of constraints defines a configuration space that is a non-parametrizable
manifold embedded in a high dimensional ambient space. In these cases, the use of sampling-based path
planners is cumbersome since samples in the ambient space have low probability to lay on the configuration
space manifold. In this paper, we present a new path planning algorithm specially tailored for highly constrained
systems. The proposed planner builds on recently developed tools for higher-dimensional continuation, which
provide numerical procedures to describe an implicitly defined manifold using a set of local charts. We propose
to extend these methods focussing the generation of charts on the path between the two configurations to connect
and randomizing the process to find alternative paths in the presence of obstacles. The advantage of this planner
comes from the fact that it directly operates into the configuration space and not into the higher-dimensional
ambient space, as most of the existing methods do.
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1 Introduction

Many problems require to connect two points with a
path fulfilling some constraints expressed as a set of
equations. In Robotics, this appears, for instance,
in parallel manipulators (Tsai, 1999), robot grasp-
ing (Rosales et al., 2011), constraint-based object po-
sitioning (Rodŕıguez et al., 2008), surgery robots (Bal-
lantyne and Moll, 2003), and humanoid robots (Ott
et al., 2006). This situation also appears in Bio-
chemistry when searching for low energy paths be-
tween different molecular conformations (Wedemeyer
and Scheraga, 1999). In all these cases, the set of points
fulfilling the constraints define a configuration space
that is a variety composed by one or more manifolds
embedded in the higher-dimensional ambient space of
the variables involved in the equations (Lavalle, 2011).

The adaptation of otherwise successful sampling-
based path planning methods (Kavraki et al., 1996;
LaValle, 2006) is not straightforward since samples in
the ambient space have a null probability to lay on
the configuration space. Consequently, several meth-
ods have been devised to find points on the configura-
tion space from points of the ambient space. All these
approaches, however, only perform properly when the
ambient and the configuration spaces are similar. If the
constraints define a complex surface with many folds,

a uniform distribution of samples in the ambient space
will not translate to a uniform distribution in the con-
figuration space and this heavily reduces the efficiency
of these approaches. This problem may appear even in
simple cases such as the one described in Fig. 1, where
a Rapidly-exploring Random Tree (RRT) is built on
a sphere using a recent method for constrained prob-
abilistic path planning (Dalibard et al., 2009). This
method selects points in the ambient space (a box in R3

including the sphere in this case) and uses iterative nu-
merical methods to converge to the configuration space
(the sphere in the example). If the sphere is not cen-
tered in, and tightly enveloped by the ambient space
box, the sampling process is biased and the result is a
poor exploration of the configuration space. The lack
of prior knowledge about the configuration space struc-
ture and its relation to the ambient space makes it hard
to forecast whether or not a sampling-based planning
approach would be adequate.

Ideally, one would like to sample directly on the con-
figuration space and not in the ambient space. Unfor-
tunately, a uniform sampling over this space typically
relies on a global parametrization that is generally not
available. However, from Differential Geometry, it is
well known that a manifold can be described by an at-
las containing a collection of charts, each chart provid-
ing a local parametrization (Pressley, 2001). Higher-
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Figure 1: Exploration trees with 500 samples. Blue
crosses represent the tree nodes and red lines the con-
nections between them. Top When the ambient space
is a box tightly enveloping the sphere, the exploration
is relatively homogeneous. Bottom When the box is
elongated, for instance along the positive vertical axis,
the exploration is hindered.

dimensional continuation techniques provide principled
numerical tools to compute the atlas of one of the con-
nected components of an implicitly defined manifold,
departing from a point. For instance, Fig. 2-top shows
the atlas obtained with the most recent of these tech-
niques (Henderson, 2002a) in the toy problem of the
sphere.
In this paper, we extend the tools developed for

higher-dimensional continuation to the context of path
planning for highly constrained systems. We define the
concept of partial atlas connecting two configurations,
dealing with the presence of obstacles. We also in-
troduce the random exploration of a manifold focused
towards a target configuration. As a result, we ob-
tain a higher-dimensional continuation planner (HC-
planner) that clearly outperforms existing approaches.
Figure 2-bottom shows an example of path found with

Figure 2: Atlas of the sphere obtained by higher-
dimensional continuation. Each polygon represents a
chart that locally parametrizes the sphere. Top The
full atlas includes about 500 charts. Bottom The par-
tial atlas built with our planning approach when con-
necting the two poles. Only about 30 charts are gen-
erated. The solution path is shown as a yellow line.

our approach for the sphere toy problem when trying
to connect the two poles. Note how only a small set
of charts is needed to find a path connecting the query
points.

Next section provides a review of path planning tech-
niques for constrained problems. Then, we introduce
the higher-dimensional continuation tools that are ex-
tended in Section 4 to the context of path planning.
Section 5 compares the performance of the planner
with respect to existing methods for several bench-
marks. Finally, Section 6 gives an overview of the
contributions of this work and indicates points that
deserve further attention.
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2 Related Work

Some approaches try to explicitly describe the configu-
ration space manifolds arising in constrained path plan-
ning problems, but they are either too complex to be
applied in practice (Canny, 1988), or limited to par-
ticular architectures (Shvlab et al., 2007). Thus, the
usual approach to address these problems is to extend
the common sampling-based planning methods. The
performance of those methods heavily rely on being
able to uniformly sample on the space to explore. In
some families of mechanism, distance-based formula-
tions provide a global parametrization of the configura-
tion space manifold that can be straightforwardly used
to uniformly sample this space (Han et al., 2008; Tang
et al., 2010). However, a global isometric parametriza-
tion of the configuration space is not available in gen-
eral and alternative sampling strategies have been de-
vised.

In this direction, the Kinematics-based Roadmap
method (Han and Amato, 2000) samples a subset of
variables corresponding to the so called active part of
the mechanism and uses inverse kinematics to find all
the possible values for the remaining ones, i.e., those for
the passive part of the mechanism. However, this strat-
egy is only valid for particular families of mechanisms.
Moreover, although some improvements have been pro-
posed (Cortés et al., 2002), the probability of generat-
ing invalid samples is significant. Finally, the several
solutions of the inverse kinematic functions and their
singularities complicates the approach (Gharbi et al.,
2008). Similar issues arise in task-space planning (Yao
and Gupta, 2005; Shkolmik and Tedrake, 2009), where
sampling is performed in a subset of variables associ-
ated with the end effector of the robot and the rest of
variables are iteratively determined.

An alternative strategy to get a valid configuration
is to sample in the ambient space and use numerical
techniques to project the samples to the configuration
space. In this way, the need to rely on inverse kine-
matic functions is avoided. Yakey et al. (2001) pro-
pose the Randomized Gradient Descent (RGD) method
where the sample is randomly perturbed, keeping only
the perturbations that reduce the error with respect
to the configuration space. Stilman (2007, 2010) pro-
poses two projections strategies. The first one is the
Tangent Space sampling that projects the sample to
the tangent space of the nearest node already on the
configuration space and, from this projection, executes
RGD until the configuration space is reached. The
second strategy is the First-order Retraction and uses
the Jacobian pseudo-inverse method (Whitney, 1969)
to converge to the manifold. Stilman (2007, 2010) uses
a RRT-extend strategy and suggests the possible use of
a RRT-connect procedure. This latter procedure has
been recently implemented by Dalibard et al. (2009)

and by Berenson et al. (2009, 2011) in two different
ways and in the context of planning with torque lim-
its and task-constrained planning, respectively. More-
over, Berenson et al. (2009, 2011) use a bidirectional
RRT instead of a single RRT, yielding significant per-
formance improvements. Although these methods can
guarantee probabilistic completeness (Berenson et al.,
2011), their performance depends on the similarity be-
tween the ambient and the configuration spaces. If the
configuration space is heavily folded, as it is the case
in many realistic situations, samples do not uniformly
distribute on the configuration space, hindering its ef-
ficient exploration using these methods.

One way to alleviate the problems of mismatching
between the two spaces is to learn a model of the con-
figuration space (Havoutis and Ramamoorthy, 2009).
The learned model can then be exploited to compute
geodesic distances between configurations, and to make
projections and expansions that better fit the config-
uration space shape. However, the learning process
can only deal with relatively simple manifolds and it
typically requires a large set of given samples on the
manifold, which makes this approach computationally
very expansive.

Another possibility is to focus the sampling on a
subset of the ambient space around the configuration
space (Yershova and LaValle, 2009). However, even in
the case where the configuration is properly bounded,
samples are thrown in the ambient space that can be
of much higher dimensionality than the configuration
space. Um et al. (2010) sketch an appealing lazy RRT
scheme where the tree is defined in the tangent of the
configuration space, which is of the same dimensional-
ity as the manifold. However, the approach uses points
on the tangent space that do not actually fulfill the
equations defining the configuration space, it does not
consider the presence of singularities in the manifold,
and it introduces an overlap between tangent spaces
that can lead to an inappropriate sampling bias.

Although in general a global parametrization of the
configuration space is not available, local parametriza-
tions that can be coordinated to fully describe a man-
ifold are theoretically introduced in Differential Ge-
ometry and practically implemented in the so called
continuation methods, which have been strongly devel-
oped in the context of Dynamical Systems (Krauskopf
et al., 2007; Henderson, 2007). In Robotics, one-
dimensional continuation methods (also known as path
following, homotopy or bootstrap methods) have been
mainly used for solving problems related to Kine-
matics (Roth and Freudenstein, 1963; Sommese and
Wampler, 2005). To the best of our knowledge, higher-
dimensional continuation methods have been only used
marginally in Robotics to evaluate the dexterity of
mechanisms (Yang and Haug, 1994) and in a prelimi-
nary version of the planner described here (Porta and
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Jaillet, 2010). The work by Yang and Haug (1994),
though, uses the Moving Frame algorithm (Rheinboldt,
1988) that defines a collection of simplexes in the am-
bient space that fully bound the connected compo-
nent of the configuration space including a given ini-
tial point, an approach similar to that by Yershova
and LaValle (2009). The advantage of the more re-
cent higher-dimensional continuation techniques that
we use herein (Henderson, 2002a) is that they directly
operate on the tangent space associated to the configu-
ration space, which has the same dimensionality as the
configuration space and that, in the problems we focus
on, has much lower dimensionality than the ambient
space.

3 Higher-dimensional Continua-

tion

Next, we describe the main algorithmic tools intro-
duced by Henderson (2002a) which generalize the
one-dimensional pseudo-arclenght procedure (Keller,
1977). These tools generate an atlas for one of the con-
nected components of a k-dimensional continuously dif-
ferentiable variety implicitly defined in a n-dimensional
space by a system of equations

F(x) = 0 , (1)

with F : Rn → Rn−k, n > k > 0, n the dimension of
the ambient space and k the dimension of the variety.
To simplify the description, we will further assume that
the variety implicitly defined by F is actually a man-
ifold until Section 3.3, where we consider singularities
leading to bifurcations. Figure 3 illustrates the main
idea on which relies the approach.

3.1 Defining a Chart

Given a point on the manifold, xi, a chart, Ci, defines
a mapping ψi : Rk → Rn from parameters in Rk to
a portion of the manifold around xi, with ψi(0) = xi.
Henderson (2002a) defines the mapping ψi usingΦi, an
orthonormal basis of the tangent space of the manifold
at xi. This basis is the n× k matrix satisfying

(

J(xi)
Φ⊤

i

)

Φi =

(

0

I

)

, (2)

with J(xi) the Jacobian of F evaluated at xi and I the
k× k identity matrix. Then, the mapping xj = ψi(u

j
i )

is implemented by first selecting a k-dimensional vec-
tor u

j
i of parameters in tangent space, that is used to

generate a point x̂j
i in ambient space as

x̂
j
i = xi +Φi u

j
i . (3)

xi

u
j
i

x̂
j
i

xj

Pi

xi

u
j
i

x̂
j
i

xj

Pi

Pj

Figure 3: Higher-dimensional continuation method ap-
plied to a two-dimensional manifold embedded in a 3D
ambient space. Top A chart at a given point, xi, is de-
fined using the tangent space at this point. The area of
applicability of the chart is denoted as Pi. A point, x̂j

i ,
is defined using the tangent space and is orthogonally
projected to the manifold to determine xj , the center
of a neighboring chart. Bottom The area of applica-
bility of the new chart, Pj , is coordinated with Pi so
that their projections to the manifold slightly overlap.

Then, xj is the orthogonal projection of x̂j
i on the man-

ifold. This projection is obtained by solving the sys-
tem (Rheinboldt, 1996)

F(xj) = 0

Φ⊤

i (xj − x̂
j
i ) = 0

}

(4)

using a Newton procedure where xj is initialized to x̂
j
i

and iteratively updated with the increment ∆xj fulfill-
ing

(

J(xj)
Φ⊤

i

)

∆xj = −

(

F(xj)

Φ⊤

i (xj − x̂
j
i )

)

. (5)

The update is applied until the norm of the right-hand
side of the previous system becomes negligible or for a
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maximum number of iterations. If the process is not
convergent, the input parameter uj

i is out of Pi, the ap-
plicability area for chart Ci. The areas out of the scope
of the chart are to be parametrized by other charts.
The inverse of mapping of ψi can be computed as

u
j
i = ψ−1

i (xj) = Φ⊤

i (xj − xi) , (6)

and can be applied for any point xj in Rn, regardless of
whether or not it is on the manifold or if it is actually
projected into Pi.

3.2 Defining an Atlas

Since the applicability area for each chart is limited,
the full parametrization of the manifold requires to de-
fine an atlas, i.e., a collection of charts properly coordi-
nated. The algorithm proposed by Henderson (2002a)
gives a systematic way to add new charts to the at-
las and to bound their associated applicability areas.
In this work, Pi is represented as a polytope which
is initialized as an hypercube enclosing a ball, Bi, of
radius r. Pi is progressively refined as new charts are
added to the atlas, as illustrated in Fig. 4. A vector, v,
to the first vertex of Pi external to Bi is used to gener-
ate a new chart. From v, a vector of local parameters
giving a point on Bi is computed as

u
j
i = α

r

‖v‖
v , (7)

with α initialized to 1. A new neighboring chart, Cj ,
is then defined on the point xj resulting from applying

the mapping ψi(u
j
i ). If Ci and the new Cj are too far

or too different, i.e., if

‖xj − x̂
j
i‖ > σ , (8)

or if
‖Φ⊤

i Φj‖ < 1− σ , (9)

for a given parameter σ, the new chart is discarded and
a new attempt of chart generation is performed from a
set of parameters uj

i closer to xi, i.e., with a smaller λ
in Eq. (7). This adapts the distribution and the size
of the applicability areas of the charts to the local cur-
vature of the manifold. Each new chart, Cj , added to
the atlas has to be properly coordinated with the ap-
plicability areas of those charts already in the atlas.
In the example in Fig. 4, Cj is used to refine Pi from

the intersection between Bi and B̃
j
i , a ball of radius r

that approximates Ĉji , the projection into the tangent
space of Ci of the part of the manifold covered by Cj ,
as shown in Fig. 4-bottom.
The hyperplane defined by the intersection of Bi

and B̃ji can be computed by subtracting the equations
for the two balls. As shown in Fig. 4-bottom, this plane
defines a new face of Pi that eliminates some of its ver-
texes (in particular the one giving v) and generates new

r
xi

v

Pi
Bi

r

r

xi

u
j
i

x̂
j
i

Pi
Bi

B̃j
i

Ĉji

Figure 4: Progressive refinement of the applicability
area of a chart of a 2D manifold. Top The applicability
area, Pi, of chart Ci is initialized as a box including
a ball of radius r around xi. Bottom The polytope
is refined using a ball B̃j

i that approximates Ĉji , the
projection of a the area of the manifold covered by a
neighboring chart into the current chart.

ones. Similarly, Pj , the polytope associated to Bj , is
cropped using an approximation of the projection of Ci
into Cj . The applicability areas of the two neighboring
charts are not necessarily continuous, but under mild
conditions (Henderson, 2002a) their projection to the
manifold slightly overlaps, smoothly covering it. The
transition from one local parametrization to the other
can be done using the direct and inverse mappings for
the two neighboring charts. For a given vector of pa-
rameters ui at the border of Pi, the corresponding vec-
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tor of parameters in chart Cj is

uj = ψ−1

j (ψi(ui)). (10)

When a chart is fully surrounded by other charts,
all the vertexes of its polytope are inside the associ-
ated ball and the chart is not further expanded as its
applicability area is considered bounded. This process
of chart expansion continues as far as there are non-
bounded charts in the atlas. At the end of the process,
the connected component of the configuration space
containing the initial point is fully covered by a set of
charts whose area of validity are bounded by the cor-
responding polytopes (see Fig. 2-top).
The cost of the algorithm at each step is dominated

by the cost of two searches among the set of charts: one
to find a non-bounded chart and another to find the po-
tential neighbors of a new chart. The first search can
be saved keeping the non-bounded charts in a list. The
cost of the second search can be reduced using a kd-tree
storing the center points of the charts. We can avoid
the definition of the kd-tree in the high-dimensional
ambient space where it would be less effective and de-
fine it in a k-dimensional space by projecting the chart
centers into the tangent space of a given chart, for in-
stance the first one using ψ−1

1 .

3.3 Dealing with Bifurcations

If the configuration space is not a manifold everywhere,
we need to consider the presence of singularities. A sin-
gularity occurs at points where the Jacobian of the sys-
tem of equations implicitly defining the configuration
space is not full rank. Although many types of singu-
larities exist (Beyn et al., 2002), we only consider sit-
uations where the manifold bifurcates in two branches
(see Fig. 5-top). In those cases, the continuation pro-
cess evolving in one of the branches needs to detect the
presence of the other branch and to generate a chart
on it from where to extend the atlas. Otherwise, the
connected component of the configuration space con-
taining the given initial point might not be completely
characterized.
The bifurcations define a zero-measure set of dimen-

sion k − 1 made of the points where the rank of the
Jacobian of F is n − k − 1. Points on this set can
be located by monitoring an indicator function, χ(x),
whose value is different for two points xi and xj at op-
posite sides of the bifurcation, and that vanishes at the
bifurcation. One possible indicator function is

χ(x) = sign

∣

∣

∣

∣

J(x)

Φ̂b

∣

∣

∣

∣

, (11)

where Φ̂b is an approximation of the tangent space at
the bifurcation for the branch including both xi and xj .
This approximation can be computed, for instance, in-
terpolating between Φi and Φj . Thus, if, when adding

Ci Cj
xi xj

Cb

C′b

xi xjxb

x′

b

φ

ǫ

Ci Cj
Cb

C′b

xi xj

xb

Figure 5: A bifurcation in the configuration space.
Top The bifurcation is detected between charts Ci
and Cj by monitoring an indicator function χ. Middle

Once a bifurcation point, xb, is located, two charts are
defined, one on the current branch, Cb, and another on
the new branch, C′b. Bottom These new charts are
intersected with those already in the atlas. In this ex-
ample, Cb is intersected with Ci and Cj , whereas C

′

b is
the first chart on the new branch.
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a chart to the atlas, χ varies, the transition between
the new chart, Cj , and its parent, Ci, crosses a bifur-
cation. In this case and since chart Cj is generated

from chart Ci using xj = ψi(u
j
i ), a point on the bifur-

cation, xb, is located using a dichotomic search along
vector u

j
i , defined in the tangent space associated to

chart Ci. At a bifurcation point, the kernel of the Ja-
cobian of F includes k+1 vectors. The first k vectors,
φ1, . . . , φk, correspond to those in Φ̂b. The last vec-
tor of the kernel, φk+1, provides a direction to expand
the new branch. Moreover, at the singular point, there
is a a left null vector for the Jacobian, ϕ, such that
ϕ⊤J(xb) = 0 and ϕ⊤ϕ = 1.
Once the bifurcation point, xb, is accurately deter-

mined, two tangents to the configuration space can be
defined on it, one for each branch (see Fig. 5-middle).
The objective here is to determine those two tangent
spaces and use them to define two charts, Cb and C′b,
at the bifurcation point. As said, the tangent space
for the branch containing Ci and Cj is approximated

by Φ̂b. According to Henderson (2005) and Bohigas
(2011), if the Hessian of F is available, the first k − 1
vectors, φ′1 . . . φ

′

k−1
, of the basis of the tangent space

for the new branch, Φ̂′

b, are those defining a basis for

the subspace of Φ̂b orthogonal to

k+1
∑

i=1

Ni φi, (12)

with

Ni =

n−k
∑

l=1

ϕl φ
⊤

i Hl(xb) φk+1 (13)

and where ϕl is the l-th component of ϕ and Hl(xb)
is the Hessian of fl (the l-th function in F) evaluated

at xb. The last (not normalized) vector of Φ̂′

b is

φ′k =

k
∑

i=1

Nk+1 Ni φi −

[

k
∑

i=1

Ni Ni

]

φk+1. (14)

If the Hessian is not available, Φ̂′

b can be approx-
imated using the tangent space at a point x′

b on the
other branch, close to xb. This point can be computed
solving

F(x) = 0

φ⊤k+1
(x− xb) = ǫ

}

(15)

with ǫ small (we use 10−3 in our implementation) and
using a Newton process initialized at xb + ǫ φk+1, as
illustrated in Fig. 5-middle. Vector φ′k can be used
instead of φk+1 in Eq. (15) to get a closer initial ap-
proximation to the new branch. Note that this requires
the Hessian, but only to compute φ′k since the rest of φ′

vectors are not used.
The two charts defined at xb using Φ̂b and Φ̂′

b are
added to the atlas and intersected with previously

added charts, as shown in Fig. 5-bottom. Moreover,
since both charts share the same center, they are con-
sidered neighbors and this relation is used to cross the
bifurcation when necessary.

4 Path-Planning on Manifolds

Using the tools described in the previous section, a
graph can be built where nodes are the chart centers
and edges represent the neighboring relations between
charts. Then, the shortest path connecting two given
points can be computed using a standard graph search
method such as A* considering only the collision-free
transitions between the chart centers. Note that when
applying A* the atlas is not pre-computed, but incre-
mentally generated as the search progresses. However,
in practice, a large portion of the configuration space
is explored due to the optimality of A*. Thus, this
method defines an optimal, resolution complete path
planner, but it is only practical for low dimensional
manifolds, specially if the charts have small applicabil-
ity areas. If we define charts with coarser resolution,
the presence of obstacles becomes an issue since, in an
environment with many obstacles, most of the transi-
tions between chart centers will be in collision and it
will not be possible to find ways out among obstacles.

Herein, we propose modifications to the higher-order
continuation procedures to deal with the curse of di-
mensionality and the presence of obstacles. First, we
capitalize the fact that path planning is only concerned
with the path between two given configurations and not
with the full atlas, which allows to save the construc-
tion of many unnecessary charts. Second, to deal with
the presence of obstacles, we randomize the process of
atlas extension and adapt the generation of charts to
the environment structure.

4.1 Chart selection: focusing on the

path to the goal

As aforementioned, the atlas structure can be repre-
sented by a graph where nodes are the charts and edges
are the neighboring relations between charts. To guide
the search toward the goal, we use a Greedy Best-First
strategy where the chart to expand is the one with
minimum expected cost to reach the goal. This cost
for chart Ci is heuristically evaluated as

hi = βni ‖xi − xg‖ , (16)

where xg is the goal configuration, β > 1 is a fixed
parameter, and ni is the number of times chart Ci failed
to expand. The term βni prevents the search to get
stuck in local minima. As soon as the goal is connected
to the rest of the atlas, the search is stopped.
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Observe that, in contrast with A*, the Greedy Best-
First search, does not necessary generate all the neigh-
bors of a chart under expansion. The generation of
children charts proceeds only while the children have
higher cost than the parent. This strongly reduces the
final number of charts.
Finally, note that the path obtained by the Greedy

Best-First search is not necessarily optimal. As men-
tioned, the generation of a (resolution) optimal path
would require an A* search, which, in practice, is too
expensive.

4.2 Chart expansion: Generating ran-

dom directions

While the chart to extend is selected greedily, the ex-
act direction of expansion is selected randomly, allow-
ing the discovery of alternative paths in the presence of
obstacles. The random selection of expansion points is
implemented by sampling a point uniformly on the sur-
face of the ball associated with the chart and checking
if this point is inside the corresponding polytope. If it
is the case, the generation of the new chart proceeds as
detailed in Section 3. Otherwise, no chart is generated
since points on the ball surface but outside the corre-
sponding polytope are in areas covered by neighboring
charts.
The uniform generation of random points, uj

i , on the
surface of the k-dimensional ball of chart Ci is done by
generating each element of uj

i according to a normal-
ized one-dimensional Gaussian and scaling the result-
ing vector to norm r (Fishman, 1996).
To check if the point is inside the associated chart’s

polytope, we exploit the fact that convex polytopes
can be represented as the intersection of k-dimensional
half-spaces given by the polytope faces (Chen et al.,
1991). Thus, for a point uj

i = (u1, . . . , uk)
⊤ to be inside

the polytope Pi made of mi faces, it must fulfill

γt0 +

k
∑

w=1

γtw uw ≥ 0 , (17)

for all the faces f t = (γt0, . . . , γ
t
k)

⊤, t = 1, . . . ,mi defin-
ing Pi.
If the point is inside the polytope, it is approached

through small incremental steps of size δ. The inter-
mediate points are successively projected on the man-
ifold using the corresponding mapping ψ. Then we
check whether the projected point is close to the cur-
rent chart, whether the curvature of the tangent space
at this point is similar to that of the current chart and
whether the point is collision free. The last valid con-
figuration is used as a center for a new chart. This
adjusts the distribution of charts not only to the lo-
cal manifold curvature but also to the shape of the
collision-free configuration space. If no progress at all

Algorithm 1: HC-path planner.

HC-Planer(xs,xg,F)
input : A couple of samples to connect, xs and

xg, and a set of constraints, F.
output: A path connecting the two samples.
Cs ← InitChart(xs,F)1

Cg ← InitChart(xg,F)2

A← {Cs, Cg}3

hs ← ‖xs − xg‖4

H ←InitHeap(Cs, hs)5

while not Connected(A, Cs, Cg) do6

Ci ←ExtractMin(H)7

if Pi * Bi then8

Cj ←GenerateNewChart(Ci,F)9

if Cj = ∅ then10

hi ← β hi11

H ←AddToHeap(Ci, hi)12

else13

A← A ∪ {Cj} ∪BifCharts(Ci, Cj)14

hj ← ‖xj − xg‖15

H ←AddToHeap(Cj , hj)16

Return(Path(A, Cs, Cg))17

can be done towards the target point, the expansion
is declared as failure and the chart under expansion is
penalized. Since no check is done between intermediate
points, δ has to be set small enough so that only minor
interpenetrations and curvature changes could occur.

Once the goal configuration is reached, the path
to the start is reconstructed using the parent-children
charts relations.

4.3 Algorithm

Algorithm 1 corresponds to the HC-planner, imple-
menting the path planning approach introduced in this
paper. The algorithm takes xs and xg as start and goal
configurations respectively, and tries to connect them
with a path on the manifold implicitly defined by a
given set of constraints F, as expressed in Eq. (1). The
process begins by initializing two charts associated to
the two query configurations (lines 1 and 2). Each
chart is a tuple C = {x,Φ,B,P} where x is the center
of the chart, Φ is the orthonormal base of the tangent
space of the manifold at x, and B and P are, respec-
tively, the ball and the polytope bounding the area of
applicability of the chart, both defined in the tangent
space. The two charts are then included in the initial
atlas, A (line 3). To efficiently determine the chart
with the minimum expected cost, charts are organized
into a binary heap. Thus, the heuristic-to-goal of the
start configuration is evaluated (line 4) and used to
initialize the heap (line 5). In lines 6 to 16, a greedy

8



Algorithm 2: Generation of a new chart.

GenerateNewChart(Ci,F)
input : A chart to expand, Ci, and a set of

constraints, F.
output: A new chart, Cj .
Cj ← ∅1

u
j
i ←RandomInBall(Bi)2

if u
j
i ∈ Pi then3

e←True // Small error with respect to Ci4

c←True // Collision-free5

t←True // Tangent space similar to Ci6

d← δ7

while d ≤ r and e and c and t do8

x̂
j
i ← xi +Φi (d/r) u

j
i9

xj ← Project(Ci, x̂
j
i ,F)10

if ‖x̂j
i − xj‖ > σ then11

e←False12

else13

Φj ←TangentSpace(xj ,F)14

if ‖Φ⊤

i Φj‖ < 1− σ then15

t←False16

else17

if Collision(xj) then18

c←False19

else20

Cj ← InitChart(xj ,F)21

d← d+ δ22

Return(Cj)23

search is performed as described in Section 4.1, while
the two query configurations are disconnected. At each
iteration, we extract Ci, the most promising chart from
the heap (line 7) and if the polytope of this chart, Pi,
still has vertexes outside the ball Bi (line 8), we try
to extend the atlas with a new chart (line 9). If the
extension fails (line 10), the current chart is penalized
(line 11) so that its chances to be selected for future
extension decreases, and it is returned to the heap with
the updated cost (line 12). If the atlas extension suc-
ceeds, the new chart is added to the atlas, updating
the neighboring relations between charts. Every time
a new chart is added to the atlas, we check whether
the line connecting the centers of the parent and the
child charts crosses a bifurcation and, if so, we generate
charts modeling it, using the numerical procedure de-
scribed at the end of Section 3.3. Function BifCharts
(line 14) implements this process and returns the new
charts or an empty set if there is no bifurcation be-
tween Ci and Cj . Finally, the heuristic-to-goal is initial-
ized for the new chart (line 15) and added to the heap
(line 16). When the goal is reached, the parent-child

relations between charts can be used to extract the
path linking the query configurations via the centers of
some of the charts in the atlas. Note that the atlas is
divided in two sets, the one containing xs and the one
including xg and that in the presented algorithm only
the first one is extended. A bidirectional search could
be implemented alternatively extending the two parts
of the atlas. This variant could be very effective for
some obstacle arrangements, but its description is out
of the scope of this paper.

The generation of a new chart from a previous one
is presented in Algorithm 2. We select a point u

j
i on

surface of the ball defined on the tangent space of the
input chart (line 2), as described in Section 4.2. If
the point is inside the polytope (line 3), i.e., the point
is in the potential area of applicability of the current
chart, we proceed to determine a point, xj , adequate
to generate a new chart. This point is searched from
the center of the chart under expansion, progressively
moving to the target point with incremental steps of
size δ. At each step, we project the point from the
tangent space to the manifold (lines 9 and 10) using
Eqs. (4) and (5) that implement the mapping ψi. If
the projection converges to a point on the manifold,
we check whether the obtained point is too far away
from the tangent space (line 11), whether the tangent
space at the new point, computed using Eq. (2), and
that of Ci are too different (line 15), and whether it is
in collision (line 18). In any of these cases, the progress
towards the new point is stopped (lines 12, 16, and 19)
and we return the chart based on the last valid point
(line 23), if any.

The main operations of the HC-planner scale as
follows. The initialization of a chart scales with
O(n3 + 2k), with n the dimensionality of the ambi-
ent space and k the dimensionality of the configuration
space, since we use a QR decomposition to identify a
base of the kernel of the Jacobian of F, a (n − k) × n
matrix, and we have to define a box with 2k vertexes.
The initialization of the heap is O(1) and its query
(i.e., the extraction and removal of its minimum ele-
ment) is O(k) since it is logarithmic with the number
of elements in the heap (i.e., the number of charts in
the atlas) that is exponential in k. The cost of the
six basic steps involved in the chart generation is the
following: 1) the generation of a random sample on a
k-dimensional ball (line 2) is O(k); 2) the test to de-
termine if a point is inside a k-dimensional polytope
(line 3) scales as O(k 2k) since each face is defined by
a k + 1 dimensional vector and the number of neigh-
bors of a chart grows with the kissing number that
is O(2k); 3) the projection of a point from the tan-
gent space to the manifold (lines 9 and 10) is O(n3)
since it is implemented as a Newton process with a
bounded number of iterations where at each iteration
a QR decomposition is used; 4) the generation of the
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Figure 6: A torus-like configuration space with obsta-
cles and a narrow corridor. The green blocks are obsta-
cles and the charts are depicted in blue. When trying
to enter the narrow corridor using too large charts, the
algorithm can get blocked. There is not straight line
between the center of the charts at the entrance of the
corridor (marked with red dots) and the polytope ver-
texes that can be used to expand the atlas. In this case,
the width of the corridor is 0.125 and the radius of the
charts is 0.5. The deadlock is avoided with radius be-
low 0.0625 although larger radius can also be used in
practice due to the randomness in the algorithm.

tangent space to the manifold at xj (line 14) scales
as O(n3); 5) the determinant of a matrix of size k × k
that comes from the product of n×k matrices (line 15)
is O(k3 + k2 n) and, finally; 6) the initialization of a
chart (line 21) is O(2k), since the tangent space com-
puted at step 4 is reused. The detection of possible
bifurcations between the new chart and its parent ba-
sically scales with O(n3) since the dicotomic search re-
quires the evaluation the determinant of a n × n ma-
trix which is implemented via LU decomposition. The
rest of the operations in the bifurcation detection are
cheaper than this. When adding a chart to the atlas,
we have to look for neighboring charts. The selection
of potential neighbors can be done in O(k) since, us-
ing a kd-tree, this operation is logarithmic with the
number of charts that, in the worst case, scales expo-
nentially with k. For each potential neighbor we have
to determine if its center is close enough to the new
chart and whether or not the tangent spaces are sim-
ilar. These two steps are equivalent to steps 3 and 5
described before and, thus, they scale as O(n3) and
O(k2n + k3), respectively. For the actual neighboring
charts, we have to crop the corresponding polytopes.
This operation scales with the number of vertexes of
those polytope which is O(2k). Finally, the addition of
an element to the heap is O(k), in agreement with the
cost updating it.

Summarizing, in highly constrained systems as the

ones we address and where k ≪ n, the cost of the
overall algorithm scales with O(l n3) where l is the
number of charts needed to connect the start and the
goal. The number of charts l dominates the cost and
depends on the complexity of the manifold to trace
out. In the worst case, the final atlas might include
all the possible charts for a given manifold and, then, l
is exponential in k and independent of n. However,
as we show in next section, many problems require in
practice a limited number of charts to connect the start
and goal configurations.

Despite randomness allows to benefit from an infi-
nite set of directions for the expansion of the atlas,
the probabilistic completeness of the planner cannot
be guaranteed. The expansions always occur from the
center of a chart and in some situations all possible
expansion directions can be blocked by obstacles, as
illustrated in Fig. 6. Note that such a case is unlikely
and it can always be avoided using a small enough r.
Therefore, the planner is resolution complete, in the
sense that by taking a radius r small enough we can
ensure to find a solution path if it exists. In particu-
lar, in problems involving narrow passages of minimum
width υ, setting r < υ/2 would ensure a solution. How-
ever, in practice, much larger radius can be used safely.

5 Experiments

The HC-planner described in Section 4 based on
the higher-dimensional continuation tools described
in Section 3 including the treatment of bifurcations
was implemented in C.1 These tools were integrated
as modules of our position analysis toolbox (KRD
Group, 2011) using SOLID (van den Bergen, 2007)
as a collision detector, and the GNU Scientific Li-
brary (Galassi et al., 2009) for the lineal algebra op-
erations. The position analysis toolbox is based on a
formulation with redundant variables that yields a sys-
tem of equations only containing linear, bilinear, and
quadratic monomials (Porta et al., 2009). This offers
the possibility of testing the algorihtms in challeng-
ing situations where the dimensionality of the config-
uration space is much lower than that of the ambi-
ent space. Moreover, using a redundant formulation,
the configuration spaces tend to be less convoluted,
favoring both the projection of samples from the am-
bient space to the configuration space and the trace of
this space using continuation-based methods (Wampler
and Morgan, 1991). Note that the system introduced
by Um et al. (2010) is not suitable for redundant
formulations. Thus, for the purpose of comparison,
we implemented the Constrained-Connect RRT (CC-

1An implementation of the higher-dimensional continuation
tools tailored for Dynamical Systems is offered by Henderson
(2002b).
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Figure 7: The five benchmarks used in the experiments. a A star-shaped planar manipulator with three fixed
extremities and a bug trap like obstacle. b A two-arms manipulator moving an object from one gap to another.
c A rotational-only parallel manipulator moving a stick among some obstacles. d The cyclooctane molecule.
e The Schunk anthropomorphic hand performing an insertion task.

RRT), a recent method for planning in constrained
spaces introduced by Dalibard et al. (2009) that, like
the HC-planner, implements an unidirectional search
and where several nodes are added at each tree ex-
tension. In the CC-RRT, points are sampled in the
ambient space and the nearest sample on the manifold
is progressively extended towards the random sample
with small steps of size δ along the line connecting the
two points. At each extension step, the intermediate
points are projected to the manifold using the Jaco-

bian pseudo inverse method. In our implementation,
the CC-RRT nearest-neighbor queries use the kd-tree
described by Yershova and LaValle (2007) and all exe-
cutions are limited to a maximum of 600 seconds. Ex-
periments were executed on a Intel Core i7 at 2.93 Ghz
running Mac OS with parameters r = 0.4, δ = 0.05,
σ = 0.1, and β = 1.1.
Figure 7 shows the five benchmarks used in this pa-

per. The first one is a planar star-shaped manipulator
also used by Shvlab et al. (2007), but adding obsta-
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CC-RRT HC-planner CC-RRT/HC

Benchmarks k n Time Samples Time Charts T/T S/C

Star-shaped 5 18 257.06 219658 22.62 5015 11.46 43.80
Two-arms 3 10 37.89 40554 0.17 412 222.88 98.43
Parallel 3 27 17.33 9089 0.28 184 61.89 49.39
Cyclooctane 2 17 2.69 4486 0.11 138 24.45 32.50
Schunk hand 2 177 - - 68.52 59 - -

Table 1: Dimensionality of the configuration and ambient spaces, execution times and number of samples/charts
used by the CC-RRT and the HC-planner. The CC-RRT is not able to solve the Schunk hand problem in less
than 600 seconds.

Figure 8: Full atlas for the Schunk hand benchmark
projected in three variables (in translucent blue). The
atlas is build without considering joint limits nor ob-
stacles and using a CC-RRT with 75000 nodes (red
lines) departing from a given sample an trying to cover
the whole configuration space. The CC-RRT has dif-
ficulties in covering the manifold due to its intricate
structure.

cles forming a bug trap to evaluate the performance of
the algorithms in the presence of local minima. Col-
lisions are only considered between the bug trap and
the point where the three legs coincide (shown in red in
the figure). The goal configuration for this example is
shown in translucent colors in the figure. In this par-
ticular experiment, parameters r and σ are enlarged
to 1.5 and 0.5, respectively, to reduce the number of
charts to generate due to the high dimensionality of
the configuration space. The second problem involves
a system where two arms have to cooperate to move
an object from one gap to another. This problem pre-
viously appears in (Gharbi et al., 2008). The move-

ment between the start and goal configurations requires
to traverse singularities for the individual manipula-
tors2, which makes the problem unsolvable by basic
Kinematics-based Roadmap approaches (Cortés et al.,
2002; Han and Amato, 2000). The third example,
kindly provided by Juan Cortés, is a parallel platform
with rotation motion only. The task here is to move
a stick attached to the robot through a gap among
some obstacles. The fourth benchmark is the cyclooc-
tane, a molecule whose kinematics is a 8-revolute loop.
Here, we have to find a path between two conforma-
tions that avoids self-collisions involving carbon and
hydrogen atoms (depicted in cyan and white in the fig-
ure, respectively). The last benchmark is an insertion
task with the Schunk anthropomorphic hand (Schunk
GmbH & Co. KG, 2006). In this task, the hand is
grasping a needle that has to be inserted into a gap
in an object. The relative position of the hand palm
and the object is fixed and, thus, the insertion has to
be done moving the fingers and without releasing the
needle. This example is specially remarkable since us-
ing our redundant formulation (Rosales et al., 2011)
the dimensionality of the ambient space is much larger
than that of the configuration space (177 versus 2, re-
spectively), demonstrating the scalability of the HC-
planner.
Table 1 shows the performance comparison between

CC-RRT and the HC-planner averaged over 100 runs.
For each of the five benchmarks, the table gives the
dimensionality of the configuration space (k), the di-
mensionality of the ambient space (n), the execution
times, and the number of samples or charts used by
each method. The table also shows execution time ra-
tios (T/T) as well as the ratio between the number
samples used in CC-RRT and the number of charts
used with the HC-planner (S/C).
The results of the experiments show that, for this

set of problems, the execution time of the CC-RRT is
at least one order of magnitude higher than the one

2Those singularities are not the same as the singularities de-
scribed in Section 3.3. Here the Jacobian of passive variables
losses rank, but not the full system Jacobian.
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C-Bi-RRT HC-planner C-Bi-RRT/HC

Benchmarks Time Samples Time Charts T/T S/C

Star-shaped 38.02 80116 22.62 5015 1.68 15.97
Two-arms 0.92 2867 0.17 412 5.41 6.95
Parallel 11.70 1852 0.28 184 41.78 10.06
Cyclooctane 0.67 1510 0.11 138 6.09 10.94
Schunk hand - - 68.52 59 - -

Table 2: Execution times and number of samples/charts used by the C-Bi-RRT and the HC-planner.

Figure 9: Full atlas of the configuration space of the
cyclooctane (in translucent blue) and partial atlas nec-
essary to determine a path between two configurations
(in solid blue) projected in three variables. The solu-
tion path is shown as a yellow line. Only a small part
of all possible charts are necessary to solve the path
planning problem. Charts in translucent green are gen-
erated at bifurcations as described in Section 3.3. In
this case, the solution path crosses the bifurcation via
the red chart in the center of the figure.

of the HC-planner This is true despite generating sam-
ples is much faster than generating charts. However,
charts are more powerful since they do not only de-
scribe the manifold on a single point but on a local
neighborhood of a point. Thus, the HC-algorithm uses
in average 50 times less charts than samples used by
CC-RRT. In general, as the dimensionality of the con-
figuration space, k, increases the number of charts to
generate significantly grows and, thus, the HC-planner
becomes less efficient. Despite this, in the star-shaped
example where k = 5 the HC-planner is still remark-
ably more efficient than the CC-RRT. On the other
hand, as the dimensionality of the ambient space, n,
increases the cost of generating each chart increases

too. However, even for n = 177 the HC-planner cor-
rectly solves the problem in all cases, while CC-RRT
is not able to find a solution in less than 600 seconds.

As any strategy based on sampling in the ambient
space, the CC-RRT is affected by an inadequate sam-
pling bias. This problem is highlighted in Fig. 8. This
figure shows the projection on three of the variables of
the problem of the full atlas of the configuration space
for the Schunk hand example but without considering
joint limits nor obstacles. As it can be seen, the surface
defining the configuration space is heavily folded and,
therefore there is no guarantee that samples projected
from the ambient space will uniformly cover the config-
uration space surface. This complicates the exploration
of this space using CC-RRT. The figure shows a tree
built on this manifold by CC-RRT from a given sample,
without any specific goal (i.e., trying to cover the whole
configuration space), and using 75000 nodes. It can be
appreciated that despite the large number of samples,
the tree is far from covering the whole configuration
space and it does not exhibits the typical Voronoi bias
of RRTs when exploring Euclidean spaces (LaValle and
Kuffner, 2000). Since in this experiment obstacles are
not present, the inadequate bias can only be attribut-
ted to the constraints defining the manifold. Using a
non-redundant formulation, the configuration space is
likely to be even more convoluted, hindering even more
its exploration from samples in the ambient space.

The relevance of dealing with bifurcations is shown
in Fig. 9. This figure reports on a particular experi-
ment with the cyclooctane where the path between the
initial and the final configurations necessarily traverses
a bifurcation switching from one branch of the mani-
fold to another. The bifurcation set of the molecule is
shown in translucent green in the figure and the partic-
ular point at which the bifurcation is crossed is shown
as small red patch in the center of the figure. If bifur-
cations were not considered, it would be impossible to
find the path connecting the query configurations. In
this experiment, the partial atlas necessary to solve the
path planning problem includes only 200 charts while
the full atlas includes about 6000 charts.

The advantage of the HC-planner over CC-RRT
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comes either from a more efficient tree extensions over
the manifold or from the bias to the goal due to the
use of the best-first search strategy. To determine
which one of these two factors is more relevant, we
compared the HC-planner with the C-Bi-RRT plan-
ner for constrained spaces proposed by Berenson et al.
(2009, 2011). This planner uses a RRT-connect strat-
egy (although different from that in the CC-RRT) and
a bidirectional search which introduces a bias towards
the goal similar to best-first strategy used in the HC-
planner. Table 2 compares C-Bi-RRT and the HC-
planer for the five benchmarks used in this paper.
It can be appreciated that due to the bidirectional
search, C-Bi-RRT is significantly more efficient than
CC-RRT, but is still slower than the HC-planner. The
star-shaped example with the bug trap obstacles is a
remarkable case since, in principle, this type of ob-
stacle arrangements are well suited for bidirectional
search (LaValle, 2006). The HC-planner is still faster
than the C-Bi-RRT, despite using a unidirectional
search. Other problems might be devised where the
C-Bi-RRT would outperform the HC-planner. Note,
though, that a bidirectional version of the HC-planner
would probably outperform C-Bi-RRT for those cases
too. The advantage of the HC-planner over C-Bi-RRT
confirms that a relevant part of the efficiency of the
HC-planner comes from its more efficient coverage of
the manifold and not only from the search strategy
used.

The advantage of the HC-planner search strategy
with respect to a more optimal strategy is evaluated
by applying a standard A* algorithm, implemented as
described in the introduction of Section 4. In this case,
the maximum number of charts in the atlas is set to
15000. With this setting, A* is not able to solve the
star-shaped problem. This is due to the curse of dimen-
sionality: in a 5-dimensional configuration space the
number of neighboring charts for each chart is about
40 and this results in a large exponential growth of the
number of charts to generate. The two-arms bench-
mark can not be solved with r = 0.4 since with such
a coarse resolution, almost all the transitions between
chart centers are in collision. With r = 0.25 the prob-
lem can be solved, but with this resolution the number
of charts to generate increases to the point that the
A* execution time is about 5 seconds. With r = 0.05
the granularity is so thin than 15000 charts are not
sufficient to connect the query configurations. Our ap-
proach dynamically adapts the center of the charts
to the distribution of obstacles, avoiding the gener-
ation of charts on blocked regions and, thus, it can
solve the problem without resorting to finer granular-
ity. The parallel manipulator, the cyclooctane and the
Schunk hand benchmarks can be solved with A* in
17, 4, and 525 seconds, respectively, times significantly
higher than the ones used by HC-planner. When suc-

cessful, A* returns shorter paths that those obtained
with the HC-planner. However, the path length for
the HC-planner could be improved with a smoothing
post-process, which is not yet implemented in our sys-
tem. Finally, note that A* is able to detect if two
samples can not be connected because they are in dif-
ferent connected components of the manifold even in
the presence of obstacles: in the worst case the atlas
for the connected component including the start sam-
ple will be completed and if it does not include the goal
sample the planning can be declared as a failure. The
HC-planner trades off this completeness for efficiency.

6 Conclusions

In this paper, we extended the higher-dimensional con-
tinuation algorithmic tools to path planning applica-
tions. Relying on these tools, we defined a randomized
path planner for highly constrained systems that di-
rectly works on the configuration space, trying to con-
nect any pair of query configurations with a small col-
lection of local charts. The algorithm performance in
terms of coverage of the configuration space is highly
independent of the relation between the configuration
and the ambient spaces, which is in contrast with exist-
ing sampling algorithms for constrained problems that
generate samples in the ambient space. The exper-
iments show that our approach can be significantly
faster than the most recent alternative algorithms.

The worst case cost of the algorithm introduced in
this paper is exponential with the dimension of the
configuration space, which is in agreement with the
cost of the best complete path planners (Canny, 1988).
Thus, the algorithm would not scale gracefully to high-
dimensional problems and, therefore, it is specially ade-
quate for highly constrained system, i.e., systems where
the dimension of the ambient space is much higher than
that of the configuration space and where this space is
of moderate dimension. Despite this worst case cost,
the use of a greedy search strategy and the randomiza-
tion allow to solve problems with moderate complexity
(at least up to dimension 5 in the presented exper-
iments) embedded in even higher-dimensional spaces
(up to 177 in the experiments). This level of complex-
ity includes many interesting problems in Robotics and
in Molecular Biology (Brown et al., 2008). To scale
to problems with even larger dimensionality we could
rely on charts with larger applicability areas. How-
ever, the use of large charts limits the set of problems
that can be solved since environments densely popu-
lated with obstacles typically require small charts. We
would like to explore the possibility to define variants of
the HC-planner where the role of the atlas granularity
is minimized in the same way as probabilistic roadmaps
overcome the resolution limitations of approximate cell
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decomposition methods. Another possibility to explore
is to define a cost function over the configuration space
so that the exploration could be limited to areas with
low cost (Jaillet et al., 2010). All these points deserve a
more careful evaluation. In the experiments presented
in this paper we used a redundant formulation since, in
principle, it defines less convoluted configuration space
manifolds. However, redundant formulations result in
large Jacobian matrices and this affects the perfor-
mance of sampling-based and continuation methods.
Our preliminary experiments show that both methods
could benefit in the same proportion form using a non-
redundant formulation, but a more thorough testing is
necessary to confirm these results. Finally, it is also
our future endeavor to explore the possible extension
of the proposed planner to problems with differential
constraints.
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