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Real-time Segmentation of Stereo Videos
on a Portable System with a Mobile GPU

Alexey Abramov, Karl Pauwels, Jeremie Papon, Florentin Wörgötter, and Babette Dellen

Abstract—In mobile robotic applications, visual information
needs to be processed fast despite resource limitations of the
mobile system. Here a novel real-time framework for model-
free spatio-temporal segmentation of stereo videos is presented.
It combines real-time optical flow and stereo with image seg-
mentation and runs on a portable system with an integrated
mobile GPU. The system performs on-line, automatic and dense
segmentation of stereo videos and serves as a visual front-
end for preprocessing in mobile robots, providing a condensed
representation of the scene which can potentially be utilized
in various applications, e.g., object manipulation, manipulation
recognition, visual servoing. The method was tested on real-world
sequences with arbitrary motions including videos acquired with
a moving camera.

Index Terms—stereo segmentation, mobile systems, visual
front-end

I. INTRODUCTION

Real-time visual information is becoming more and more
important in robotic applications for two main reasons: first,
the research done during the last decades in computer vision
and image processing allows transforming visual information
into more descriptive but nevertheless quite precise represen-
tations of the visual scene for using them in a wide range
of robotic applications, e.g., robot movement, object grasping,
and object manipulation [1], [2]. Second, new hardware archi-
tectures and programming models for multi-core computing
have been proposed in the last ten years, through which many
algorithms could be upgraded to real-time processing [3].
Currently different hardware platforms are used as accelerators
for complex computations in the domain of visual processing,
such as multicore processors, Digital Signal Processors (DSP),
Field Programmable Gate Arrays (FPGAs) and Graphics Pro-
cessing Units (GPUs).

In the area of visual processing, the evolution of Graphics
Processing Units (GPUs) during the last four years has been of
particular importance. GPUs are specialized microprocessors
which have been initially invented for image processing and
acceleration of 2D and 3D graphics rendering. GPUs are
used in workstations, personal computers, mobile phones and
embedded systems. At present GPUs are a part of every
computer and can be used immediately without any addi-
tional hardware upgrades. During the last four years GPUs
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Barcelona, Spain, e-mail: bdellen@iri.upc.edu.

have evolved into highly parallel, multi-threaded, multi-core
processors with tremendous computational power and very
high memory bandwidth. For algorithms of high complexity,
their parallel architecture makes them more efficient than
general-purpose CPUs in many cases. Therefore GPUs can
be used not only for graphics processing but also for general-
purpose parallel computing. Moreover the graphics capabilities
of GPUs make the visual output of the processed data directly
from the microprocessor much simpler compared to other par-
allel platforms. The parallel programming model of Compute
Unified Device Architecture (CUDA) proposed by NVIDIA in
2007 makes parallelization of software applications on GPUs
quite transparent [4].

However, processing power, memory bandwidth and num-
ber of cores are not the only important parameters in robotic
systems. Since robots are dynamic, movable and very often
wireless systems, huge processing platforms with high power
consumption (mostly for cooling) are not practicable despite
their high processing efficiency. Because of this, mobile paral-
lel systems running on portable devices are of growing interest
for computer-controlled robots. Nowadays mobile GPUs from
the NVIDIA G8X series are supported by CUDA and can
be used very easily for general-purpose parallel computing.
In Fig. 1, the dynamics of development for desktop and
mobile GPUs from the NVIDIA G8X series until today are
shown, demonstrating that desktop GPUs are three times more
powerful and have three times faster memory bandwidths than
mobile ones. However, powerful desktop GPUs consume so
much power that it is almost impossible to use them in small
computer-controlled robots, while even the most powerful
mobile GPUs integrated into mobile PCs do not need an extra
power supply. Taking into account this fact we consider in
the current study a mobile PC with an integrated mobile GPU
from NVIDIA supported by CUDA as a portable system. Such
a system can run for up to three hours in autonomous mode
being supplied by the laptop battery.

Mobile robots have to process and structure abundant dy-
namic visual information in real-time in order to interact
with their environment in a meaningful way. For example,
the understanding of the visual scene in terms of object and
object-action relations [2] requires objects to be detected,
segmented, tracked, and important descriptors, e.g. shape
information, to be extracted [5]. This process corresponds to
a dramatic compression of the initial visual data into symbol-
like descriptors, upon which abstract logic or learning schemes
can be applied. This occurs for example if a robot performs
object manipulations or needs to come closer to an object to
execute a grasping action. Finding this reduced symbol-like
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Fig. 1. Comparison of desktop (blue) and mobile (green) graphics cards for NVIDIA GeForce 8X, 9X, 100, 200, 400, 500-series GPUs with a minimum
of 256 MB of local graphics memory. The following parameters are compared: (A) Processing power in floating point operations per second, (B) Maximum
theoretical memory bandwidth, (C) Number of CUDA cores and (D) Graphics card power.

representation without prior knowledge on the data (model
free) thus represents a major challenge in cognitive-vision
applications – this problem is also known as the signal-symbol
gap [6].

The video segmentation problem is generally formulated as
the grouping of pixels into spatio-temporal volumes where
each found object is uniquely identified and satisfies temporal
coherency, i.e., carries the same label along the whole video
stream [7], [8]. Several approaches for the video segmentation
problem have been proposed over the last two decades. They
can be summarized as follows.

On-line and off-line methods. On-line video segmentation
techniques use only preceding information and do not need
future data. Such methods can segment video sequences of
arbitrarily length in a continuous, sequential manner [9], [10],
[11], [12], [13], [14], [8]. Off-line methods on the contrary
require the entire video sequence as input [15], [16], [17],
[7]. Off-line techniques are more robust in terms of temporal
coherence but they cannot be involved in perception-action
loops, since future perception is unknown.

Dense and sparse techniques. A video segmentation
method is dense if it treats all objects visible in the scene trying
to assign each pixel to a proper spatio-temporal volume [9],
[10], [11], [12], [16], [17], [8], [7]. Techniques that perform
segmentation of only pre-selected objects are sparse [13], [15],
[14]. Note that if not all objects are selected, the consequent
employment of segments, given by sparse techniques, is very
constrained and excludes an estimation of object positions
relative to the environment which as a consequence excludes
robot movements aimed at objects.

Automatic and nonautomatic approaches. The method is
automatic or unsupervised if it runs without interaction with a
user and does not need any prior knowledge about objects [9],
[11], [12], [16], [8]. Nonautomatic or supervised techniques
are very often driven by user input, use some prior knowledge
about the visual scene and make assumptions about the number
of objects present [10], [15], [17], [13], [14]. The hierarchical
graph-based video segmentation, proposed by Grundmann et
al. (2010) [7], can run in both automatic and nonautomatic
modes.

Since mobile robots are usually autonomous systems that
interact with their environment, only on-line automatic video
segmentation techniques can be employed in the perception-
action loop. Moreover, a complete information about the visual
scene can be derived only by the use of dense methods. The

following methods are the most famous and up-to-date on-line
dense automatic video segmentation techniques:

The mean-shift video segmentation, proposed by Paris
(2008) [11], is based on the popular image segmentation tech-
nique by Comaniciu and Meer [18]. The temporal coherence is
achieved by estimating the density of feature points, associated
with all pixels, with a Gaussian kernel using data from all
preceding frames. The method has a real-time performance
on gray-level videos of size 640× 360 pixels.

Multiple hypothesis video segmentation (MHVS) from su-
perpixel flows by Vasquez-Reina et al. (2010) [8] generates
multiple pre-segmentations per frame considering only a few
preceding frames. For each pre-segmentation it finds se-
quences of time consistent superpixels, called superpixel flows
or hypotheses. Each hypothesis is considered as a potential
solution and a hypothesis leading to the best spatio-temporal
coherence. In this approach the segmentation decision is
postponed until evidence has been collected across several
frames. Despite quite accurate segmentation results the MHVS
needs seconds to process one frame which makes it impossible
to use it in real-time robotic applications.

Video segmentation based on propagation, validation and
aggregation of a preceding graph by Liu et al. [9] exploits
inter-frame correlations to propagate reliable groupings from
the previous frame to the current. A preceding graph is build
and labeled for the previous frame and temporally propagated
to the current frame using a global motion estimation, followed
by validation based on similarity measures. Pixels remained
unlabeled after the propagation are grouped into subgraphs by
a simple color clustering. Although the method gives results
of a very high quality, it runs at frame rates inapplicable to
real-time utilization.

Matching images under unstable segmentations by Hedau et
al. (2008) [12] is based on the fact that object regions obtained
by existing segmentation methods do not always produce
perceptually meaningful regions. In this approach the current
frame is segmented independently of preceding frames and the
temporal coherence is achieved by region matching between
the current and previous frames using the Partial Match Cost
which allows fragments belonging to the same region to have
low match cost with the original region. However, the method
cannot run in real-time due to slow region matching procedure.

The three last approaches provide very accurate spatio-
temporal volumes and can segment arbitrary long video se-
quences, but these methods do not run in real-time and
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Fig. 2. (A) The architecture of the framework for segmentation of stereo videos on the portable system with a mobile GPU. (B) A prototype of the movable
robot steered by a mobile system with stereo cameras and a laptop with an integrated mobile GPU.

as a consequence cannot be employed in the perception-
action loop. The mean-shift video segmentation approach on
the contrary runs in real-time but works only on gray-scale
videos and needs all past data to achieve satisfactory temporal
coherence.

Although stereo data has recently been employed for seg-
mentation [19], [20], there is no method that performs spatio-
temporal segmentation of stereo videos with establishing cor-
respondences between left and right segments. As a con-
sequence, there is no specific on-line, dense and automatic
approach for the segmentation of stereo videos. Segmented
stereo videos provide additional information about the scene
and allow us to derive 3D relations between objects [2].
Moreover, segment correspondences can be used for depth
computation [21] which is of high importance for object
manipulation tasks.

In this paper we present a novel visual front-end for
real-time spatio-temporal segmentation of stereo videos on
a mobile PC with an integrated mobile GPU. The proposed
visual front-end is on-line, automatic, dense and solves the
following problems: (i) Stereo images are segmented in a
consistent model-free way. (ii) The temporal coherence in a
stereo video stream is achieved using a label-transfer strategy
based on estimated motion and disparity data, resulting in a
consistent partitioning of neighboring frames together with
a consistent labeling. Only the results obtained on the very
last left and right frames are employed at a time in order to
guarantee spatio-temporal coherence for the current left and
right frames, respectively. (iii) All computations run in real-
time or close to real-time which allows the framework to be
used in the perception-action loop.

Parts of this study have been previously published at a
conference [5]. In the current study some significant improve-
ments have been achieved as compared to the conference
version: (i) the used segmentation kernel has been optimized
in order to achieve real-time performance, (ii) the perceptual
color space CIE (L∗a∗b∗) is used instead of the input RGB
space which leads to the formation of more accurate spatio-
temporal volumes, (iii) the method does not rely on motion
estimated for the left video stream only; motion estimation
for the right stream is included which makes right segments
more stable and decreases processing time for segmentation
of stereo videos, (iv) the algorithm can now run on mobile
GPUs, and (v) the method was tested on more complex

scenes including sequences with moving cameras and the
performance of the method has been quantified in much more
detail.

The paper is organized as follows. In Section II we describe
the architecture of the framework together with the proposed
algorithms. In Section III we present the results of an exten-
sive experimental evaluation and finally, in Section IV, we
conclude our work.

II. SEGMENTATION OF STEREO VIDEOS

A. Overview

The architecture of the framework for segmentation of
stereo videos is shown in Fig. 2(A). It consists of a stereo
camera, a mobile computer with an integrated mobile GPU
and various processing components that are connected by
channels in the framework. Each component in the framework
can access the output data of all other components in the
framework. The processing flow is as follows. Stereo images
(synchronized left and right frames) are captured by a stereo
camera. The acquired images are undistorted and rectified (in
real-time with a fixed stereo-geometry [3]) before they enter
the framework. Optical flow is computed for the current left
and right frames together with the disparity map on a GPU
using real-time algorithms and the results are accessible from
channels 3 and 4, respectively (see Section II-C).

For frames from the left video stream segment labels from
the previous segmentation are warped to the current frame
using the optical flow vector field (channel 3). This new label
configuration is used as an initialization for the fast segmenta-
tion algorithm, which also runs on a GPU (see Section II-D).
The adjustment of initial labels to the current frame will be
referred to as relaxation process. This way the required time
for segmentation of sequential frames can be reduced, and,
even more importantly, a temporally coherent labeling of the
frames can be achieved, i.e., segments describing the same
object part are likely to carry the same label. The segmentation
results of the left frame (monocular segmentation) can be
accessed from channel 5.

A label initialization of the current right frame is created
by warping of both the current left (channel 5′) and previous
right segments using the disparity information and optical
flow vector field (channel 4), respectively (see Section II-E).
Similar to the segmentation of the left stream, the initial
labels are adjusted to the current right frame by the relaxation
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process. The segmentation results of the right frame, which is
now consistently labeled with respect to its corresponding left
frame, are stored in channel 6.

Once segmentation for both left and right frames is
achieved, meaningful stereo segments can be extracted. Seg-
ments smaller than a predefined threshold are removed. Af-
ter all these processing steps each object is represented by
uniquely identified left and right segments. This information
can be exploited directly by a mobile robot. A prototype of
the movable robot steered by a mobile system including stereo
cameras and a laptop with an integrated mobile GPU is shown
in Fig. 2(B).

B. Image segmentation kernel
Many different approaches for image segmentation have

been proposed during the past three decades. Nowadays the
most famous and efficient techniques are normalized cuts [22],
graph-based [23], mean shift segmentation [18], graph-cuts
and energy-based methods [24]. All these methods operate
on single images, and cannot be applied directly to the
video segmentation problem due to the temporal incoherence
between adjacent frames, i.e., when segments of the same
object keep different labels. As a consequence, some additional
techniques are needed in order to link corresponding segments.

In the proposed framework the real-time image segmen-
tation algorithm based on the method of superparamagnetic
clustering of data is used as an image segmentation kernel [25].
The method of superparamagnetic clustering represents an in-
put image being segmented by a Potts model [26] of spins and
solves the segmentation problem by finding the equilibrium
states of the energy function of a ferromagnetic Potts model
in the superparamagnetic phase [27], [28].

The Potts model describes a system of interacting gran-
ular ferromagnets or spins that can be in q different states,
characterizing the pointing direction of the respective spin
vectors. Three phases, depending on the system temperature,
i.e., disorder introduced to the system, are observed: the
paramagnetic, the superparamagnetic, and the ferromagnetic
phase. In the ferromagnetic phase, all spins are aligned, while
in the paramagnetic phase the system is in a state of complete
disorder. In the superparamagnetic phase regions of aligned
spins coexist. Blatt et al. (1998) applied the Potts model
to the image segmentation problems in a way that in the
superparamagnetic phase regions of aligned spins correspond
to a natural partition of the image data [29]. Finding the image
partition corresponds to the computation of the equilibrium
states of the Potts model.

The equilibrium states of the Potts model have been approx-
imated in the past using the Metropolis-Hastings algorithm
with annealing [30] and methods based on cluster updating,
which are known to accelerate the equilibration of the system
by shortening the correlation times between distant spins, such
as Swendsen-Wang [31], Wolff [32], and energy-based cluster
updating (ECU) [27], [28]. All of these methods obey detailed
balance, ensuring convergence of the system to the equilibrium
state. In the current study we achieve efficient performance
using the Metropolis algorithm with annealing [30], which can
be easily parallelized and implemented on a GPU architecture.

The method of superparamagnetic clustering of data was
chosen as an image segmentation kernel for the video seg-
mentation problem due to its following advantage. Since the
segmentation problem is solved by finding equilibrium states
of the Potts model using an annealing procedure, there are
no particular requirements to the initial states of spins and
they can take on any one of q available states. The closer
the initial states are to the equilibrium, the less time the
Metropolis algorithm needs to converge. This property allows
us to achieve temporal coherency in the segmentation of
monocular and stereo video streams just by using the previous
segmentation results for the spin initialization of the current
frame, while taking shifts between frames into account. A
final segmentation result is obtained within a small number
of Metropolis updates only, drastically reducing computation
time. However, any other segmentation technique can be used
for segmentation of the very first frame and the obtained
segments can be considered as spin variables in the Potts
model.

The real-time image segmentation kernel proceeds as fol-
lows. Using the Potts model an input image is represented
in a form of color vectors g1,g2, . . . ,gN arranged on the
N = LxLy sites of a two-dimensional (2D) lattice. In the
Potts model, a spin variable σk, which can take on q discrete
values (q > 2) w1, w2, . . . , wq , called spin states, is assigned
to each pixel of the image. We define a spin state configuration
by S = {σ1, σ2, . . . , σN} ∈ Ω, where Ω is the space of all
spin configurations. For video segmentation, the parameter q
should be chosen as large as possible since the spin states
need to serve also as segment labels. In our experiments, we
used q = 256. It is important to note that this choice of q has
no influence on the performance and computation time of the
Metropolis algorithm itself. A global energy function or a cost
function of this particular q-state Potts configuration S ∈ Ω is
the Hamiltonian

H[S] = −
∑
<i,j>

Jijδσiσj
, (1)

which represents the system energy where <i,j> denotes
the closest neighborhood of spin i with ||i, j|| 6 `, where `
is a constant that needs to be set. 2D bonds (i, j) between
two pixels with coordinates (xi, yi) and (xj , yj) are created
only if |(xi − xj)| 6 ` and |(yi − yj)| 6 `. In the current
work we use ` = 1. Jij is an interaction strength or coupling
constant and the Kronecker δij function is defined as δij =
1 if σi = σj and zero otherwise, where σi and σj are the
respective spin variables of two neighboring pixels i and j
(see Fig. 4). A coupling constant, determining the interaction
strength between two spins i and j, is given by

Jij = 1−∆ij/∆, (2)

where ∆ij = ||gi − gj|| is the color difference between
respective color vectors gi and gj of the input image. ∆ is
the mean distance averaged over all bonds in the image. The
interaction strength is defined in such a way that regions with
similar color values will get positive weights with a maximum
value of one for equal colors, whereas dissimilar regions
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get negative weights [33]. The mean distance ∆ represents
the intrinsic (short-range) similarity within the whole input
image 1:

∆ = α ·

 1

N

1

(2`+ 1)2 − 1

N∑
i=1

∑
<i,j>

||gi − gj||

 , (3)

where (2`+ 1)2 − 1 is the number of neighbors of a spin.
The factor α ∈ (0, 10] is a system parameter used to increase
or decrease the coupling constants.

Coupling constants are computed in the CIE (L∗a∗b∗) color
space [34] instead of the input RGB format. Although RGB
is a widely-used color space, it is not suitable for color
segmentation and analysis because of the high correlation
among all three components. The high correlation means that
changes in intensity lead to changes in values of all three
color components. The CIE (L∗a∗b∗) color space, which is
obtained by applying a nonlinear transformation to the RGB,
is a perceptual color space that gives a better hint of how
different two colors are for a human observer [35]. In the
CIE (L∗a∗b∗) space a pixel is represented by three values:
L∗, a∗ and b∗ where L∗ denotes lightness, while a∗ and b∗

denote color information. The color difference between two
color vectors gi = (L∗i , a

∗
i , b
∗
i )
T and gj = (L∗j , a

∗
j , b
∗
j )
T is

determined by [36]

||gi − gj|| =
√

Ψ2
L + Ψ2

C + Ψ2
H , (4)

ΨL =
∆L∗

KL
, ΨC =

∆C∗ab
1 +K1C∗i

, ΨH =
∆H∗ab

1 +K2C∗j
, (5)

∆L∗ = L∗i − L∗j , C∗i =
√

(a∗2i + b∗2i ), (6)

C∗j =
√

(a∗2j + b∗2j ), ∆C∗ab = C∗i − C∗j , (7)

∆H∗ab =
√

∆a∗2 + ∆b∗2 −∆C∗2ab , (8)

∆a∗ = a∗i − a∗j , ∆b∗ = b∗i − b∗j , (9)

where KL, K1 and K2 are the weighting factors. Since
the current method uses 8-connectivity of pixels, interaction
strengths for each pixel of the image need to be computed
in four different directions: horizontal, left diagonal, vertical,
right diagonal (see Fig. 3(B)). Matrices containing coupling
constants that affect formation of segments are shown for one
image in Fig. 3(C - F).

The segmentation problem is solved by finding regions or
clusters of correlated spins in the low temperature equilibrium
states of the Hamiltonian H[S]. Simulated annealing works by
simulating a random walk on the set of spin states Ω looking
for low-energy states. According to the Metropolis algorithm,
one update iteration consists of the following steps:

1Note that (2) is ill-defined in the case of ∆ = 0. But in this case only a
single uniform surface exists and segmentation is not necessary.

Fig. 3. Coupling constants for the 8-connectivity case in the CIE (L∗a∗b∗)
color space. (A) Original frame. (B) Mask for eight-connected connectivity. (C
- F) Matrices with coupling constants computed for horizontal, left diagonal,
vertical and right diagonal directions. Note, that only coupling constants
leading to the formation of segments are shown here (J < 0).

1) The system energy H[Scur] of the current spin config-
uration Scur is computed according to (1).

2) For each pixel i, a set of n (number of neighbors)
new possible spin configurations ~ = S′1, S

′
2, · · · , S′n

is created by changing the spin state of pixel i to the
spin states of the neighbors. The number of new possible
spin configurations n does not depend on q.

3) Every spin configuration S′i ∈ ~ is considered as a
potential new configuration of the system. Therefore
energy values of all configurations from the set ~ need
to be computed according to (1).

4) Among all new possible configurations from the set ~
a spin configuration with the minimum energy value is
selected according to

H[Snew] = min(H[S′1], H[S′2], · · · , H[S′n]). (10)

The respective change in energy between the current
configuration Scur and a configuration Snew ∈ ~ hav-
ing the energy value H[Snew] is defined as ∆H ≡
H[Snew]−H[Scur]. According to ∆H > 0 or ∆H 6 0,
moves can be classified as uphill and downhill, respec-
tively.

5) To effect a bias in favor of moves that decrease the
energy, downhill moves are always accepted, whereas
uphill moves are accepted only sometimes in order to
avoid getting trapped in local minima. Therefore the
probability that the proposed move leading to increase
in energy will be accepted is given by [37]

P (Scur → Snew) = exp

(
−|∆H|

Tn

)
. (11)

A number ξ is drawn randomly from a uniform distri-
bution in the range of [0, 1]. If ξ < P (Scur → Snew),
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the move is accepted.
6) The temperature is gradually reduced after every iter-

ation according to the pre-defined annealing schedule
Tn+1 = γ · Tn, where γ is the annealing coefficient
(γ < 1).

The update process (1) - (5) runs until convergence, i.e.,
when no more spin flips towards a lower energy state are
being observed. The equilibrium state of the system, achieved
after several Metropolis iterations, corresponds to the image
partition or segmentation. Then, the final segments larger than
a pre-defined threshold are extracted.

Fig. 4. Update of a spin state configuration of the input image on a GPU.
Pixels depicted by the same pattern are updated simultaneously. Blue regions
show overlaps between neighboring thread blocks. The green region includes
(2`+ 1)2 − 1 pixels from the closest neighborhood of the pixel i. The arrow
shows an interaction between pixels i and j.

Each spin update in the Metropolis algorithm involves only
the nearest neighbors of the considered pixel. Hence, the
spin variables of pixels that are not neighbors of each other
can be updated simultaneously [38]. Therefore the Metropolis
algorithm fits very well to the GPU architecture and all
spin variables can be updated in four iterations as shown in
Fig. 4. On a GPU an image is divided into some processing
blocks (taking overlaps between them into account) which are
distributed between multiple multiprocessors on the card. In
the current implementation a thread block of size 16 × 16
is used and each thread loads and updates four pixels. Such
a configuration makes it possible to avoid idle threads (only
loading data from overlaps without performing any spin up-
date) and to use the resources of the GPU in a very efficient
way.

Four coupling constants (a byte each) and a current spin
value (one byte) are loaded from the global memory to the
shared memory for each pixel resulting in five matrices of size
32×32 within every thread block. 5 KB in total of the shared
memory are occupied by one block which makes it possible to
run 4 blocks on each multiprocessor of the NVIDIA GeForce
GT 240M at the same time. Because of the high intensity of
the Metropolis procedure with numerous accesses to the same
data within one iteration, the shared memory is used for data

access due to its low latency instead of the global memory.
Since threads from diverse thread blocks cannot cooperate with
each other, overlaps between blocks need to be synchronized
via the global memory, once all spin variables of the current
spin configuration are updated. Global memory throughput is
maximized through the coalesced memory accesses achieved
by rearrangement of input data in the global memory and
usage of data types fulfilling the size and alignment require-
ments [39]. Due to the fact that the coupling constants can
be computed simultaneously for all pixels in the image, this
procedure is performed on the GPU as well.

In the current study only the first frame from the left
video stream is segmented completely from scratch (all spin
variables are initialized randomly). Subsequent left frames and
their corresponding right frames are first initialized by a spin
state configuration taken from previous frames considering
movements and stereo displacements between them (see Sec-
tion II-A). Therefore the relaxation process is applied to pre-
initialized images to adjust initial spins to the current frame
(see Sections II-D and II-E).

Since every found segment is carrying a spin variable which
is unique within the whole image, the terms spin and label are
equivalent in this work.

C. Phase-based optical flow and disparity

Since fast processing is a very important issue in the present
study, the real-time phase-based optical flow and stereo algo-
rithms, proposed by Pauwels et al. (2010) [40], are used to find
pixel correspondences between adjacent frames in a monocular
video stream and left and right frames in a stereo video stream.
Both algorithms run on a GPU and belong to the class of
phase-based techniques, which are highly robust to changes
in contrast, orientation and speed. The optical flow algorithm
integrates the temporal phase gradient (extracted from five
subsequent frames) across orientation and gradually refines
its estimates by traversing a Gabor pyramid from coarser
to finer levels. Although any other optical flow estimation
technique can be used here [41], we decided on the mentioned
phase-based approach since it combines high accuracy with
computational efficiency. Furthermore, due to the shared image
representation based on the responses of a Gabor filterbank,
stereo correspondences, used to find corresponding stereo
segments (see Section II-E), can be obtained with very little
overhead. A comparable qualitative evaluation of the methods
including test sequences from the Middlebury benchmark can
be found in [42], [43]. Implementation details and performance
analyses of the phase-based optical flow and stereo algorithms
are given in [43].

D. Monocular segmentation using optical-flow based label
warping

In the current framework optical flow is computed for both
the left and right video streams. The algorithm provides a
vector field which indicates the motion of pixels in textured
regions

u(x, y) = (ux(x, y), uy(x, y)). (12)



JOURNAL OF LATEX CLASS FILES, VOL. 22, NO. 9, SEPTEMBER 2012 7

Fig. 5. Segmentation of two adjacent frames in a sequence using 30 iterations and α = 2.5. Numbers at arrows show the sequence of computations. (A)
Original frame t. (B) Original frame t+ 1. (C) Estimated optical flow vector field from the phase-based method (sub-sampled 13 times and scaled 6 times)
(step 1). (D) Extracted segments St for frame t (step 1). (E) Label transfer from frame t to frame t + 1 (step 2). (F) Initialization of frame t + 1 for the
image segmentation kernel (step 3). (G) Extracted segments St+1 for frame t+ 1 (step 4). (H) Convergence of the Metropolis algorithm for frame t+ 1.

An estimated optical flow vector field for two adjacent
frames t and t+ 1 out of the “Toy” sequence with a moving
camera from the motion annotation benchmark 2 is shown in
Fig. 5(A - C). Since we are using a local algorithm, optical
flow cannot be estimated everywhere (for example not in the
very weakly-textured black regions of the panda toy). For
pixels in these regions, vertical and horizontal flows, i.e., uy
and ux, do not exist. Suppose frame t is segmented and St
is its final label configuration (see Fig. 5(D)). An initial label
configuration for frame t + 1 is found by warping all labels
from frame t taking estimations from the optical flow vector
field into account (see Fig. 5(E))

St+1(xt+1, yt+1) = St(xt, yt), (13)

xt = xt+1 − ux(xt+1, yt+1), (14)

yt = yt+1 − uy(xt+1, yt+1), (15)

where (ux, uy) is the flow at time t + 1. Since there is
only one flow vector per pixel, there will only be one label
transferred per pixel. Note that it is not the case if the flow
at time t is used for linking, since there can be multiple flow
vectors pointing to the same pixel in frame t+ 1.

Pixels which did not obtain an initialization via (13) are
then given a randomly chosen label between 1 and q which
is not occupied by any of the found segments (see Fig. 5(F)).
Once frame t+1 is initialized, a relaxation process (see II-B) is
needed in order to fix erroneous bonds that can take place dur-
ing the transfer of spin states. Flow interpolations for weakly-
textured regions are not considered in this work because (i)
the image segmentation kernel inherently incorporates the data
during spin relaxation, and (ii) an interpolation based on a

2available under http://people.csail.mit.edu/celiu/motionAnnotation/

camera motion estimation is only useful in static scenes (with
moving cameras), but cannot help when dealing with moving
objects.

The relaxation process runs until convergence and only after
that are the final segments extracted (see Fig. 5(G) where
corresponding segments between frames t and t+1 are labeled
with identical colors). Convergence of the relaxation process
against a number of iterations is shown in Fig. 5(H). For
the relaxation process we use a schedule with the starting
temperature T0 = 1.0 and annealing coefficient γ = 0.999. As
we can see the annealing process with this schedule converges
after 25 − 30 iterations making it possible to segment stereo
video streams with a frame size of 320 × 256 in real-time.
Longer annealing schedules can lead to better segmentation
results but at the cost of processing time.

E. Stereo segmentation using disparity-based label warping

The segmentation of every right frame is performed in a
similar way. Here, an initial label configuration for the right
frame at time t is obtained by warping the labels from both the
corresponding left frame and the previous right frame. Labels
from the left frame are transferred using the disparity map D
(see Fig. 6(A - C)) and labels from the previous right frame are
transferred using the optical flow vector field (see Fig. 6(E)).
Since the stereo algorithm relies on phase (and not magnitude),
it can find correct matches even in weakly-textured regions.
Also, ambiguous matches are avoided by the use of a coarse-
to-fine control mechanism. However, it cannot find reliable
information under drastically changing light conditions (see
the reflection shift over the table). We suppose that the left
frame Lt is segmented and SL is its final label configuration
(see Fig. 6(D)). Labels from the previous right frame Rt−1 are
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Fig. 6. Segmentation of a stereo pair for the time moment t. Numbers at arrows show the sequence of computations. (A) Original left frame Lt. (B) Original
right frame Rt. (C) Disparity map estimated by the phase-based method (step 1). (D) Extracted segments SL for frame Lt after 30 iterations with α = 2.5
(step 1). (E) Segments and estimated optical flow vector field for right frame t− 1 (sub-sampled 13 times and scaled 6 times). (F) Label transfer from frame
Lt to frame Rt (step 2). (G) Initialization of frame Rt for the image segmentation kernel (step 3). (H) Extracted segments SR for frame Rt after 10 iterations
with α = 2.5 (step 4). (J) Convergence of the Metropolis algorithm for frame Rt.

warped according to the procedure described in II-D, whereas
labels from the current left frame Lt are warped as follows:

SR(xR, yR) = SL(xL, yL), (16)

xL = xR +D(xR, yR), yL = yR. (17)

The disparity map D is computed relative to the right
frame which guarantees that there will only be one label
transferred per pixel from the left frame. Both warpings are
performed at the same time (see Fig. 6(F)). In the case of
multiple correspondences, i.e., if a pixel in frame Rt has label
candidates in frames Lt and Rt−1, there are no preferences and
we select randomly either the flow or the stereo. In this way
they can both contribute without bias and the segmentation
kernel can make the final decision. Pixels that did not obtain
a label initialization via (16) are given a randomly chosen
label between 1 and q which is not occupied by any of the
found segments (see Fig. 6(G)). Once frame Rt is initialized, a
relaxation process (see II-B) is needed in order to fix erroneous
bonds that can take place during the transfer of spins. The
relaxation process runs again until it converges and only after
that are the final right segments SR at time t extracted (see
Fig. 6(H) where correspondening segments between frames Lt
and Rt are labeled with identical colors).

Convergence of the relaxation process against a number of
iterations is shown in Fig. 6(J) for the proposed label transfer
and for the label transfer based only on disparity shifts. Here
we use the same annealing schedule as for the segmentation of
the left video stream. We can see that the use of the previous
right labels drastically reduces a number of iterations needed

for convergence and already after 5 − 10 iterations the final
right segments can be extracted. Using only stereo information
about 25 − 30 iterations are needed in order to reach the
equilibrium state. This is because the occlusions in the stereo
images are significantly larger than the occlusions between
adjacent frames taken from one video stream.

III. EXPERIMENTAL RESULTS

A. Quantitative evaluation

To measure the quality of video segmentations we use the
segmentation covering metric introduced by Arbeláez et al.
(2009) [44]. The idea of the metric is to evaluate the covering
of a machine segmentation S by a human segmentation S′. A
human segmentation, called also ground truth segmentation, is
a manual annotation of a video sequence showing how humans
perceive the scene, whereas a machine segmentation is an
output result of the considered video segmentation algorithm.
In the current study the human-assisted motion annotation tool
proposed by Liu et al. [10] is used which allows a user to
annotate video sequences very efficiently. For one frame, the
segmentation covering metric is defined as

C(S′ → S) =
1

N

∑
R∈S
|R| · max

R′∈S′
O(R,R′), (18)

where N is the total number of pixels in the image, |R|
the number of pixels in region R, and O(R,R′) is the overlap
between regions R and R′ defined as

O(R,R′) =
|R ∩R′|
|R ∪R′|

. (19)
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Fig. 7. Segmentation results for the “Toy” monocular video sequence with a moving camera. (A) Original frames. (B) Ground-truth segmentation created
by the human-assisted annotation. (C) Machine segmentation performed in the input RGB color space (30 iterations, α = 2.5). (D) Machine segmentation
performed in the perceptual color space CIE (L∗a∗b∗) (30 iterations, α = 2.5). (E,F) The segmentation covering shown for both color spaces against the
system parameter α and the number of iterations.

To find the most similar machine spatio-temporal volume
for each volume from the ground-truth video segmentation,
we compute the segmentation covering for all ground-truth
regions in all frames applying the following constrains: (i)
all segments within one volume are temporally coherent, i.e.,
carry the same label in all frames; (ii) if the ground-truth vol-
ume extends over the more frames than the selected machine
volume, then we repeat the selection of the best overlap over
the remaining time intervals [16]. The segmentation covering
for the video sequence is computed by averaging of the
segmentation coverings over all frames M in the sequence:

V (S′ → S) =
1

M

M∑
i=1

Ci(S
′ → S). (20)

For the segmentation evaluation of stereo videos temporal
coherence in both the left and right streams needs to be taken

into account.

B. Monocular segmentation results

In Fig. 7 video segmentation results for the “Toy” video
sequence with a moving camera are presented. The ground
truth segmentation created with the human-assisted motion
annotation tool is shown in Fig. 7(B). Note that the ground
truth segmentations provided on the web page of the motion
annotation benchmark cannot be used for the comparison
in this work, since they show layer segmentation based on
motion only without considering color differences. Also the
very textured background is not considered in the ground
truth because its manual annotation is extremely difficult. The
video segmentation results for both the RGB and CIE color
spaces are shown in Fig. 7(C) and in Fig. 7(D), respectively.
In both cases the same segmentation parameters and the same
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Fig. 8. Segmentation results for monocular video sequences “Phone” (A) with a moving camera and “Women” (D) with moving objects. (B,E) Graph-based
video segmentation results obtained at 70% (B) and 50% (E) of highest hierarchy level. (C,F) Segmentation results from the proposed method derived after
30 iterations with α values 1.5 (C) and 2.0 (F).

annealing schedule were used. As we can see, results obtained
in the CIE color space are more accurate which is confirmed
by the comparison of segmentation covering values computed
for both color spaces and shown against the system parameter
α in Fig. 7(E). Moreover, the image segmentation kernel in
the CIE space needs less time to converge. Fig. 7(F) shows
how segmentation covering values are changing for both color
spaces depending on the number of iterations in the relaxation
process.

More segmentation results in the CIE color space are shown
in Fig. 8. Here one more sequence (“Phone”) from the same
benchmark is used together with a well-known sequence

“Women” containing moving objects (see Fig. 8(A,D)). Seg-
mentation results for both sequences obtained by the proposed
method are shown in Fig. 8(C,F). Although all types of
sequences can be successfully segmented using the same set
of parameters (30 iterations for the relaxation, α = 2.5 and
Tn+1 = 0.999 ·Tn starting with T0 = 1.0), here α was slightly
tuned for each sequence to get the best possible segmentation
results.

The proposed method is compared here to the hierarchical
graph-based video segmentation [7] which is known as one
of the most efficient spatio-temporal segmentation techniques.
Since the graph-based approach uses future data for seg-
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Fig. 9. Segmentation results for stereo frame sequences of the sample actions “Moving an apple over plates” with moving objects (A) and “Cluttered scene”
with a moving stereo camera (B). Results are obtained using the following parameters: 30 and 15 iterations are applied for the relaxation of left and right
frames, respectively, α = 2.5 for both the left and right streams, the annealing schedule is Tn+1 = 0.999 · Tn starting with T0 = 1.0.

mentation and ours not, both methods cannot be compared
entirely and here we only show that our approach gives output
comparable to results of the conventional video segmentation
methods. From three hierarchy levels available on the web
page 3 for segmentation, the best segmentation result for each
sequence was chosen (see Fig. 8(B,E)). We can see that the
graph-based method leads sometimes to dramatic merges of
segments or oversegmentations which is not the case in the
proposed approach (for example it is obvious that the proposed
method outperforms the graph-based method at the boundary
of the fax machine). However, the graph-based technique deals
in some situations better with very textured objects (like the
phone in the “Phone” sequence). Also note that the gray-
scale “Women” sequence is an extremely difficult case for
color-based segmentation techniques due to the lack of color
information.

C. Stereo segmentation results
Segmentation results for two stereo videos are shown in

Fig. 9. Since the sequences are quite long, only some stereo
pairs at key points of actions are shown. In the first sequence,
called “Moving an apple over plates”, a hand moves an apple
around the table and places it on a plate (see Fig. 9(A)). In
the second scenario, “Cluttered scene”, the scene is static but
the stereo camera moves (see Fig. 9(B)).

As we can see the temporal coherence along with consis-
tent labeling is achieved in the segmentation of both stereo

3available under http://neumann.cc.gt.atl.ga.us/segmentation/

Fig. 10. Segmentation covering for the stereo sequence “Moving an
apple over plates” shown for the previous and current framework versions.
The average values are 0.77 (left stream) and 0.76 (right stream) for the
previous version and 0.84 (for left and right streams) for the current version,
respectively.

sequences and the determined stereo segments correspond
to the natural partitioning of the original stereo pairs. Too
small segments are completely removed from the final label
configuration. The performance comparison of the proposed
framework with its previous version [5] (using input RGB
color space and optical flow for the left stream only) is
shown in Fig. 10 as segmentation covering against the current
frame number. As we can see, in the proposed framework the
left and right sequences are segmented with higher accuracy
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Fig. 11. Processing times of all stages of the framework for segmentation of stereo videos on the mobile system with an integrated mobile GPU. For
computations running on the mobile GPU, processing times derived on the desktop GPU are shown for comparison (by dashed lines). (A) Runtime for optical
flow with stereo and extraction of stereo segments. (B) Processing time of monocular segmentation (30 iterations) and stereo segmentation (15 additional
iterations). (C) Runtime for conversion from the input RGB color space to the CIE (L∗a∗b∗) for both monocular and stereo sequences.

(the average segmentation covering value is 0.84 for both
streams). Moreover, the current version is more robust, having
significantly smaller deviations of the segmentation covering
values along the whole sequence.

D. Experimental environment

The proposed framework runs on a laptop with mobile Intel
Core 2 Duo CPU with 2.2 GHz and 4 GB RAM. The mobile
GPU used in the laptop is NVIDIA GeForce GT 240M (with
1 GB device memory). This card has 6 multiprocessors and 48
processor cores in total and belongs to the 200-series of mobile
NVIDIA GPUs. The card is shared by all the framework
components running on the GPU. As a desktop GPU (used
for the comparison of processing times) we use NVIDIA
GeForce GTX 295 (with 896 MB device memory) consisting
of two GPUs, each of which has 30 multiprocessors and 240
processor cores in total. In this study we use only one GPU
of this card.

E. Processing time

The processing times for all components of the framework
are shown as a function of frame size in Fig. 11. Image resolu-
tions 160×128, 320×256 and 640×512 are marked by black
dashed lines. The processing times of components running on
the mobile GPU are compared to the respective runtime on the
desktop GPU (Fig. 11(A - C)). For segmentation of monocular
video streams 30 Metropolis iterations are used, whereas for
stereo video streams 45 iterations are needed in total (see Fig.
11(B)). Note that the relaxation process takes about 60% of
the whole runtime.

Although all computations on the mobile card are signif-
icantly slower (the speed up factors derived on the desktop
card in relation to the mobile one for optical flow / stereo and
segmentation kernel are 2.1 and 2.4, respectively), it is still
possible to process several frames per second for all considered
resolutions as shown in Table I.

CPU GTX 295 GT 240M
Resolution (px) sec (Hz) msec (Hz) msec (Hz)

160 × 128 0.8 (1.2) 40.0 (25.0) 47.4 (21.1)
320 × 256 3.4 (0.3) 75.0 (13.3) 117.0 (8.5)
620 × 512 13.9 (0.1) 230.0 (4.3) 376.0 (2.7)

TABLE I
OBTAINED PROCESSING TIMES PER FRAME AND FRAME RATES.

IV. DISCUSSION

We presented a novel framework for real-time spatio-
temporal segmentation of stereo video streams on a portable
system with an integrated mobile GPU. The proposed visual
front-end is on-line, automatic and dense. The performance of
the framework has been demonstrated on real-world sequences
acquired with moving cameras and containing arbitrary mov-
ing objects. A trade-off between processing time and hardware
configuration exists. Since robotic systems are usually dy-
namic, movable and very often wireless autonomous systems,
huge computers with high power consumption were not even
considered in this study as a proper hardware architecture. As
the most suitable platform for this task we chose a mobile
PC with an integrated mobile GPU. Being supplied by the
laptop battery such a system can run in autonomous mode up
to three hours. A GPU is used as an accelerator for highly-
parallel computations of the system such as optical flow, stereo
and image segmentation kernel. For the frame resolutions of
160×128 and 320×256 we achieved a processing time that is
sufficient for many real-time robotic applications. The system
manages to process bigger frames as well, but not in real-time.

The following problems are solved by the visual front-
end: stereo images from stereo videos are segmented in a
consistent model-free way (without prior knowledge of data),
the temporal coherence in a stereo video stream is achieved
resulting in a consistent labeling of the original frames.
However, consistent labeling for a long video sequence can
be obtained by the proposed framework only for quite simple
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scenarios. i.e., (i) objects should not get entirely occluded
along the action, since the current method can deal only
with partial occlusions. If an object is occluded by any other
object, it will not be recognized when it reappears. In order
to properly track occluded objects, additional mechanisms are
needed that perform high-level analysis of objects [45], [46].
It is not possible to resolve such kind of problems on the
pixel domain. (ii) Objects should not move too fast. Phase-
based optical flow and stereo used in the current system have
a speed limit of 2 pixels per scale, so using 4 scales, the limit
is 24 = 16 pixels [40]. In the case of a very fast movement
more than 50% of the label transfers can be erroneous. This
leads to a completely erroneous initialization of the current
frame, which cannot be resolved by the relaxation process.
The segmentation covering value for such a segment will be
dramatically low, which signals inaccurate video segmentation.
For the tracking of fast moving objects large displacement
optical flow is needed [47]. (iii) No disjoint parts of physically
the same object should be joined during the action. If two large
parts of the same object represented by different segments
are merged, we face the domain fragmentation problem when
large uniform areas are being split into sub-segments despite
high attractive forces within them [33]. In the current system
the domain fragmentation problem can be resolved only by a
very long annealing schedule (see Section II-B) which cannot
be achieved in real-time.

An important goal of this work was the improvement of
the computational speed of the system, since a low latency in
the perception-action loop is a crucial requirement of systems
where a visual front-end is needed. Consequently, since the
proposed framework is running in real-time or close to real-
time mode, it can be used in a wide range of robotic applica-
tions such as object manipulation, visual servoing and robot
navigation. All these applications require object detection and
tracking along with extraction of meaningful object descriptors
as a preprocessing step.

In the future, we aim to overcome the mentioned problems
(i) - (iii) and apply the developed framework to more complex
actions in the context of cognitive robotics tasks. For very
complex scenarios where objects are getting occluded all the
time, some high-level knowledge about objects needs to be
accumulated during that part of the sequence where objects
are present and visible.
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[6] P. König and N. Krüger, “Perspectives: Symbols as self-emergent
entities in an optimization process of feature extraction and predictions,”
Biological Cybernetics, vol. 94, no. 4, pp. 325–334, 2006.

[7] M. Grundmann, V. Kwatra, M. Han, and I. A. Essa, “Efficient hierarchi-
cal graph-based video segmentation,” in CVPR, 2010, pp. 2141–2148.

[8] A. V. Reina, S. Avidan, H. Pfister, and E. L. Miller, “Multiple hypothesis
video segmentation from superpixel flows,” in ECCV, 2010, pp. 268–
281.

[9] S. Liu, G. Dong, C. H. Yan, and S. H. Ong, “Video segmentation:
Propagation, validation and aggregation of a preceding graph,” in CVPR,
2008.

[10] C. Liu, W. T. Freeman, E. H. Adelson, and Y. Weiss, “Human-assisted
motion annotation,” in CVPR, 2008.

[11] S. Paris, “Edge-preserving smoothing and mean-shift segmentation of
video streams,” in ECCV, 2008, pp. 460–473.

[12] V. Hedau, H. Arora, and N. Ahuja, “Matching images under unstable
segmentations,” in CVPR, 2008.

[13] C. Wang, M. de La Gorce, and N. Paragios, “Segmentation, ordering
and multi-object tracking using graphical models,” in ICCV, 2009, pp.
747–754.

[14] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. J. V.
Gool, “Robust tracking-by-detection using a detector confidence particle
filter,” in ICCV, 2009, pp. 1515–1522.

[15] M. Unger, T. Mauthner, T. Pock, and H. Bischof, “Tracking as seg-
mentation of spatial-temporal volumes by anisotropic weighted tv,” in
EMMCVPR, 2009, pp. 193–206.

[16] W. Brendel and S. Todorovic, “Video object segmentation by tracking
regions,” in ICCV, 2009, pp. 833–840.

[17] Y. Huang, Q. Liu, and D. N. Metaxas, “Video object segmentation by
hypergraph cut,” in CVPR, 2009, pp. 1738–1745.

[18] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 5, pp. 603–619, 2002.
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