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Abstract: Leaks are present to some extent in all water-distribution systems. This paper proposes a leakage 

localisation method based on the pressure measurements and pressure sensitivity analysis of nodes in a 

network. The sensitivity analysis using analytical tools is not a trivial job in a real network because the 

huge non-explicit non-linear systems of equations that describe its dynamics. Simulations of the network 

in presence and absence of leakage may provide an approximation of this sensitivity. This matrix is 

binarised using a threshold independent of the node. The binary matrix is assumed as a signature matrix for 

leakages. However, there is a trade-off between the resolution of the leakage isolation procedure and the 

number of available pressure sensors. In order to maximise the isolability with a reasonable number of 

sensors, an optimal sensor placement methodology, based on genetic algorithms, is also proposed. These 

methodologies have been developed for Barcelona Network using PICCOLO simulator. The sensor 

placement and the leakage detection and localization methodologies are applied to several district 

management areas (DMA) in simulation and in reality. 

Keywords: Pressure Sensitivity, Leakage Localisation, Sensor Placement. 



     



1. INTRODUCTION 

Water loss in distribution system networks is an issue of great concern for water utilities, strongly linked with operational costs 

and water resources savings. Continuous improvements in water loss management are being applied and new technologies are 

developed to achieve higher levels of efficiency. Usually a leakage detection method in a DMA (District Metered Area) starts 

by analyzing input flow data, such as minimum night flows and consumer metering data (Lambert, 1994) (MacDonald, 2005). 

Once the water distribution district is identified to have a leakage, various techniques are used to locate the leakage for pipe 

replacement or repair. Methods for locating leaks range from ground-penetrating radar to acoustic listening devices or physical 

inspection (Farley, 2003)(Colombo, 2009). Some of these techniques require isolating and shutting down part of the system. 

The whole process could take weeks or months with a significant volume of water wasted. Techniques based on locating leaks 

from pressure monitoring devices allow a more effective and less costly search in situ.   

This paper presents a model based methodology to detect and localize leaks. It has been developed within a project carried out 

by Aguas Barcelona, Water Technological Centre CETaqua, and the Technical University of Catalonia (UPC). The objective 

of this project is to develop and apply an efficient system to detect and locate leaks in a water distribution network. It integrates 

methods and technologies available and in use by water companies, including DMA and flow/pressure sensor data, in 

conjunction with mathematical hydraulic models. The method is based on the analysis of pressure variations produced by a 

leakage in the water distribution network (Pudar, 1992). This technique differs from others in the literature, such as the 

reflection method (LRM) or the inverse transient analysis (ITA), since it is not based on the transient analysis of pressure 

waves (Ferrante, 2003a; 2003b)(Misiunas, 2005)(Verde, 2007). Alternatively, the leakage detection procedure is performed by 

comparing real pressure and flow data with their estimation using the simulation of the mathematical network model and 

pressure sensitivity analysis of nodes in a network when a leak is present in a node. The analytical calculation of sensitivity is 

not a trivial job in a real network because the huge non-explicit non-linear systems of equations that describe its dynamics. 

Simulation of the network in presence and absence of leakage provides an approximation of this sensitivity. The approximation 

is used to generate a sensitivity matrix that is binarised using a threshold independent of the node. In order to successfully 

apply this methodology, the characterization of district metered areas and consumers, considered a critical issue for a correct 

model calibration, should be also addressed but is not described in this paper (see, f.e. (Pérez, 2009a) for further details). The 

paper also proposes a methodology to place pressure sensors within a DMA that optimizes  leakage detection using a minimum 

number of sensors based on the approach proposed in (Pérez, 2009b). Finally, the leakage detection methodology proposed 

will be tested with sensors installed in three DMA’s used as case studies. 



 

 

     

 

 

Section 2 reviews water distribution network modelling and presents the case study used to illustrate the proposed 

methodologies. Model based fault detection and isolation techniques described in Section 3 are used for the leakage detection 

and location. Section 4 presents how the leak signature matrix is obtained from the pressure sensitivity matrix. Since the sensor 

placement is a critical issue for maximising discriminability, an algorithm is presented in Section 5. The signature matrix is 

generated for the set of sensors selected. This matrix has to be compared with the signature obtained comparing the model and 

the real measurements. From this comparison, the leakage is located in a set of possible nodes. This methodology is presented 

in Section 6 and is illustrated in simulation using the proposed case study while Section 7 presents the results obtained in 

several real scenarios. Finally, Section 8 summarizes the conclusions.  

 

2. WATER DISTRIBUTION SYSTEMS: PLAÇA DEL DIAMANT CASE STUDY 

 

A water distribution system consists of three major components: pumps, distribution storage, and distribution piping network. 

Most systems require pumps to supply lift to overcome differences in elevation, and energy losses caused by friction. Pipes 

may contain flow-control devices, such as regulating or pressure-reducing valves (Brdys and Ulanicki, 1994). The purpose of a 

distribution system is to supply the system's users with the amount of water demanded, under adequate pressure for various 

loading conditions. A loading condition is a spatial pattern of demands that defines the users' flow requirements. 

2.1 Mathematical modelling 

The governing laws for flow in pipe systems under steady conditions are conservation of mass and energy. The law of 

conservation of mass states that the rate of storage in a system is equal to the difference between the inflow to and outflow 

from the system. In pressurized water distribution networks, no storage can occur within the pipe network, although tank 

storage may change over time. Therefore, in a pipe, or a junction node, the inflow and outflow must balance. For a junction 

node, 

in out extq q q                                                                            
(1)                 

where inq  and  outq  are the pipe flow rates into and out of the node and extq  is the external demand or supply. Conservation of 

energy states that the difference in energy between two points is equal to the energy added to the flow in components between 

these points minus the frictional and minor losses. An energy balance can be written for paths between the two end points of a 



 

 

     

 

single pipe, between two fixed graded nodes (a node for which the total energy is known, such as a tank) through a series of 

pipes, valves, and pumps, or around a loop that begins and ends at the same point. In a general form for any path, 

, ,

p p

P j L i
i J i I

h h E
 

   
                                                                        

(2)                 

where: ,L ih  is the headloss across component i along the path, ,P jh  is the head added by pump j, and E  is the difference in 

energy between the end points of the path. The primary network component is a pipe. The relationship between pipe flow (q) 

and energy loss caused by friction ( Lh ) in individual pipes can be represented by a number of equations, including the Darcy-

Weisbach and Hazen-Williams equations. The general relationship is of the form 

r
Lh Kq                                                                                   (3)                 

where K is a pipe coefficient that depends on the pipe's diameter, length, and material and r is an exponent in the range of 2. 

 

2.2 Plaça del Diamant DMA Case Study 

The case study used to illustrate the leak methodology presented in this paper is based on Plaça del Diamant DMA at the 

Barcelona Water Network (see Figure 1). This DMA is used for illustrating the methodology. Its model contains 1600 nodes 

and 41.153m of pipes. This DMA is simulated using PICCOLO software. Demands are assumed to occur in the nodes.  In this 

paper, it will also be assumed that leaks occur at the nodes. Then, under such assumption, leaks can be seen as additional 

demands but with unknown location and quantity. 

Simulated leaks introduced in the network are of 1 l/s, more or less 3% of the total demand of the sector (in the night time). 

The demand distribution all over the network is the most variable parameter of the model. Some uncertainty in the demand has 

also been included in order to test the robustness of the method. 

 

Fig. 1: Case study network: Plaça del Diamant 



 

 

     

 

3. LEAKAGE DETECTION AND ISOLATION METHODOLOGY FOUNDATIONS 

 

The methodology of leakage localisation proposed in this paper is mainly based on standard theory of model-based diagnosis 

described for example in (Gertler, 1998) that has already been applied to water networks to detect faults in flow meters (Ragot, 

2006).  Model based diagnosis can be divided in two subtasks: fault detection and fault isolation. The principle of model-based 

fault detection is to check the consistency of observed behaviour while fault isolation tries to isolate the component that is in 

fault. The consistency check is based on computing residuals, ( )kr , obtained from measured input signals ( )ku  and outputs 

( )ky  using the sensors installed in the monitored system and the analytical relationship which are obtained by system 

modelling: 

 

( ) ( ( ), ( ))k k kr Ψ y u                                                                      (4)                 

 

where Ψ  is the residuals generator function that depends on the type of detection strategy used   (parity equation (Gertler, 

1998) or observer (Chen and Patton, 1999)).  At each time instance, k, the residual is compared with a threshold value (zero in 

ideal case or almost zero in real case). The threshold value is typically determined using statistical or set-based methods that 

take into account the effect of noise and model uncertainty (Blanke, 2006). When a residual is bigger than the threshold, it is 

determined that there is a fault in the system; otherwise, it is considered that the system is working properly. In practice, 

because of input and output noise, nuisance inputs and modelling errors affecting to the considered model, robust residuals 

generators must be used. The robustness of a fault detection system means that it must be only sensitive to faults, even in the 

presence of model-reality differences (Chen and Patton, 1999).  

 

Robustness can be achieved at residual generation (active) or evaluation phase (passive).  Most of the passive robust residual 

evaluation methods are based on an adaptive threshold changing in time according to the plant input signal and taking into 

account model uncertainty either in the time or frequency domain. In this paper, a passive method in time domain has been 

proposed for robust fault detection, where the detection threshold has been obtained using the method described in Section 3. 

Robust residual evaluation allows obtaining a set of observed fault signatures 1 2( ) ( ), ( ), , ( )nk k k k


      , where each 

indicator of fault is obtained as follows: 
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where i is the threshold associated to the residual ri(k).   

Fault isolation involves identifying the faults affecting the system. It is carried out on the basis of observed fault signatures, , 

generated by the detection module and its relation with all the considered faults,  1 2( ) ( ) , ( ), , ( )
fnk f k f k f kf   that are 

compared with theoretical signature matrix FSM (Gertler, 1998). One element of this matrix FSMij will be equal to one, if a 

fault fj(k)  is affected by the residual ri(k) , in this case the value of the fault indicator i(k)  must be equal to one when the fault 

appears in the monitored system. Otherwise, the element FSMij will be zero. A given fault fi(k) is proposed as a fault candidate 

when the observed fault signature matches with its theoretical fault signature. 

 

4. LEAKAGE SENSITIVITY ANALYSIS 

 

The theoretical signature matrix needed to apply the isolation method presented in previous section can be obtained from a 

leakage sensitivity analysis. This analysis evaluates the effect of a leakage on the pressure in a node. If this process is repeated 

for each node and possible leak, the sensitivity matrix (Pudar, 1992) is obtained as follows:  
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      (6) 

where each element ijs  measures the effect of leak jf  in the pressure of node ip . It is extremely difficult to calculate S 

analytically in a real network because the model is based on a huge set of implicit non-linear equations as described in Section 

2. This work proposes instead generating the sensitivity matrix by simulation using increments of pressure and maintaining 

constant the leakage flow. It has been verified that the analytical and the simulated sensitivity converge for small leakages. The 

sensitivity matrix depends on the working point that is, on the demand and boundary conditions (Vento, 2009).  

In Figure 2, the sensitivity matrix for the case study network of Figure 1 is shown graphically. It has been ploted for 15 nodes 

distributed homogenously in the DMA as illustration. 
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Fig: 2. Sensitivity matrix 
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Fig. 3: Normalised sensitivity matrix 

Some sensors are much more sensitive to all leakages than others. Thus, a normalisation of sensitivity is needed so that the 

information provided by any node is comparable. Each row is divided by the maximum value of this row that corresponds to 

the leakage most important for that node) leading to the normalised sensitivity matrix: 
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where:  1max , , 1, ,i i ins s i n    . This matrix is shown in Figure 3 for the considered example. It shows how the most 

relevant leak is the one on the node itself, the maximum normalised sensitivity is on the diagonal. 

Finally, from the normalised sensitivity matrix (7), the FSM matrix introduced in Section 3 can be derived. Each element FSMij 

is equal to zero when leakage j does not affect pressure in node i and it is equal to 1 when leakage j affects node i. The aim is 

to generate the signature matrix from the normalised sensitivity matrix. In Figure 3, it can be seen that all leakages affect all 

pressures.  

A process inspired in the -method proposed by Sezer and Siljak (1986) is proposed with the aim of identifying the strongest 

relations between leaks and pressure measurements. In this process it is absolutely essential to choose conveniently the 

threshold that controls if a leak has or not an effect on a given pressure. The process proceeds as follows: those leaks that have 

an effect less than the given threshold are considered as a ‘0’ in the leak signature matrix (5). Otherwise, their effect is 



 

 

     

 

considered as a ‘1’. In this way, the sensitivity matrix is binarised based on selected threshold. Normalisation allows using a 

unique threshold for all sensors but the choice of the threshold is most relevant in the process. For small thresholds, all 

binarised matrix elements are 1 and only detection is possible. As the threshold increases more 0’s appear. When threshold 

approaches 1 then only diagonal is 1 and localisation is perfect (or almost perfect, simulation precision makes some nodes 

equally sensible to some leakages) but all sensors are needed. Figure 4 shows how the number of ones decrease as threshold 

approaches 1. Number of signatures increase but the significance of each sensors decays.  Figure 5 shows the evolution of the 

number of signatures present in the matrix and the maximum number of leakages with the same signature. It corresponds to the 

1613 nodes of the network in Figure 1. Theoretically with 11 sensors (rows) there may be 2047 (211-1; signature with all 0 is 

discarded as detection is imposed) different signatures for leakages (columns). In order to get maximum number of signatures a 

necessary condition is to have in each column 2n-1 1’s, where n is the number of sensors (rows). This necessary condition is 

fulfilled for the threshold where both lines in Figure 5 cross (~0.1). This is the threshold used.  
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Fig. 4: Number of 1’s and 0’s depending on threshold 
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Fig. 5: Evolution of the signature matrix depending on 

threshold 



 

 

     

 

5. SENSOR PLACEMENT ALGORITHM 

 

An optimal sensor placement is defined as a sensor configuration that achieves the minimum economical cost (number of 

sensors) while observing pre-specified performance criteria (groups of nodes that are not isolable with a minimum number of 

elements). 

A model of water network can be represented as a graph ( , )G V E , where E is the set of edges that represent the pipes and V 

is the set of vertices (nodes) where pipes meet. Vertices can represent sources, such as reservoirs or tanks, where water is 

introduced or sinks (demand points) where water is consumed. Each pipe connects two vertices iv  and  jv  and usually is 

denoted as ( , )i jv v . 

Using the graph representation, the problem of optimal sensor placement can be formulated as an integer programming 

problem, where each decision variable ix  associated to a node vi of the network can be 1 or 0, meaning respectively that the 

sensor will be or not installed in this node (Bagajewicz, 2000). The starting point of the algorithm is the leakage sensitivity 

matrix obtained by simulation binarised using the process described in Section 4. Every row corresponds to a hypothetical 

position of a sensor in a node while every column corresponds to a possible leak in a node. Thus, if a given element of this 

binary matrix contains a “1” means that installing the sensor in the node corresponding to this row will be able to detect the 

fault associated to column of this element,  assuming a single leakage at time.  A particular distribution of sensors (solution) is 

achieved by instantiating the value of decision variables ix  to “1” (meaning installing the sensor) or to “0” (meaning non 

installing the sensor). For any particular distribution, a set of groups of indiscernible leaks appear, each group with in leaks. 

The objective of the sensor placement algorithm is to find the sensor distribution that minimizes the number of elements for the 

largest set of leaks with the same signature. The objective (cost) function is therefore: 

 
1

1
, ,

min max , ,
f

n
n

x x
J n n


                                          (8) 

where 1, , nx x  are the decision variables that determines a particular sensor distribution and ni is the number of nodes in 

group i of indiscernible nodes for a given leakage if . In order to increase isolability this cost should be minimized but at the 

same time keeping the economical cost reasonable, that is installing the less number of sensor that is possible. The problem is 

solved for a number of sensors; this number is increased till the cost does not decrease subtantialy. A constraint is included 

such that all leaks should be detected. It is introduced by forcing that signature with all 0’s is not accepted.  

   



 

 

     

 

This optimization problem can be solved using either deterministic method based for example in Branch and Bound or 

heuristic methods based for example in Genetic Algorithms. The first type of methods guarantee the optimal solution but the 

computation time tends to be exponential with the number of nodes/faults (Sarrate et al., 2007). On the other hand, the second 

type of methods just guarantees a suboptimal solution that tends to the optimal one when the size of considered population 

tends to infinity. Besides the formulation of solutions in series of 1’s and 0’s are most convenient for a GA. 

In Figure 6, the evolution of cost function is presented. The cost has been taken as the number of nodes in the biggest group of 

possible leakage isolated with a number of sensors and a threshold between 0.1 and 0.4. A sharp improvement appears with the 

first sensors but adding more than 7 or 8 sensors introduce little improvement for any threshold. Therefore only 8 sensors are 

used. 
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Fig. 6: Evolution of the cost function depending on number of sensors and threshold 

In Figure 7, the different groups of nodes with the same leakage signature are shown. There are 39 groups and the hugest 

contains 190 nodes. The localization of the sensors after the optimization process is in the last figure. 
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Fig. 7: Groups of nodes with the same leakage signature with 8 sensors and placement of sensors 

 

In an ideal situation with a well calibrated network model, a leakage should be searched in one of these regions instead of the 

whole sector. It is important to note that regions are connected and geographically coherent. Such coherence is a major issue 

for further search in situ. For further details see (Pérez, 2009b). 

 

6. LEAKAGE DETECTION AND LOCALISATION ALGORITHM 

 

The localisation of leakages is based on the isolation techniques presented in Section 2. The binarised sensitivity matrix is used 

as a signature matrix for all leakages. In Section 3, the signatures were used to obtain an optimal distribution of the sensors and 

in Figure 7 the groups of nodes that generate the same signature are presented.  

In the process of leak localization, the signature generated in case of having 8 sensors installed with a fault is compared with 

the binarised signature matrix. If the model were perfect, the leak should be localized with one measurement. Because of 

modelling uncertainty, the test has been done during 15 days of simulation (only the lowest consume hour is used each day 

when uncertainty in demands is minimal) and then three options are used to assign the observed leakage signature to a group: 

- Mean of the sensitivities 

- Mean of binarised sensitivities 

- The voting (all days the leak is assigned to a  group and that with more assignation is the elected) 



 

 

     

 

Results, even without uncertainty, were not good using any of the three decision criteria. It was due to the changing boundary 

conditions (pressures and flows) that affected very much the sensitivity matrixIt is necessary to generate ad hoc for each day 

with proper boundary conditions that are known. When a new signature matrix for each day is generated the two first 

approaches are useless because signature change for each iteration and means are meaningless. The third one is tested. It 

provided perfect results without uncertainty, 100% localisation. It means that each day the group that was signalled suitable to 

have a leakage contained the node with leakage. These groups were all different each instant and signature matrix is adapted to 

boundary conditions thus only the voting method had sense.. Thus, there are different probabilities of having a leak in a node. 

This appears on Table 1. It shows the number of nodes with that have been signalled 0-15 times (each for each day). The 

shadowed line cell corresponds to the one that contains the node with leakage. In this case, it corresponds always to the 15. It 

has been done for the 39 groups (one leakage for each) that appeared in the first day (Figure 7). In Figure 8, the nodes are 

presented in grey scale representing the times that have been signalled to be suitable of containing a leakage. The one that 

contained it appears in the black area. 
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Fig. 8: Localisation of a leak in the correct zone with 

adapting signature matrix 
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Fig. 9: Localisation of a leak in the correct zone with 18% 

uncertainty in the demand.  

In order to test the methodology under uncertain parameters in the model, uncertainty in demands was introduced. Uncertainty 

was estimated using the monthly variation for a demand. It was of 18% of the total demand. Uncertainty was introduced as a 

coefficient multiplied to the demand of each node generated as a random number between 0.8 and 1.2. The global demand has 

been kept equal  because it is a measured variable and affects greatly the sensitivity. 

Results are presented in Table 2 and Figure 9. In this case, the leaky node is not always exactly in the most signalled group and 

the dark grey in the figure does not correspond to 15 but to 13 days. In Figure 9, the gray scale is lighter than in Figure 8 

because there are less correct detections due to the uncertainty. 



 

 

     

 

 

 

Table 1: Results using voting criteria adapting signature 

matrix 

1 2 3 4 5 6 7 8 9 10 11 12 13
0 529 316 503 316 986 798 782 884 1245 489 1253 1343 363
1 629 505 639 519 438 615 491 518 325 761 131 64 778
2 175 559 311 545 48 147 95 52 64 279 15 9 345
3 126 88 12 88 18 37 76 5 3 9 29 12 59
4 32 57 11 51 17 15 32 22 0 17 1 6 22
5 19 39 21 37 30 0 63 12 0 15 0 7 33
6 54 35 9 11 11 15 30 11 0 9 16 2 13
7 31 8 5 39 7 0 14 5 0 4 117 6 10
8 9 2 15 3 3 0 13 9 0 5 2 9 2
9 1 1 31 0 12 0 2 6 1 5 11 94 4

10 10 2 56 1 18 0 6 17 0 1 5 46 9
11 3 1 15 2 10 2 7 55 0 26 11 7 0
12 1 6 8 1 6 0 6 33 1 0 2 10 0
13 9 18 2 9 0 1 15 10 0 5 4 2 0
14 5 0 1 0 29 6 6 0 0 6 8 20 0
15 7 3 1 18 7 4 2 1 1 9 35 3 2

14 15 16 17 18 19 20 21 22 23 24 25 26
0 357 1311 1363 354 489 539 477 490 1396 1430 996 959 807
1 869 66 44 853 552 575 778 512 122 92 372 347 533
2 304 21 13 317 156 179 255 182 12 11 82 132 134
3 50 83 5 57 170 59 65 47 55 52 100 90 53
4 14 18 6 14 10 70 4 141 3 5 39 15 50
5 12 119 9 11 7 53 5 4 7 8 2 23 1
6 9 5 5 11 5 95 12 25 3 7 4 8 7
7 9 2 35 7 25 18 33 31 4 1 2 19 1
8 1 0 11 1 29 12 0 17 3 11 5 18 23
9 0 0 23 0 53 9 2 25 11 3 1 11 9

10 2 4 0 3 69 4 1 21 2 0 6 14 14
11 4 8 9 4 11 8 4 46 2 5 15 1 0
12 6 1 0 2 36 3 1 35 0 0 2 1 0
13 2 1 17 4 9 8 0 23 9 11 8 1 6
14 0 0 44 1 15 1 1 24 0 0 2 0 0
15 1 1 56 1 4 7 2 17 11 4 4 1 2

27 28 29 30 31 32 33 34 35 36 37 38 39
0 596 769 993 594 597 593 544 593 490 490 593 877 568
1 477 585 293 471 597 593 429 593 512 518 595 357 610
2 362 208 90 209 79 109 246 109 182 163 116 43 158
3 109 45 97 55 115 76 127 76 47 5 81 105 48
4 56 2 77 120 121 42 176 42 140 59 40 34 50
5 9 2 34 19 43 16 28 18 5 43 34 11 30
6 0 7 21 32 12 44 24 40 25 76 32 4 52
7 1 5 3 35 33 19 16 26 35 74 13 7 35
8 2 2 8 33 11 51 2 43 18 16 27 0 18
9 6 1 10 14 9 9 2 16 22 101 23 2 8

10 1 1 4 23 13 6 5 6 38 9 9 40 14
11 6 5 2 5 2 4 23 3 25 79 27 139 8
12 1 7 2 16 6 11 6 23 30 3 7 13 30
13 1 0 5 8 0 40 4 22 38 2 27 1 10
14 8 0 0 1 1 12 6 21 7 1 5 6 0
15 5 1 1 5 1 15 2 9 26 1 11 1 1
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Table 2: Results using voting criteria with uncertainty 18% 

1 2 3 4 5 6 7 8 9 10 11 12 13
0 810 504 688 504 1027 1185 539 688 794 754 1223 1343 765
1 412 646 754 646 207 370 418 708 517 762 164 67 778
2 219 270 15 270 233 28 414 63 326 27 11 6 19
3 34 61 5 61 38 20 73 9 0 23 27 12 37
4 39 83 26 83 17 9 123 29 0 10 17 3 14
5 17 35 25 35 18 0 15 10 0 5 93 9 10
6 71 8 19 8 9 0 18 20 0 11 22 9 9
7 12 2 20 2 4 1 12 26 0 38 6 9 6
8 4 1 42 1 10 17 4 42 1 8 10 94 2
9 17 2 20 2 16 3 6 37 0 2 5 46 0

10 5 22 26 4 25 4 8 8 1 0 23 7 0
11 0 6 0 24 31 3 10 0 1 0 39 10 0
12 0 0 0 0 5 0 0 0 0 0 0 2 0
13 0 0 0 0 0 0 0 0 0 0 0 20 0
14 0 0 0 0 0 0 0 0 0 0 0 3 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0

14 15 16 17 18 19 20 21 22 23 24 25 26
0 645 1322 1363 623 637 528 1121 638 1272 1272 833 953 811
1 895 66 44 911 554 479 274 561 247 235 535 325 551
2 55 10 5 61 161 187 193 152 14 15 82 119 144
3 11 83 10 11 22 251 42 23 3 12 100 100 58
4 12 18 7 8 3 106 2 3 54 9 39 24 14
5 6 13 9 6 1 34 5 1 4 51 2 44 1
6 1 111 6 5 6 11 3 30 17 13 4 11 8
7 4 1 1 6 28 2 0 40 13 17 2 23 34
8 9 1 36 3 29 1 0 32 1 5 5 20 14
9 1 0 7 0 82 3 0 70 15 11 1 18 2

10 1 4 85 6 94 25 0 64 0 0 6 2 3
11 0 4 58 0 12 10 0 26 0 0 18 1 0
12 0 7 9 0 11 3 0 0 0 0 9 0 0
13 0 0 0 0 0 0 0 0 0 0 4 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0

27 28 29 30 31 32 33 34 35 36 37 38 39
0 596 596 597 594 597 595 526 593 638 638 595 1165 570
1 477 477 601 478 597 619 464 613 501 511 620 10 636
2 362 367 100 270 85 94 197 99 16 21 106 101 116
3 103 153 118 68 145 85 120 87 80 6 98 106 88
4 29 15 118 50 80 52 192 29 70 0 28 34 54
5 37 3 42 34 42 17 68 32 67 101 19 17 50
6 5 7 23 45 39 18 13 21 40 151 65 4 47
7 3 6 9 30 19 64 8 59 54 23 24 2 12
8 7 1 14 24 15 15 8 21 37 100 9 3 41
9 5 1 8 10 7 5 3 7 44 9 19 38 10

10 8 8 4 10 6 20 2 3 93 73 35 144 16
11 7 6 4 10 4 34 16 39 0 4 20 9 0
12 1 0 2 12 3 20 14 15 0 3 2 7 0
13 0 0 0 5 1 2 9 20 0 0 0 0 0
14 0 0 0 0 0 0 0 2 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0

N
um

be
r o

f d
et

ec
ti

on
s

N
um

be
r o

f d
et

ec
ti

on
s

N
um

be
r o

f d
et

ec
ti

on
s

Leak

Leak

Leak

 

 

Increasing uncertainty interval, the proposed localization methodology produces poorer results. For a 50% uncertainty leaks 

were not well localized but they were localized in a neighbour zone. 

The main handicap of the methodology is that in a highly looped network pressure drops due to a leak are not very significant. 

Therefore it demands high accuracy in transducers. Table 3 show the maximum and minimum pressure drop for leaks  0.5-10 

l/s. In high demand hour the difference is higher but the uncertainty in demand is higher too.  Thus the high cost of sensors 

may not guarantee good results because of uncertainties in demands. 



 

 

     

 

Table 3: Maximum and minimum pressure drop  

Leakage flow [l/s] Minimum demand hour Maximum demand hour 

Minimal ΔP [m] Maximal ΔP [m] Minimal ΔP [m] Maximal ΔP [m]

0.5 0.01 0.02 0.01 0.03 

1 0.01 0.04 0.01 0.06 

2 0.01 0.09 0.01 0.12 

3 0.01 0.14 0.01 0.18 

4 0.01 0.19 0.01 0.24 

5 0.01 0.24 0.01 0.31 

6 0.01 0.29 0.01 0.38 

8 0.01 0.37 0.01 0.52 

10 0.01 0.44 0.01 0.67 

 

7. REAL TEST 

 

Results from simulation test showed that high accuracy sensors are required. Such sensors exist but represent a major 

investment. Before such investment is authorised real test with existing sensors were carried on. Few sensors with non optimal 

distribution are available. Measures have not been taken in best conditions (lower demand time). Nevertheless these results 

were interesting for the company in order to take further decisions and are presented in this section. Two scenarios have been 

used. One was a leakage forced in Enamorats DMA and the other one was a real episode of leakage in Santa Eulalia DMA. 

7.1 Enamorats DMA scenario 

Enamorats DMA model contains 260 nodes and two water input points, where a flow meter and a pressure meter are installed. 

Input flows in the network and pressures at these points are fixed in the simulation model, boundary conditions. In addition to 

this information, this DMA have 3 installed pressure sensors, which have been used to apply leakage localisation methodology. 

The water company provided boundary conditions (pressure and flow) and pressure inside the DMA (three sensors) data with 

10 minute time-step. This information was for 5 days in the last day a leakage was forced. Table 4 shows information about 

this leakage. 

Table 4: Leakage information in Enamorats DMA 



 

 

     

 

Flow[m3/h] Flow [l/s] Leak location Start time End time 

18 5 Lepant/Aragó 10:20 10:35 

14 3.9 Lepant/Aragó 10:37 10:52 

9 2.5 Lepant/Aragó 10:53 11:08 

6 1.7 Lepant/Aragó 11:10 11:25 

16 4.4 Aragó 79 11:53 12:08 

The first step is to verify that the hydraulic model provided is correctly calibrated. A four days simulation without any leakage 

has been done taking pressure values in three internal pressure sensors. The result is the pressure evolution during each day in 

internal pressure sensors. Differences between the model and reality are important because of demand uncertainty. The worst 

consequence of these results is that pressure difference caused by a leak can be hidden. To solve this problem model is 

corrected with the mean error during no leakage days. Real corrected pressure using these mean errors in each sensor is shown 

in Figure 10, compared with the simulation ones. 
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Fig. 10: Corrected real pressures compared with simulated ones. 

Although a correction to real pressure has been applied no difference in the period of leakage can be observed. Thus 

localisation methodology is applied to see if it is possible to show more information not seen in previous figures. Leakage 

period duration is about one hour. For leakage period, five second step time data is given by the Water Company, but only 

pressures, not flows. If a ten minute step time data is used, in an hour period only 6 samples can be taken. To increase the 

number of samples a minute step time is proposed. To calibrate the model pressures at the input points are calculated by the 

mean of the last 30 second data (6 samples) and input flow is taken as a constant during 10 minutes. 

To find discriminable zones obtained with installed sensors, a leak is moved for all 260 possible nodes using the model. For the 

leakage period two simulations are done: the first one without any leakage and the second one with a leakage moved for 260 



 

 

     

 

nodes. Forced leakage flow is not constant, as is seen in Table 3, but only ten minutes data is given for each case. For this it is 

assumed that the leakage flow is one of them for the whole period, 5 l/s. This assumption can be justified for the fact that in a 

real situation the leakage flow may be variable and unknown.  

In the same way as in simulation tests, leakage methodology has been applied during more than one step time. In next figures 

some results are shown. The first case corresponds to the leakage period. As well as in simulation, signatures matrix has been 

calculated depending on boundary conditions. Due to the little quantity of data, the test has been done during the whole 

leakage period, taking a pressure measure every minute.  Results for a 0.4 threshold are shown in Figure 11. Although some 

leakages are not detectable (55 nodes zone), the real leakage is outside this zone. Sensors are not located optimally, so these 

undetectable leakages were expected. The number of discriminable zones is four, including the non-detectable one. Leakage 

zone corresponds to the third group, which contains 88 nodes. 

 

Fig. 11: Leakage localisation results with a threshold of 0.4 in a leakage period. 

The leakage is given in the circled node: 31 of 64 detections signalled the correct leakage zone. After this test a non leakage 

period is chosen to apply the methodology. At night discrepancies between reality and the model are smaller than during the 

day, so it is the best time to do the test. Although an important zone is signalled as a possible leakage zone, number of 

detections is only 9 on 42. These results are shown in Figure 12. 

València Lepant Padilla

0 0 0 55 0
1 0 0 23 17
1 1 0 88 31
1 1 1 94 4

Total (max. = 64) 52

Signature
Number of detectionsNumber of nodes

Threshold = 0.4

3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.2

x 10
4

8.38

8.39

8.4

8.41

8.42

8.43

8.44

8.45

8.46

8.47
x 10

4

x(m)

y(
m

)

Detection zone



 

 

     

 

 

Fig. 12: Leakage localisation results with a threshold of 0.4 in a non leakage period. 

7.2 Sta. Eulalia DMA scenario 

Sta. Eulalia DMA contains 2132 nodes and four input points. In this case the number of installed sensors is four. The 

information provided for Sta. Eulalia DMA was for 14 days where two real leakage periods of 14 and 25 l/s mean flow. The 

first one was in the 15th of September 2009 and the second one in the 9th of September 2009.  The same methodology has been 

applied. Leakage periods data are shown in Table 5. The number of pressure samples to apply the localisation technique is 

really low, 6 in the first episode and 2 in the second one. 

Table 5: Leakage information in Sta. Eulalia DMA 

Day Start time End time Mean flow 

09/09/2009 

15/09/2009 

16:35  

12:15 

17:30 

12:30 

25 l/s 

14 l/s 

Detection results for the first and the second episodes are shown in Figure 13. Although the leakage is inside the detection zone 

in both cases (in the circled zones), it is not situated in the most probable zone.  
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Fig. 13: Leakage localisation results for the first and the second leakage period in Sta. Eulalia 

 

8. CONCLUSIONS 

 

A leakage localization method based on the pressure measurements and sensitivity analysis of nodes in a network has been 

proposed. The leakage localization methodology is founded in standard model based fault diagnosis well established theory.  

In order to maximise the isolability with a reasonable number of sensors an optimal sensor placement methodology based on 

genetic algorithms is also proposed. The objective function in the minimisation process was the size of the maximum group 

discriminated. 

To assess the validity of the proposed approach, it has been applied to real DMA of Barcelona network in real and simulated 

leak scenarios. Models and information were provided by the water company. For these sectors (DMA), the sensor placement 

and the leakage detection and localization methodologies have been applied with successful results even in presence of demand 

uncertainty. 

An issue in the process is to recalculate the sensitivity matrix for each boundary condition using the simulation model because 

of the high dependence of it to global consumption. This approach is being currently developed using linear parameter varying 

(LPV) models that consider the consumption as a scheduling variable (Vento, 2009). 
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