
Object-Action Complexes:

Grounded Abstractions of Sensorimotor Processes
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Abstract

This paper formalises Object-Action Complexes (OACs) as a basis for sym-
bolic representations of sensorimotor experience and behaviours. OACs are
designed to capture the interaction between objects and associated actions
in artificial cognitive systems. This paper gives a formal definition of OACs,
provides examples of their use for autonomous cognitive robots, and enumer-
ates a number of critical learning problems in terms of OACs.

Keywords: Robotics, grounding, reasoning about action and change,
execution monitoring, machine learning

1. Introduction

Autonomous cognitive robots must be able to interact with the world
and reason about the results of those interactions, a problem that presents
a number of representational challenges. On the one hand, physical inter-
actions are inherently continuous, noisy, and require feedback (e.g., consider
the problem of moving forward by 42.8 centimetres or until a sensor indicates
an obstacle). On the other hand, the knowledge needed for reasoning about
high-level objectives and plans is more conveniently expressed in a symbolic
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form, as predictions about discrete state changes (e.g., going into the kitchen
enables retrieving the coffee pot). Bridging the gap between low-level con-
trol knowledge and high-level abstract reasoning has been a fundamental
concern of autonomous robotics [1, 2, 3, 4]. However, the task of providing
autonomous robots with the ability to build symbolic representations of con-
tinuous sensorimotor experience de novo has received much less attention,
even though this capability is crucial if robots are ever to perform at levels
comparable to humans.

To address this need, this paper proposes a formal entity called an Object-
Action Complex (OAC, pronounced “oak”) as the basis for symbolic rep-
resentations of sensorimotor experience. The OAC formalism is designed
to achieve two ends. First, OACs provide a computational account that
brings together several existing concepts from developmental psychology, be-
havioural and cognitive robotics, and artificial intelligence. Second, by for-
malising these ideas together in a shared computational model, OACs allow
us to enumerate and clarify a number of learning problems faced by embod-
ied agents. Some of these learning problems are known and have been well
studied in the literature, while others have received little or no attention.

OACs are designed to formalise adaptive and predictive behaviours at
all levels of a cognitive processing hierarchy. In particular, the formalism
ensures that OACs are grounded in real-world experiences: all learning and
refinement of OACs will be based on statistics gained from an agent’s ongoing
interaction with the world. To relate OACs operating at different processing
levels, we will also allow OACs to be defined as combinations of other OACs
in a hierarchy, in order to produce more complex behaviours. As a result,
this formalism enables consistent, repeatable hierarchies of behaviour to be
learnt, based on statistics gained during real-world interaction, that can also
be used for probabilistic reasoning and planning. It also provides a framework
that allows the OAC designer to focus on those design ideas that are essential
for developing cognitive agents.

The goal of the OAC formalism is to provide a unifying framework for rep-
resenting diverse interactions, from low-level reactive behaviour to high-level
deliberative planning. To this end, we will build our computational models
on existing assumptions and ideas that have been shown to be productive in
previous research, in a number of different fields. In particular, we note six
design ideas (DI) that have helped motivate our formalism:

DI-1 Attributes: Actions, objects, and interactions must be formalised over
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an appropriate attribute space, defined as a collection of properties with
sets of associated values. An agent’s expectations and predictions (see
[DI-2]) as to how the world will change if an action is performed must
also be defined over such an attribute space. Different representations
may require different attribute spaces, plus a method of mapping be-
tween them if they are to be used together.

DI-2 Prediction: A cognitive agent performing an action to achieve some
effect must be able to predict how the world will change as a result of
this action. That is, it must know which attributes of the world must
hold for an action to be possible (which will typically involve reasoning
about the presence of objects), which attributes will change when the
action is performed, and how those attributes will change.

DI-3 Execution: Many previous efforts to produce fully autonomous robotic
agents have been limited by simplifying assumptions about sensor, ac-
tion, and effector models. We instead take the approach that complete
robotic systems must be built with the ability to actually execute ac-
tions in the world and evaluate their success. This requires agents to be
embodied within physical systems that can interact with the physical
world.

DI-4 Verification: In order to improve its performance in a nondetermin-
istic physical world, an agent must be able to evaluate the effective-
ness of its actions, by recognising the difference between the states it
predicted would arise from its actions, and those states that actually
resulted from action execution.

DI-5 Learning: State and action representations are dynamic entities that
can be extended by learning in a number of ways: continuous param-
eters can be optimised, attribute spaces can be refined or extended,
new control programs can be added, and prediction functions can be
improved. Embodied physical experiences characterised in terms of ac-
tions, predictions, and outcomes provide data for learning at all levels
of a system.

DI-6 Reliability: It is not sufficient for an agent to merely have a model
of the changing world. It must also learn the reliability of this model.
Thus, our representations must measure and track the accuracy of their
predictions over past executions.
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These design ideas are widely accepted in the literature, where they have
been discussed by various authors (see, e.g., [5, 6]). For example, a STRIPS-
style planning operator [7] can be seen as a prediction function [DI-2] built
from action preconditions and effects defined over an attribute space [DI-1].
Significant work has also been done on learning such prediction functions
given an appropriate attribute space [8, 9]. The importance of embodiment
[DI-3] in real-world cognitive systems has been pointed out by Brooks [1, 2].
Richard Sutton [10] has discussed the necessity of verifying the expected ef-
fects of actions [DI-4] to arrive at meaningful knowledge in AI systems. The
interplay between execution [DI-3] and verification [DI-5] is associated with
the grounding problem [11]. For example, Stoytchev [5] defines grounding
as “successful verification”, and discusses the importance of evaluating the
success of actions [DI-6] and maintaining “probabilistic estimates of repeata-
bility”. We will discuss the relation of our work to prior work further in
Section 3.

1.1. Paper Structure

In the remainder of the paper we will develop the OAC concept using the
above design ideas. In particular, this paper will:

• formally define OACs for use by autonomous cognitive agents,

• identify problems associated with learning OACs, and

• provide examples of OACs and their interaction within embodied sys-
tems.

The rest of the paper is organised as follows. Section 2 further motivates this
work and provides some basic terminology. Section 3 discusses the relation to
prior research. Section 4 provides a formal definition of OACs, based on the
above design ideas. Section 5 characterises a number of learning problems in
terms of OACs. Section 6 describes how OACs are executed within a phys-
ical robot system. Section 7 provides detailed examples of OACs. Finally,
Section 8 demonstrates a set of OACs interacting with each other to realise
cognitive behaviour, including object grounding and associated grasping af-
fordances, as well as planning with partly grounded entities.
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Figure 1: Graphical representation of an OAC and its relationship to a control program.

2. Prerequisites for Modelling OACs

To achieve its goals in the real world, an embodied agent must develop
predictive models that capture the dynamics of the world and describe how
its actions affect the world. Building such models, by interacting with the
world, requires facing a number of representational challenges resulting from

• the continuous nature of the world,

• the limitations of the agent’s sensors, and

• the stochasticity of real-world environments.

These problems make the task of efficiently predicting the results of real-
world interactions challenging, and often require highly-specialised models of
the interaction. As a result, any framework for representing such interactions
must be able to support multiple models of the world, based on different
attribute spaces. For example, differential equations can be straightforwardly
used to predict the trajectory of straight line motions. However, this kind of
representation will not be effective for symbolic planning. We will call each
model of an interaction with the world an OAC, and stipulate that each OAC
be defined over an attribute space.
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Given the continuous nature of the world, all of an agent’s interactions
with the external world must be mediated by low-level continuous control
routines. Such routines are necessary for the agent to sense and to act in
a noisy, continuous, and uncertain real world. For this exposition, we will
assume that the agent has a low-level control program (CP) that it uses to
interact with the world.1 Our objective then is for OACs to capture the
interactions with the world meditated by the CPs. In order words, we will
describe an OAC as modelling a CP.

Our first three design ideas suggest that an OAC must contain a pre-
diction function defined on an attribute space that captures the regularities
and results of its specific CP. Figure 1 illustrates this idea graphically with
an OAC that predicts the behaviour of a specific CP functioning in the real
world to move an agent’s end effector. Here, the control program causes
changes in the actual world that transform the actual initial state of the
world, denoted by aws0 (and sensed by the agent as ws0), to the resulting
actual world state, awsr (sensed by the agent as wsr).

An OAC that models this CP must also be able to map states of the
sensed world to states represented in terms of its own attribute space, and to
make predictions about the transitions that are caused by the CP. In Figure 1
this is captured by a correspondence between ws0 in the sensed world and
the initial state s0 in the OAC’s attribute space, and the OAC’s predicted
state sp and the resulting sensed state wsr.

In practice, we can simplify this diagram slightly. Since the agent’s per-
ception of the world is completely mediated by its sensors and effectors, any
change in the world can only be observed by the agent through its (possibly
faulty) sensors. Further, because the available sensor set of a given agent is
fixed, we can treat the actual world and the sensed world as a single level,
as shown in Figure 2. While we recognise the presence of errors in the sen-
sors and the inherently un-sensed variation of the world, since we are not
modelling learning over evolutionary time scales, we also assume that all em-
bodied agents must learn based on the noisy and incomplete sensors provided
to them. We will make this assumption for the remainder of the paper.

1We will discuss how new CPs can be learnt later in this document, but for the purpose
of introducing this idea we will simply assume a CP is given.
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Figure 2: Graphical representation of an OAC and its relationship to the sensed world
and a control program.

2.1. Representational Congruency and Grounding

For an OAC to model a CP and be effective for high-level reasoning tasks,
it must consistently capture the underlying regularities present in the exe-
cution of the CP. One way to do this is to ensure that the states modelled
by an OAC are inferable from sensed features of the world, and that rel-
evant changes in the sensed world resulting from the execution of the CP
are reflected in the states predicted by the OAC. We will call this property
representational congruency, and will refer to OACs with this property as
congruent models or congruent representations of the CP.

Representational congruency imposes strong conditions on an OAC’s pre-
diction function and attribute space, with respect to the CP it models, as
illustrated in Figure 2. In particular, if s0 is an initial state in the OAC’s
attribute space, corresponding to the sensed state ws0, and the sensed state
wsr results from the execution of a CP in ws0, then the state sp predicted
by the OAC (and represented in the OAC’s attribute space) must map to
the sensed state wsr. In practical terms, such guarantees are necessary for
ensuring the correctness of high-level reasoning tasks that have consequences
at the sensed world level. (For instance, building high-level plans that are
interpreted in terms of low-level effector commands.) We will provide a for-
mal definition of representational congruency, and a further discussion, in
Section 6.

We note that nothing about representational congruency requires OACs
to share attribute spaces with the sensed world. For instance, a single state
in the OAC’s attribute space might denote a set of states at the sensed world
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level. In general, a representationally congruent OAC is free to abstract its
attribute space from the sensed world in any way that is effective for its rea-
soning task. This allows each OAC to develop and work with representations
that are specific to their own reasoning tasks.

We also note that learning such congruent models requires a mapping
from the sensed world state to the OAC’s attribute state that is consistent.
In other words, a given sensed state of the world must always map to the same
state in the OAC’s attribute space. Without such consistencies, regularities
in the execution of the CP cannot be recognised, let alone learnt and modelled
by an OAC. Given consistent mappings, we envision the congruency of an
OAC increasing as experience extends the OAC’s attribute space.

Following DI-3, DI-4, and DI-5, we will also require all OAC learning and
refinement to be based on statistics gained through an agent’s interaction
with the world, in order to ensure that the resulting OACs are grounded
in real-world execution and sensor feedback. Thus, we envision cognitive
systems using OACs to solve a problem at a high level of abstraction while
grounding their real-world interactions with low-level control programs and
sensed world states. Further, while this section has discussed OACs as being
grounded by executing a single control program, in Section 6 we will discuss
how OACs can be defined as a combination of lower-level OACs. This will
enable consistent, probabilistic reasoning and planning based on statistics
gained during the execution of OACs in the world.

With these intuitions in hand, we will now discuss the relationship of
OACs to prior work.

3. Relation to other Approaches

The OAC concept provides a framework for formalising actions and their
effects in artificial cognitive systems, while ensuring that relevant compo-
nents and prerequisites of action acquisition, refinement, chaining and exe-
cution are defined (e.g., the attribute space, a prediction of the change of the
attribute space associated with an action together with an estimate of the
reliability of this prediction, an execution function, and a means of verifying
the outcome of an action). In particular, this framework ensures the ground-
ing of an OAC in sensory experience by means of incremental verification
and refinement (“ongoing learning”). It also specifies which components of
an OAC are subject to learning as outlined in Section 5. Our OAC definition,
however, does not specify the actual learning algorithms (e.g., whether this
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learning takes place in a neural network, by means of reinforcement learning,
or based on Bayesian statistics); this is up to the designer of the concrete
OAC. As such, OACs ensure certain properties of action representation are
fulfilled, leaving the designer free to specify the remaining content. The OAC
framework thus provides a basis for the design of elementary cognitive units
and their interaction. Naturally, it is based on a significant amount of prior
work on action representations, as we will outline below.

A closely related concept from psychology is the (sensorimotor) schema
as defined by Piaget and others [12, 13]. A sensorimotor schema is a dynamic
entity that gathers together the perceptions and associated actions involved
in the performance of behaviours. The schema represents knowledge gener-
alised from all the experiences which have been involved in the executions
of that behaviour. It also includes knowledge about the context in which
the behaviour was performed as well as the agent’s expectations about the
action effects. Cognitive development takes place by refining and combining
these schemas. OACs can be seen as a formalisation of such schemas to be
used in artificial cognitive systems.

Together, the different components of OACs formalise concepts which
have been derived over the last decades in cognitive science, artificial in-
telligence and robotics. We discuss related work in terms of four subjects
that are addressed by the OAC concept: (1) the definition and learning of
suitable attribute spaces and the predictions taking place in these spaces,
(2) the concept of affordances, (3) the grounding of symbolic entities by the
agent’s interaction with the world, (4) the modularisation of actions allowing
for their flexible combination, (5) hybrid control schemes, and (6) learning
and memorisation.

Attributes and the prediction of expected change: The representation
of world states in terms of discrete attribute spaces, and the representation of
actions as expected changes to the values of these attributes, can be directly
linked to STRIPS [7] and other classical formalisms [14, 15, 16]. Predictabil-
ity of cause and effect (or the lack of it) is important for cognitive agents and
has been treated in a large body of work [17, 18, 19, 20, 21, 22]. However,
unlike classical formalisms, the prediction function associated with an OAC
constitutes a dynamic and grounded entity, changing under the influence of
ongoing learning processes in the cognitive system.

More specifically, OACs go beyond such classical representations by per-
mitting both continuous and discrete attribute spaces, making it possible to
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use OACs at different levels of a processing hierarchy, from low-level sen-
sorimotor processes for robot perception and control, to high-level symbolic
units for planning and language. As a consequence, OACs can be viewed
as containers enabling subsymbolic as well as symbolic representations, and
models of both symbolic and subsymbolic cognition can be formalised using
OACs (see [23]).

Structures like POMDPs (see, e.g., [24]) are related to OACs in that they
are also defined in terms of states, actions, and state transitions. However,
unlike OACs, they employ specific probabilistic representations tailored to
optimal action selection with respect to reward signals. POMDPs are not
concerned with the issue of grounding their abstract representations in phys-
ical experience (see below). OACs provide more generic formalisations of
actions in a cognitive system, also allowing for non-probabilistic representa-
tions in which action selection may not be the primary goal.

OACs also facilitate the learning of their associated prediction functions,
an idea which is closely related to statistical structure learning [25, 26, 27, 28,
9, 8, 19], and learn how successful their executions are over particular time
windows. In particular, in early development, when actions are likely to be
unsuccessful, it is important to ensure that such execution uncertainties can
be reasoned about. The storage of statistical data concerning execution reli-
ability also has important applications to probabilistic planning [19], where
an OAC’s probability of success can be utilised to compute optimal plans.
Consistently successful plans can then be memorised for future reference.

Affordances: OACs combine the representational and computational effi-
ciency of STRIPS rules [7] and the object- and situation-oriented concept
of affordance [29, 30]. Affordance is the relation between a situation, usu-
ally specified to include an object of a defined type, and the actions that it
allows. While affordances have mostly been analysed in their purely percep-
tual aspect, the OAC concept defines them more generally as state-transition
functions suited to prediction. Such functions can be used for efficiently learn-
ing the multiple representations needed by an embodied agent for symbolic
planning, execution, and sensorimotor control.

Grounding and Situatedness: OACs reflect a growing consensus con-
cerning the importance of grounding behaviour in sensorimotor experience,
which has been stressed in the context of embodied cognition research (see,
e.g., [11, 31, 32, 33]). To build a truly cognitive system, it is necessary to
have the system’s representations grounded by interacting with the physical
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world in a closed perception-action loop [32]. OACs are necessarily grounded
by their execution functions (Section 6), and are learnt from the sensorimo-
tor experiences of the robot (Section 5). Thus, OACs realise grounding by
“successful verification” [5] in an ongoing learning process.

The ability of OACs to formalise sensorimotor processes on different levels
of the cognitive hierarchy allows high-level abstract actions to be formally
grounded in sensory motor experience by means of lower-level actions. We
have exemplified this by a “Birth of the Object” process [34, 35] described in
Section 8.1. By this process, rich object descriptions and representations of
grasping affordances (i.e., the association of potential grasping options to an
object and their associated success likelihoods) emerge through interactions
with the world. As we outline in Section 8.1, this process can be understood
as the concatenation of several low-level perception-action interactions that
are formulated in terms of OACs, leading to processes in which symbolic
entities emerge (i.e., the notion of a specific object) and can be used on
the planning level. Note that this is very much in line with prior work
by others [6, 36] where representations and actions are likewise grounded
through interaction. Differences in the specificities of our visual and motor
representations compared to [6, 36] are discussed in detail in [35].

Modularity: The principle of modularity is widespread in cognitive process
modelling (e.g., vision [37, 38] and motor control [39, 40, 41]), allowing the
agent to make use of acquired perception and action competences in a flexible
and efficient way. As we will demonstrate in Section 7, this concept is also
inherent in the structure of OACs: OACs often operate at increasing levels of
abstraction, each with a particular representation of situations and contexts.
For instance, we will outline three examples of OACs for grasping objects. On
the lowest level, continuous end-effector poses are associated to visual feature
relations for grasping completely unknown objects. This OAC can be used
to model reactive or affordance-based behaviours (see [42, 30]) as outlined
in Section 7.2.2. At an intermediate level in another grasp-related OAC
(described in Section 7.3), grasp densities are used to hypothesise possible
grasps when the agent has some object knowledge [44]. Finally, at the highest
level, plans effectively use grasps to manipulate objects on an abstracted
symbolic scene representation (see Section 7.4).

Hybrid control schemes: OACs can be seen as a unifying representation
for modelling control schemes in hybrid (i.e., discrete-continuous) dynamical
systems (see, e.g., [45]). In this way, they are related to the idea of hybrid
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control in systems which combine discrete events with continuous dynam-
ics. In most practical cases, hybrid control architectures formalize discrete
abstractions of inherently continuous control problems. For example, the
task of manipulating an object can be decomposed into four subtasks: (1)
reaching the grasp position, (2) grasping the object, (3) moving the object,
and (4) placing the object at the goal position. From a hybrid control point
of view, the subtasks associated with object manipulation can be described
as discrete events, e.g., represented as finite state machines with continu-
ous dynamics for each state. Each of the states might represent low-level,
continuous controller operating on motor torques, sensor readings, etc., with
discrete state transitions triggered by specific conditions of the lower-level
controllers, or by external environmental stimuli.

Such hybrid control schemes can be implemented with OACs represent-
ing states, and their control programs implementing the low-level controllers.
However, OACs can provide more than state models in hybrid dynamical sys-
tems. OACs can model open-loop, one-shot actions with stochastic outcomes,
and be stacked into hierarchical architectures containing different layers of
abstraction. At higher, symbolic levels, OACs can also be composed from
other OACs, to be used for new tasks in different contexts.

Learning, Evaluation, and Memorisation: Cognitive agents must learn
from past experience in order to improve their own development, a task that
typically requires a form of memory as a means of tracking prior interactions
(see, e.g., [46]). While memory itself is not often a problem, such processes
must ensure efficient representation, with properties like associative comple-
tion and content addressability [47, 48, 49, 50], to enable machine learning
from stored instances presented over a period of time.

Learning is also modularised through the OAC concept. In our exam-
ple OACs, the lowest-level OAC learns the difference between successful and
unsuccessful grasps. Using this as a base, another OAC learns alternative
object-specific ways of posing the hand. Again, building on this OAC, an-
other OAC learns the abstract preconditions and effects of grasping. Careful
maintenance of the attribute spaces of the different OACs allows systems to
benefit from the modularity of the information learnt for each OAC. As out-
lined in Section 8, the OAC formalism ensures that relevant data for learning
is stored (in terms of “experiments”), and that learning is taking place at all
times at all levels (even when learning is not the explicit goal of the agent).
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4. Defining OACs

Our OAC definition is split into two parts, (1) a symbolic description
consisting of a prediction function [DI-2] defined over an attribute space [DI-
1], together with a measure of the reliability of the OAC [DI-6], and (2)
an execution specification [DI-3] defining how the OAC is executed by the
embodied system and how learning is realised [DI-5] by verification [DI-4].

This separation is intended to capture the difference between the knowl-
edge needed for cause and effect reasoning (represented in the symbolic de-
scription), and the procedural knowledge required for execution (encapsu-
lated in the execution specification). Since we do not constrain the form of
the attribute space, OACs are not limited to continuous or discrete repre-
sentations of actions. Instead, as we will see in Section 7, our definitions are
flexible enough to accommodate both kinds of representations.

In the remainder of this section we will provide a formal definition of an
OAC’s symbolic description.

Definition 4.1. We call the properties of the world captured by an OAC
attributes. Each attribute has an associated range of possible values that
can be assigned to that attribute.

Intuitively, attributes can represent any sensed or derived property that
we want our OACs to capture. In particular, Definition 4.1 does not make
any commitments about attributes being continuous, discrete, or Boolean.
This provides the OAC formalism with the flexibility to reason about very
different problem spaces.

Definition 4.2. An attribute space S is the set of all possible assignments
of values to a set of attributes. A state s ∈ S denotes a (possibly partial)
assignment of values to the attributes in the space.

Since we have not limited the form of the attributes we permit, an at-
tribute space can be very expressive, and an individual state description can
abstract over a possibly large number of real-world states. Even a complete
individual state in the OAC’s attribute space can capture a possibly infinite
number of real-world states. For example, a complete state specification that
includes the assignment of the value “full” to the attribute “statusGripper”
represents all the world states where the gripper is full, provided the other
attributes of the world state are consistent with those of the OAC’s state.
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We also allow state descriptions to be partial, where values are only speci-
fied for a subset of the attributes in the space. For example, if the value “full”
is assigned to the attribute “statusGripper”, and no values are specified for
any of the other attributes in the state space, then the resulting partial state
denotes the set of all states where the gripper is full, regardless of the other
attribute values. As a result, this state representation provides a powerful
method for OACs to abstract over large state spaces.

We now turn our attention to formally defining OACs.

Definition 4.3. An Object-Action Complex (OAC) is a triple

(E, T,M) (1)

where:

• E is an identifier for an execution specification,

• T : S → S is a prediction function defined on an attribute space S
encoding a model of how the world (and the agent) will change if the
execution specification is executed, and

• M is a statistical measure representing the success of the OAC in a
window over the past.

Definition 1 characterises OACs using three main components. In the
examples we will discuss here, the execution specification E identifies a single
CP whose execution is modelled by the OAC. This means that multiple OACs
can share the same underlying CP.2

In general, much of the actual world state will be irrelevant for most
OACs. Therefore, we stipulate that the attribute space S captures all and
only those attributes of the world that are needed for T to make its predic-
tions. Thus, for a given OAC, S will often omit sizable portions of the sensed
world, but may include specialised attributes derived from multiple sensors.
Since observations are costly in real world systems, we can use the reduced
space of S to constrain observations and allocate system resources more ef-
ficiently, resulting in a reduced sensor load for verifying OAC execution.

M codes an evaluation of the OAC’s performance over a time window in
the past. Given the diversity of attribute spaces we can define for OACs, M

2We will discuss more complex execution specifications in Section 6.
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must be flexible enough to capture the reliability of many types of prediction
functions. As a result, we allow each OAC to define M as a statistical
measure appropriate for its needs. Thus, different OACs in a single system
might define M in very different ways. For example:

• In a simple domain where an OAC is used until it fails and then is
never used again, we might define M as a Boolean flag that indicates
whether the OAC has failed.

• In a more complex domain where M tracks the accuracy of an OAC’s
prediction function over a certain time window in the past, we might
define M as a pair made up of the expected value of the OAC’s perfor-
mance and the sample size used to compute the expected value.

• In even more complex domains it might be convenient to store statis-
tical data beyond the expected value. For example, lower-level OACs
might maintain statistical information about the differences between
observed and expected changes in a number of specific attributes.

Note that the size of the temporal window over which M is collected is OAC
dependent. In general, during learning (where large changes can significantly
affect the success likelihood) smaller windows might be appropriate to judge
whether learning is making good progress, whereas in the case of a mature
OAC a larger window (and hence a more stable estimate of the success like-
lihood) might be appropriate.

To provide some intuition, we can imagine an agent with the following
example OACs, defined on very different attribute spaces. These examples
are described more formally in Section 7.

Ex-1 An OAC that encodes how to push an object on a table based on the
agent’s end-effector pose space and the location of the object. In this
case, the OAC might predict the position of an object after a pushing
action by the end-effector, depending on the velocity and force vector
as well as the shape of the object. For M , the OAC might maintain
the average deviation (over a certain time window) of the prediction of
the position and the measured position after pushing the object.

Ex-2 An OAC that encodes how to grasp an unknown “something” in a scene.
In this case, the OAC might predict the success or non–success (e.g.,
when the “something” is out of reach) of the grasping attempt. For M ,
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this OAC might store the likelihood of a successful grasp over a time
window in the past.

Ex-3 An OAC that encodes how to grasp a specific object in a specific scene
suggesting an optimal gripper pose. In this case, the OAC might also
predict the success or non–success (e.g., in case the object is in a non-
graspable pose) of the grasping attempt. For M , this OAC might store
the likelihood of successfully grasping the object over a time window
in the past.

Ex-4 An OAC that encodes how to grasp an object for the purpose of planning
(e.g., to systematically clean a table). In contrast to Example Ex-3, at
the planning level the precise control information required to grasp an
object is not relevant. Rather, higher-level attributes such as the object
affordances that become executable after a successful grasp need to be
coded (e.g., the objects that are now movable to a shelf). For M , this
OAC might store the likelihood that the grasp is successful over a time
window in the past.

We will provide more detailed definitions of these example OACs and their
reliability measures in Section 7. First, however, we will motivate the discus-
sion of how OAC-based learning is formalised with the following definition.

Definition 4.4. Let execute be a function with side effects that maps an
OAC, defined on an attribute space S, to a triple of states called an exper-
iment, i.e.,

execute : (E, T,M)→ (s0, sp, sr), (2)

where:

• s0 ∈ S is the state of the world before performing the OAC’s execution
specification,

• sp ∈ S is the state of the world that T predicts will result from perform-
ing the OAC’s execution specification in s0, i.e., sp = T (s0), and

• sr ∈ S is the observed state resulting from actually performing E in
state s0.

The side effect of this function is that the execution specification of the OAC
is actually performed in the real world by the agent.
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input : an OAC (E, T , M)
output: an experiment (so, sp, sr)
begin

so = stateCapture(T );
sp = T (so) ;
agentExec(E);
sr = stateCapture(T );

end
Algorithm 1: An implementation of execute.

Calling execute with an OAC causes the OAC’s execution specification
to be performed in the real world, producing an experiment as a result. This
experiment is an empirical event dynamically created from the sensed and
predicted states: its first element is derived by sensing the state of the world
before execution, the middle term captures the OAC’s prediction about the
state that should have resulted, while the last element encodes the actual
state of the world after execution. For example, an experiment for Example
Ex-1 might include:

• the initial state of the end effector and the object,

• the predicted state of the object, and

• the actual state of the object after the execution.

We can imagine implementing execute with the pseudo-code in Algo-
rithm 1. Here, agentExec is a function that causes the agent to perform
the specified execution specification, and stateCapture is a function that
captures the current state of the world, expressed in the attribute space of
the given prediction function. For instance, in Example Ex-1, executing the
“pushing OAC” launches a process that (1) captures the initial state, (2)
invokes the prediction function on the initial state to predict the end state
of the object after a pushing movement, (3) invokes the associated control
program, (4) waits for it to terminate, (5) captures the resulting state of the
object, and (6) reports all three states in the form of an experiment. We
note that all OAC-specific processing takes place within the execution spec-
ification. For the rest of this paper, we will refer to the process of calling
execute with a specific OAC as executing an OAC.

In our discussion up to this point, we have only considered a single OAC
modelling a single control program, which simplifies the definition of the
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execution specification: all we need to provide is the identifier of the control
program that is to be executed. Given this mapping, execute has all the
information it needs to invoke the specified control program, allow it to run
until termination, and report the results as an experiment. In Section 7
we will see more detailed examples, and provide a discussion of how such
one-to-one mappings can be built up in Section 8. However, we can also
imagine much more complex specifications than the execution of a single
control program. In particular, OACs might be defined in terms of other
OACs, or sets of OACs. We will discuss this in more detail in Section 6.

As empirically grounded events, the experiments returned by execute can
be used to update OACs in cycles of execution and learning (see Section 7)
based on evaluations of their success [DI-4]. For instance, each of our example
OACs might update their respective Ms on the basis of an experiment.3 In
the next section we explore particular learning problems in terms of OACs.

5. Learning OACs

The definition of an OAC as an entity that captures both symbolic and
control knowledge for actions gives rise to a number of learning problems
that must be considered for OACs to be effective. We note that each of
these learning problems can be addressed by recognising that differences can
exist between predicted states and actual sensed states. In practice, these
problems may require different learning algorithms (e.g., Bayesian, neural
network-like, parametric, non-parametric, etc.), and it is left to the OAC
designer to choose an appropriate learning mechanism in each case.

As such, the following characterisations are intended to specify those
aspects of the OAC that can be modified through learning, rather than a
specific learning method. We consider four main learning problems, each of
which is labelled in Figure 3, and illustrate these problems using the examples
introduced in Section 4.

1. Translation: (Learning the mapping of real-world states to OAC states)
This learning task produces the mapping from sensed world states to
states in the OAC’s attribute space. It also involves identifying and

3We leave open the possibility that an experiment might not be used immediately for
learning, but could be stored in some type of short term memory (see, e.g., [46]) until
resources for learning are available.
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Figure 3: Graphical representation of the OAC learning problems: (1) Translation,
(2) Control, (3) Prediction, and (4) Reliability.

adding to the OAC’s attribute space those attributes of the world model
that are required for effectively predicting interactions with the world.
For instance, in Example Ex-1, this process would be responsible for
adding new attributes (beyond object shape) such as the mass dis-
tribution of the object on the basis of more low-level sensory (visual
and haptic) information, or the audio information caused by the object
scraping along the surface.

2. Control: (Learning control programs) This learning task modifies an
OAC’s control program to minimise the distance between the world
state wsp predicted by the OAC and the actual sensed state wsr. For
instance, in Examples Ex-2 and Ex-3, when a grasp is not successful
even though the OAC’s T function predicts success, the control program
can be modified to produce a successful grasp.

3. Prediction: (Learning the prediction function) This learning task
modifies the prediction function to minimise the distance between a
predicted model state sp, and the actual resulting model state sr. In
Example Ex-1, this can be done by optimising the prediction function
to produce a better estimate of the final state of the object after a push.

4. Reliability: (Learning the prediction function’s long term statistics)
This learning task updates the OAC’s reliability measure M to reflect
the long-term success of the OAC. In Examples Ex-2, Ex-3, and Ex-
4, this process might record the last 100 attempts, and evaluate how
many had been successful.
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We reiterate that all of these learning problems can be addressed by
recognising the differences between predicted states and actual sensed states
as captured by experiments (i.e., through ongoing verification). However,
the details and specifications of how each of these learning tasks might be
performed at a given level of abstraction may vary wildly depending on the
details of the attribute space. One of the critical contributions of this work is
in enumerating and formalising these problems within the OAC framework.

In the following sections, we will use a set of common function names
to denote each of these learning problems. Although these functions would
have to be appropriately tailored to a particular OAC if we were to actually
implement them, we will simply refer to them as: updateModel, updateCP,
updateT, and updateM, respectively, and assume that each function takes an
experiment as an argument.

6. Representational Congruency and Hierarchical Execution

Before we introduce hierarchical executions of OACs in Section 6.2 and
Section 6.3, we begin by discussing a fundamental problem connected to OAC
modelling, and a structural property for OACs that was earlier referred to
as representational congruency.

6.1. Representational Congruency

When an OAC is executed, all the states returned to the OAC by an
experiment are defined within the OAC’s attribute space. This means that
even in mature OACs (i.e., OACs that are well developed and are undergo-
ing very little additional modification), it is possible for there to be states of
the actual world that may not be predicted or (adequately) captured in the
OAC’s attribute space. In such OACs, there is no guarantee that its perfor-
mance could be enhanced even by introducing additional attributes (e.g., by
means of updateModel, where we actually extend an OAC’s attribute space).
This is even more true for less mature OACs that do not have fully devel-
oped attribute spaces: OACs that are “missing” attributes may fail to make
accurate predictions. As a result, OACs are only as effective at predicting
the outcomes of interactions as their learnt models allow them to be.

Representational congruency is a property that aligns an OAC’s attribute
space with that of a control program (or another OAC, as we’ll see in Sec-
tion 6.2), ensuring the completeness of the OAC’s prediction function is im-
proved. To formalise this idea, we provide the following definition.
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Definition 6.1. Let A = (E, T,M) be an OAC defined on an attribute space
SA, and let Ssense be the agent’s “foundational attribute space” defined by the
agent’s set of sensors and the complete set of their possible values. A is said
to be representationally congruent to the control program captured by E
iff ∀ws0, wsr ∈ Ssense and ∀s0, sp ∈ SA, such that s0 and sp are the respective
projections of ws0 and wsr into SA, and the execution of E by A in a sensed
world state ws0 gives rise to a sensed world state wsr, then it follows that T
maps s0 to sp.

Note that representational congruency is not a necessary property of an
OAC. Since our OAC definition doesn’t say anything substantive about the
prediction function, any function is permitted. However, prediction functions
that consistently fail to produce sound and complete mappings (with respect
to the actual sensed world) won’t be useful for reasoning, even if they are
permitted by the OAC definition. As such, representational congruency pro-
vides the logical underpinning for an OAC’s attribute space and prediction
function to accurately model real-world interactions.

As a result, representational congruency as described in Definition 6.1 is
not a property that we assume OACs begin with. Instead it is a “target”
property that OACs converge towards as they improve their underlying mod-
els. In this view, Definition 6.1 captures a types of completeness property
that may not be fully achieveable in practice. However, the intuition behind
this definition, that representationally congruent OACs correctly predict the
states that result from the execution of a control program, is a property that
is essential if OACs are to be effective at certain reasoning tasks.

In the next section we will discuss more complex configurations of OACs
and what executing such OACs means to representational congruency and
our notion of an experiment.

6.2. Towers of OACs

It is worth recognising that, beyond being attached to external sensors,
there is no significant difference between the attribute space of an OAC and
the sensed world within which a CP operates. A CP moves the agent from
one state of the sensed world to another, while the execution of an OAC
moves the agent from one state of its attribute space to another. Building on
this correspondence, we can consider OACs that use the attribute space of
another, more basic OAC, as their “sensed world” and define their execution
specification in terms of these more basic OACs.
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Generalising this idea results in “towers” of OACs where each OAC stands
in one-to-one relation with an OAC (or a control program in the base case)
that is beneath it in the tower. In such cases, the execution specification
of each OAC is just the recursive invocation of the OAC beneath it in the
tower. Calling execute for the highest-level OAC results in a stack of calls
to execute, one for each level of the tower, where each OAC invokes the
OAC at the next level down until the process terminates with the execution
of a single control program. The experiment that results from this execution
must then be returned back up the tower, and appropriately translated into
the attribute space of each OAC, as the result of each execute call.

For instance, consider the planning-level grasping OAC in Example Ex-4,
operating in a discrete state space with an abstract description of objects and
their graspability. This OAC’s execution specification could invoke the OAC
in Example Ex-3 which operates in the lower, continuous space of concrete
gripper poses. A call to the high-level OAC in Ex-4 would then result in a
call to the lower-level OAC in Ex-3 which computes a concrete end effector
pose and triggers the execution of the control program. At each level, the
resulting experiments would be passed back to the respective OACs.

We can modify our definition of representational congruency to permit
towers of OACs. Recall that Definition 6.1 required an attribute space de-
rived from the agent’s sensor set. To extend representational congruency, we
alter this definition to refer to the attribute space of the execution function
in general. This results in the following revised version of Definition 6.1:

Definition 6.2. Let A = (E, T,M) be an OAC defined on an attribute space
SA, and let SE be the attribute space of the OAC or CP specified by E. A
is said to be representationally congruent to the execution specification
captured by E iff ∀s′0, s′p ∈ SE and ∀s0, sp ∈ SA, such that s0 and sp are the
respective projections of s′0 and s′p into SA, and the execution of E by A in
a state s′0 results in a state s′p, then it follows that T maps s0 to sp.

We note that while Definition 6.2 is sufficient for describing representational
congruency in towers of OACs, it will need further extension if we are to
capture OACs with even more complex execution specifications, since the
attribute spaces for such constructs could be substantially more complex.

We have also discussed how an experiment resulting from executing OACs
in a tower must be passed back to each constituent OAC, and translated into
the attribute space of that OAC. This means that the attributes and values
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of a higher-level OAC’s attribute space must be definable in terms of the
attributes and values of the lower-level OAC. To ensure this property holds,
we impose the following restriction on the attribute spaces of towers of OACs.

Definition 6.3. Let A and B be OACs and let SA and SB be the attribute
spaces of A and B, respectively. If A has an execution specification defined in
terms of B, then all the attributes of SA must be derivable from the attributes
of SB. In such cases we will say that A and B are hierarchically defined.

We will see examples of towers of OACs in Section 7.4 and Section 8.2.

6.3. One-to-Many Execution

One-to-one mappings are not the only kind of relationship we can envi-
sion for OACs. We can also imagine more complex scenarios, where an OAC
is mapped to a sequence of OACs or control programs, or has an execution
specification that involves iteration, conditional invocation, or parallel ex-
ecution. For example, an OAC for opening a door might be comprised of
a sequence of lower-level OACs that include actions to approach the door,
grasp the doorknob, twist the doorknob, pull on the doorknob, etc. In order
to execute such a higher-level OAC, each of these lower-level OACs must be
successfully executed in the correct sequence.

A formal definition that permits one-to-many execution specification re-
quires ordering constraints and success criteria for each of the sub-OACs.
Furthermore, a correct understanding of the execution specification for such
OACs must, like the one-to-one case, rest on recursively calling the execute

function and continually monitoring the execution of the underlying OACs.
We will not provide a detailed definition of such complex execution behaviour
in this paper. Instead, we leave the specification and learning of such be-
haviours as an area for future work.

7. Examples of OACs

In this section, we give formal descriptions for a number of OACs. Some
of these OACs have already been discussed informally as part of our running
examples (Ex-1—Ex-4), while others are new. For each OAC, we provide a
definition of its attribute space (S), prediction function (T ), success measure
(M), and execution specification (E). We also discuss learning in these
OACs, and show how they can be embedded within procedural structures
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Section Name Attribute space/T M Learning

7.1 (Ex-1) AgnoPush End effector’s pose
space, object
location and shape

Average deviation
of prediction from
actual final
position

T , M

7.2 (Ex-2) AgnoGrasp Space of coplanar
contour pairs,
gripper status

Long term
probability of
successful grasp

CP, M

7.3 (Ex-3) ObjGrasp Object model,
gripper status

Long term
probability of
successful grasp

CP, M

7.4 (Ex-4) PlanGrasp Logic-based rules Long term
probability of
correct result
prediction

T , M

7.4 (Ex-4) PlanPush Logic-based rules Long term
probability of
correct result
prediction

T , M

Table 1: Summary overview of example OACs.

to produce more complex behaviour. In Section 8, we will present examples
of these OACs interacting with each other, to demonstrate grounding and
planning. Table 1 provides an overview of the example OACs for comparison.

7.1. Example Ex-1: Object Pushing (AgnoPush)

In this example we define an OAC AgnoPush which models a pushing
action that moves objects in a desired direction on a planar surface without
grasping. Pushing as a nonprehensile action cannot be realised with sufficient
accuracy to ensure a given object can be moved to a desired target in one
step, i.e., by applying one pushing movement. If a higher-level planner spec-
ifies that object o should be pushed to a certain target, AgnoPush needs
to be applied iteratively in a feedback loop until the target location is even-
tually reached. To achieve this, the system needs to know how objects move
when short pushing actions are applied to them. In particular, the motion
of the pushed object depends on various properties including shape, mass
distribution, and friction. Here we will focus on shape. (A more detailed
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description can be found in [51].)

7.1.1. Definition of AgnoPush

Defining S: Some prior knowledge needs to be available before AgnoPush
can be learnt. In particular, we assume that the robot knows how to move
the pusher (e.g., the robot hand or a tool held in its hand) along a straight
line in Cartesian space. We also assume that the robot knows how to localise
the observed objects by vision. The central issue for AgnoPush is to learn
to predict the object’s movement in response to the pusher’s movement. To
this end, the robot needs information about the object’s shape, its current
location on the planar surface, the duration of the pushing movement, and
its direction relative to the point of contact on the object’s boundary. We
represent the object’s shape by a 2D binarized image, such as those shown in
Figure 4. Such images are sufficient as shape models (as opposed to full 3D
shape models) because AgnoPush only encodes the response to an applied
pushing action for objects that do not roll on planar surfaces.

More formally, TAgnoPush is defined on the attribute space

S = {bin(o), loc(o), τ, a},

where bin(o) is the shape model in the form of a binary image of the object to
be pushed, loc(o) denotes the initial location of the object o, τ is the duration
of the push, and a denotes the parameters describing the pushing movement,
i.e., the contact of push on the object’s boundary and the direction of the
movement of the pusher.

Defining T : Based on the information in this attribute space, we can predict
the object’s new location using the transformation

T (bin(o), loc(o), τ, a) = V (bin(o), loc(o), a)τ + loc(o), (3)

where V is the function predicting the outcome of the push in terms of the
object’s linear and angular velocity.

T returns the expected position and orientation of the object after it has
been pushed at a given point of contact and angle with constant velocity for
a certain amount of time. The angle of push is defined with respect to the
boundary tangent. These parameters are fully determined by the object’s
binary image and the pusher’s Cartesian motion. Thus,

T : S −→ {loc(o)}

25



Figure 4: Samples of low resolution object images used as input to the neural network.

maps an initial state (bin(o), loco(o), τ, a) containing a concrete shape bin(o),
a location loco(o) before the action and a specific poking action parameterized
by (τ, a) to a predicted location {locp(o)} after the action.4

Defining M : The statistical evaluation M measures how close the predicted
object movement is to the real object movement over a certain time window.
We define a metric d(locp(o), locr(o)) to measure the difference between the
expected and actual object movement on the planar surface. The expectation
of AgnoPush’s performance after N experiments is thus given by

M =
1

N

N∑
i=1

d(locp(o)i, locr(o)i),

where i denotes different pushing trials (see Figure 5, right).

Defining E: An impulse to push an object in a certain direction must be
provided by a higher-level cognitive process. The appropriate parameters to
the pushing control program can be determined based on the available pre-
diction function T . These issues will be discussed in Section 7.1.2. However,
the control program modelled by AgnoPush is neither object nor target
dependent. This means that the execution specification of this OAC simply
calls the pushing control program with parameters a and τ computed by an
external process.

Calling execute results in an experiment of the form

({bin(o), loco(o), τ, a}, T (bin(o), loco(o), τ, a), locr(o))

4For brevity in Section 7 and Section 8 , we will often provide partial state descriptions
when discussing T and the experiments resulting from execute, highlighting the significant
parts of the state, rather than simply reporting complete states.
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that is created by performing four major functions:

1. Capturing the initial state: For AgnoPush, this requires both extract-
ing the binary image of the object bin(o) and its location loco(o), and
acquiring the pushing movement parameters a.

2. Capturing the predicted resulting state: This is done by calculating
T (bin(o), loco(o), τ, a).

3. Executing the execution specification: The pushing movement is per-
formed by calling the pushing control program with parameters a and
τ .

4. Capturing the actual resulting state: This is done by localising the
object after the push, i.e., by observing locr(o).

When the task is to push an object towards a given target location, the
robot can solve this by successively applying execute in a feedback loop until
the goal has been reached. Note that in this example the control program
that realises straight-line motion of the pusher in Cartesian space is fixed
and does not need to change while learning AgnoPush.

7.1.2. Learning in AgnoPush

Learning in AgnoPush affects both its prediction function and its long-
term statistics. A process for learning the prediction function (denoted by
the function updateT) is realised using a feedforward neural network with
backpropagation. The trained network encodes a forward model for object
movements that have been recorded with each pushing action. To ensure
that AgnoPush can be applied to different objects, the shape is specified
in the form of a low resolution binary image, which is used as input to the
neural network. Function T is updated incrementally based on the observed
movements of the pushed objects. Statistical evaluation is also done incre-
mentally as experiments are performed (a process denoted by the function
updateM). Note, however, that since the prediction function T changes dur-
ing learning, the statistical evaluation only converges to the true accuracy of
the behaviour once T becomes stable (see Figure 5).

There are two modes of operation in which we consider AgnoPush:

A. Initial learning of the prediction function T , where the pushing move-
ments encoded by the parameter a are randomly selected, and

B. Pushing the object towards a given target, where the current pusher
movement a is determined based on the previously learnt prediction
function and the given target location.
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Figure 5: Mean error of robot pushing. The left figure shows the mean error of the predictor
on the available data, i.e., after each update of the predictor we evaluate its performance
on all previous experiments. The right figure shows the incremental statistical evaluation
as realised by updateM. Four different objects were used in the experiment.

Figure 6: Pushing behaviour realised by AgnoPush after learning prediction function T .

As described above, the prediction function T is given in Equation (3), where
velocity V is encoded by a neural network with the binary image of an object,
the point of contact and the direction of the pusher movement used as input
values, and the predicted final position and orientation of the pushed object
as output. In mode B, we calculate the optimal pusher movement a (i.e., the
point of contact and the direction of the push) by first extracting the object’s
binary image and determining the desired Cartesian movement of o from its
current location towards the target location. The neural network is then
inverted using nonlinear optimisation (see [51] for details). The resulting
behaviour is shown in Figure 6.

The learning process has been implemented using explorative behaviour
as shown in Algorithm 2. In this context, updateT estimates the weights of
the neural network (for details on the learning algorithm, see [51]). To ensure
that the data used for training is not used to estimate the performance of
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while true do
a = SelectRandomMotion; bin(o); loco(o);
expr = execute(AgnoPush);
if d(loco(o), locr(o)) > ε then

updateM(expr);
updateT(expr);

end

end

Algorithm 2: Explorative behaviour to learn AgnoPush. The constant ε > 0 is used
to determine whether the object has moved or not.

the prediction function, updateM is always applied to the data before it has
been used to refine the prediction function. This loop also demonstrates how
OACs can be embedded in procedural structures. We will see more examples
of such procedures in the following sections.

7.2. Example Ex-2: Object Independent Grasping (AgnoGrasp)

Next, we consider an OAC AgnoGrasp that predicts the success of at-
tempts to grasp unknown objects, based on an associated grasping hypothesis
(specified in terms of the 6D pose of the gripper) for a co-planar contour pair
(see Figure 7(a),(b) and [52]). Such grasp hypotheses are “agnostic” to the
object being grasped, hence the name of the OAC. As a result, AgnoGrasp
represents a visual feature/grasp association that enables an unknown “some-
thing” to be grasped (see Figure 7(d)).

7.2.1. Definition of AgnoGrasp

Defining S: We note that two co-planar contours define a plane which de-
termines the orientation normal of the pose (i.e., two orientation parameters)
for any possible grasp. The position and main orientation of a contour in 3D
space determines the position of the 6D pose and the one remaining orien-
tation parameter of the grasping hypothesis. This allows us to associate a
grasp hypothesis GH(Ci, Cj) with any pair of co-planar contours (Ci, Cj) (see
Figure 7(b)). Such grasp hypotheses can then be executed by the system.

Formally, AgnoGrasp is defined on the attribute space:

S = {statusGripper,Ω, statusGrasp} .
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Figure 7: (a) The image of the scene captured by the left camera. (b) A possible grasping
action type defined by using the two coplanar contours C1 and C2 shown in red. (c) A
successful grasping hypothesis. The 3D contours from which the grasp was calculated are
shown. Note that the information displayed is the core of an experiment. (d) A selected
set of grasping hypotheses generated for a similar scene. (e) Change of performance as
measured by M as a result of the learning process.

This attribute space contains the set Ω containing the co-planar contours
in the scene and the status of the gripper statusGripper which either can
take the value ’full’ or ’empty’. In particular, it requires that (1) there are
co-planar contours Ci, Cj ∈ C in the scene (i.e., the set of co-planar contours
Ω is not empty), and (2) the gripper is empty.

Defining T : AgnoGrasp’s prediction function determines the value of the
attribute statusGrasp:5

statusGrasp ∈
{

undefined, noplan, collision,
void, unstable, stable

}
.

5Note that the current implementation of our learning algorithm only uses two classes,
success which is equivalent to stable, and failure which corresponds to all other states
except noplan, where the generated experiments are ignored for learning. More advanced
learning algorithms might also use extended information on the stability of a grasp.
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The possible values of statusGrasp each capture an outcome of the exe-
cution of AgnoGrasp. Before execution, statusGrasp is set to undefined.
After selecting a specific grasping hypothesis, a motion planner tries to find
a collision-free path that allows the arm to reach the pregrasping pose as-
sociated with the grasping hypothesis, which may result in a number of
possible outcomes. If the planner fails to find a suitable trajectory or de-
cides there is none, execution stops, and the result is noplan. If the hand
unexpectedly enters into a collision, execution stops at that point, and the
result is collision. If the closed gripper is determined to be empty, the
result is void. If the gripper closes further while lifting the object, the
result is unstable. Otherwise, the grasp is deemed successful, and the
result is stable. In our case, TAgnoGrasp simply maps to a state where
statusGrasp = stable holds.6

Defining M : In AgnoGrasp, the reliability measure MAgnoGrasp is sim-
ply defined as the percentage of successful grasps in a time window of 100
grasping attempts.

Defining E: Like AgnoPush, AgnoGrasp’s execution specification is
based on executing a low-level control program. In the case of AgnoGrasp,
the CP requires as input a pair of co-planar contours from the scene (where a
grasp hypothesis can be computed) that is chosen from the set of contours Ω.
Thus, prior to execution, many grasping hypotheses from co-planar contour
pairs are computed and a single pair is chosen for execution.7

This means that when performing execute, the initial state is given by:

{Ω, statusGripper},

where Ω is the set of contours. The predicted state is simply an assertion
that statusGrasp = stable holds. After the chosen grasp hypothesis is
performed, the grasp status statusGraspt+1 is sensed. This results in an
experiment of the form:

(s0, statusGraspt+1 = stable, statusGraspt+1).

6The use of a constant mapping here not only represents the most likely outcome but,
for certain reasoning tasks, the most wanted outcome. Space prohibits a comprehensive
discussion of the motivation behind such mappings.

7In practice, the pair is chosen according to a ranking criterion. See [52] for details.
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while true do
compute contours pairs and associated grasping hypotheses
expr = execute(AgnoGrasp);
updateCP(expr);
updateM(expr);
drop object

end

Algorithm 3: A simple learning cycle for AgnoGrasp.

(See Figure 7(c) for the main components of an experiment.) Each experi-
ment can either be used directly for on-line learning, as in the learning cycle
in algorithm 3, or stored in an episodic memory for off-line learning at a later
stage (see [53] for details).

7.2.2. Learning in AgnoGrasp

In AgnoGrasp, learning affects the execution of the control program
(through the updateCP function), and the updating of long-term statistics
(via updateM; see Figure 7(e)). We do not consider other learning problems
and, in particular, the OAC’s prediction function always remains constant.
Learning modifies the selection of the most promising grasping hypothesis
and, thus, the control program underlying the execution function. In prac-
tice, the optimal choice of grasps depends on certain parameters, such as
contour distance and the object position in working space (see Figure 7(d)).
Based on an RBF network (see [53] for details), a function estimates the
success likelihood that a certain grasp has been learnt in a cycle of experi-
mentation and learning.8 Algorithm 3 formalises this exploratory behaviour,
which realises a simple learning cycle for AgnoGrasp.

7.3. Example Ex-3: Object Specific Grasping (ObjGrasp)

In this example, we consider an OAC ObjGrasp that models the grasp-
ing options for a specific object, and their associated success likelihoods, by
means of grasp densities (see Figure 8 and [44]).

8In practice, such learning has provided an increase in the success rate from 42% to
51% (see [53] for details). Note that since AgnoGrasp uses very little prior knowledge,
a high performance cannot be expected except in trivial scenarios.
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7.3.1. Definition of ObjGrasp

Defining S: Object models oi are stored in an object memory MO.9 An
object model includes a learnt, structural object model that represents geo-
metric relations between 3D visual patches (i.e., early cognitive vision (ECV)
features [54]) as Markov networks [55]. In addition, it contains a continuous
representation of object-relative gripper poses that lead to successful grasps
by means of grasp densities [44]. Object detection, pose estimation, and the
determination of useful gripper poses for grasping the object are all done si-
multaneously using probabilistic inference within the Markov network, given
a scene reconstruction in terms of ECV features.

The attribute space for ObjGrasp is defined by

S = {statusGripper, targetObj = o, statusGrasp}.

Here, the state description includes an attribute targetObj that specifies an
object model o that is provided by the execute function as an input to the
control program this OAC models. As notation, we will add a subscript to the
OAC’s name to identify this object model (e.g., ObjGraspBasket). Like the
two previous OACs, this model is chosen by processes external to ObjGrasp.
The state description also includes statusGripper and statusGrasp as in
Section 7.2, however, statusGrasp is only relevant to the predicted state.

Defining T : As with AgnoGrasp, the prediction function T always returns
an assertion that statusGrasp = stable is true.

Defining M : The reliability measure M for ObjGrasp is defined as the
cumulative outcome of statistics from executing this OAC (which is updated
as part of a learning cycle; see Figure 9).

Defining E: Like AgnoGrasp, the execution of ObjGrasp requires its
input parameters to be passed to a control program for execution. In the
case of ObjGrasp, this parameter is the object to be grasped. When the
execute function is performed, the process of capturing the initial state must:

1. access or reconstruct the current scene in terms of ECV features, and

9See Section 8.1 for more information about learning such models.
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Hypothesis Density Empirical Density

Figure 8: Mechanisms used by ObjGrasp. a) Objects (top) are represented as Markov
networks [55] in terms of 3D ECV features [54] (bottom). b) In the following subfigures,
gripper poses (grasps) are visualised as “paddles” (top). Grasp densities are obtained
from individual grasps by kernel density estimation using SE(3) kernels, as illustrated by
unit-variance isosurfaces for 2 rotational and 3 positional degrees of freedom (bottom).
c) A grasp density D associated with the basket (a). The right-hand side shows sparser
samples for better visibility. d) Grasp hypothesis densities for specific objects such as the
basket (right) are generated at uniform orientations around 3D ECV features (left). e)
Empirical grasp density learnt by testing grasps drawn from a hypothesis density [44].
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while true do
compute ECV features
expr = execute(ObjGrasp);
updateCP(expr);
updateM(expr);
drop object

end

Algorithm 4: Exploration learning procedure for ObjGrasp.

2. retrieve the object model o from MO, use it to locate the object, and
determine a gripper position from the associated grasp density (see
Figure 8).

Like AgnoGrasp, the OAC’s prediction function returns statusGrasp =
stable. The actual execution specification of the OAC encompasses a small,
two-step control program:

1. First, a path planner generates a plan for manoeuvring the gripper to
the intended position.

2. If such a plan is found, the CP executes the computed trajectory, and
closes the gripper to grasp the object.

This yields a new state characterised by an attribute statusGrasp that can
take on any of the values in the attribute space of the OAC AgnoGrasp, or
the value nopose, which represents the case that no object instance can be
reliably located. As a result of E, an experiment of the form

({statusGripper, o, statusGrasp}, statusGraspt+1 = stable,

statusGraspt+1).

is returned.
We note that objects are always located within the currently-sensed part

of a scene. Thus, it is up to other parts of the system to make sure that the
scene reconstruction available to execute contains one and only one instance
of the object o, e.g., by directing sensors accordingly.

7.3.2. Learning in ObjGrasp

Algorithm 4 outlines how a higher-level process might acquire and refine
grasping skills on a variety of objects. In this scenario, the scene contains up
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Figure 9: Evolving statistics M of statusGrasp = stable for the OACs ObjGraspPan,
ObjGraspKnife, and ObjGraspBasket over successive rounds of grasping trials [44]. In the
first round, grasps are drawn from a hypothesis density g0 generated from ECV features
(Figure 8) for each object; the red bars show the empirical success rates, and the grasp
density computed over the successful grasps is denoted g1. In the second round (green
bars), grasps are drawn from g1, resulting in g2. In the third round (blue), grasps are
chosen as the maximum of g2 for each object.

to one instance of each object of interest. The robot “plays” with the object
by repeatedly grasping and dropping the object. This leads to a learning
cycle similar to Algorithm 3, in which the system generates knowledge about
the grasp affordances associated to the object.

7.4. Example Ex-4: OACs for Planning (PlanGrasp, PlanPush)

As a final example, we consider two high-level OACs suitable for planning:
PlanGrasp, an OAC for grasping an object from a table, and PlanPush, an
OAC for pushing an object into the reachable space so that it can be grasped
[56]. Both of these OACs operate on discrete, attribute spaces defined in
terms of a set of logical predicate and function symbols that denote properties
and objects in the world. Such representations are standard in AI planning
systems and we will structure our OACs in such a way that we can use prior
planning work for building and executing plans.

7.4.1. Definition of PlanGrasp and PlanPush

Table 2 shows a complete set of attributes that formalise a simple prob-
lem domain for picking up objects from a table and putting them onto a
shelf. These attributes should be thought of as logical symbols (e.g., clear)
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Attribute Description
clear(X) A predicate indicating that no object is stacked on X.
focusOfAttn(X) A predicate indicating that object X is the focus of attention.
gripperEmpty A predicate indicating that the robot’s gripper is empty.
inGripper(X) A predicate indicating that object X is in the gripper.
onShelf(X) A predicate indicating that object X is on the shelf.
onTable(X) A predicate indicating that object X is on the table.
pushable(X) A predicate indicating that object X is pushable by the robot.
reachable(X) A predicate indicating that object X is reachable for grasping

by the gripper.

Table 2: A set of logical attributes for a simple planning domain.

with arguments represented by variables (e.g., X). Each ground term (e.g.,
clear(Obj0)) has an associated truth value that is interpreted relative to the
current world state.

Defining S: To define the attribute spaces for PlanGrasp and PlanPush
we restrict the set of attributes shown in Table 2. We define the attribute
space for PlanGrasp in terms of the set of logical attributes:

S =

{
focusOfAttn(X), inGripper(X), reachable(X),
clear(X), gripperEmpty, onTable(X)

}
.

We also define the attribute space for PlanPush in terms of the attributes:

S =

{
focusOfAttn(X), reachable(X), pushable(X),
clear(X), gripperEmpty, onTable(X)

}
.

We note the only significant difference between these two attribute spaces is
the inclusion of inGripper(X) for PlanGrasp, but not for PlanPush.

We also note that the representations used here could be more expressive
(e.g., the arguments could be restricted to only allow objects of a particular
type, or a multivalued logic could be used). In the interest of clarity we have
used a simple representation: identifying the attribute space of an OAC is
a challenging task no matter the level of abstraction, and learning the set
of logical attributes in this OAC is a difficult process. (We recognise this as
an instance of the “translation” learning problem.) A complete treatment of
how this attribute space could be learnt is outside the scope of this paper.

Defining T : Given these attribute spaces, we can define T for each OAC as a
pairing of initial conditions with predicted state descriptions (see Table 3). To
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Name Initial Conditions Prediction
PlanGrasp focusOfAttn(X) inGripper(X)

reachable(X) not(gripperEmpty)

clear(X) not(onTable(X))

gripperEmpty

onTable(X)

PlanPush focusOfAttn(X) reachable(X)

not(reachable(X))

pushable(X)

clear(X)

gripperEmpty

onTable(X)

Table 3: Prediction functions T for planning-level grasping and pushing OACs.

specify the prediction function, both the initial conditions and the predictions
are assumed to be conjunctions of specific attributes, i.e., all of the initial
conditions must be true in the world for the prediction function to be defined,
and all of the predictions are expected to be true in any state that results
from the execution of the OAC. In terms of PlanGrasp, this means that
if an object is the focus of attention, on the table, clear, reachable, and
the agent’s gripper is empty, then after executing this OAC we predict the
object will be in the gripper, not on the table, and the gripper will no longer
be empty. Likewise, for PlanPush, if an object is the focus of attention,
unreachable, pushable, clear, on the table, and the agent’s gripper is empty,
then after executing this OAC we predict the object will be reachable.

Note that, like the other OACs we have discussed, these prediction func-
tions do not make predictions in all states. Their predictive ability is re-
stricted to those states where their initial conditions are met. In any world
where these conditions do not hold the prediction function is undefined.10

Defining M : Taking the simplest possible approach, we define M for each
OAC as the long-term probability that the OAC’s T function correctly pre-
dicts the resulting state, assuming the OAC’s execution began from a state
for which the OAC’s prediction function was defined.

10We can also imagine OACs whose prediction functions are best defined by disjunctions
of separate prediction rules. In such cases, if one of the rules’ initial conditions is true, that
rule is used to predict the outcome of the action. If no rule matches then the prediction
function is undefined.
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We note that in classical AI planning systems, the reliability measure for
all OACs would be fixed as M = 1. Such planners assume a deterministic
and totally observable world, thereby removing all uncertainty from their
prediction functions. More recent work in AI planning has moved beyond
these assumptions (see, e.g., [19, 57]). For instance, there are now a number
of planning algorithms that use probabilistic statements about an action’s
long-term success to build plans with probabilistic bounds on the likelihood
that they will achieve their goals. Our definition of M makes our OACs
suitable for use by such planners.

Defining E: The execution specifications of these two OAC are straight-
forward but differ significantly from our previous examples. While each of
the previous example OACs indicated a specific control program to execute,
our planning OACs define their execution in terms of executing other OACs.
For example, the execution specification of PlanGrasp is defined in terms
of executing ObjGrasp:

EPlanGrasp = execute(ObjGrasp).

This means that invoking execute(PlanGrasp) calls execute(ObjGrasp).
Similarly the execution specification for PlanPush is defined in terms of

our previously defined pushing OAC, AgnoPush:

EPlanPush = execute(AgnoPush).

In other words, execute(PlanPush) calls execute(AgnoPush). In Section
8 we will see examples of the execution of these planning-level OACs.

7.4.2. Learning the Prediction Functions of Planning-Level OACs

The problem of learning prediction functions of the form we use in our
planning OACs has been the focus of much recent research (see, e.g., [8]).
One way this can be done is to use a training set of example actions in the
world, and corresponding observations of the world before and after each
action. For each example, a reduced world state consisting of a subset of the
propositional attributes that make up the entire world model is computed and
considered by the learning model. The attribute state is provided as input
to the learning model in the form of a vector where each bit corresponds to
the value of a single attribute. The learning problem is then treated as a
set of binary classification problems, with one classifier for each attribute,
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and the model learns the changes to each attribute in the reduced state. The
actual learning can be performed, e.g., by using a kernelised voted perceptron
classifier [58, 59], which is computationally efficient and can handle noise and
partial observability. We refer the reader to [8] for a detailed account of how
T and M can be learnt for this kind of OAC.

8. Interacting OACs

In this section, we describe two examples of OACs interacting in a single
architecture. In Section 8.1, we illustrate the grounding of objects and object-
related grasp affordances. In Section 8.2, we describe how such grounded
representations can be used to execute plans.

8.1. Grounding Grasping OACs

In this first example of OAC interaction, we demonstrate the grounding of
objects and object-related grasping affordances based on two learning cycles
involving the OACs AgnoGrasp and ObjGrasp (see Figure 10). This pro-
cess is shown in OAC notation in Algorithm 5 (and was previously described
in [35]). The first cycle (Figure 10, top) learns a visual object model of an
unknown object by grasping the object using AgnoGrasp. Once physical
control is achieved, the model can be learnt by integrating the information
gained from different views. The second cycle (Figure 10, bottom) learns
how to grasp the object. The newly acquired visual model is used to identify
and locate the object in the scene. ObjGrasp is then used to grasp the
object. Through repeated applications of this procedure the performance of
ObjGrasp is improved.

In this process, object knowledge and grasp knowledge is built up and
stored in an internal representation (i.e., the object and grasp memory).
Certain characteristics of our OACs play an important role in this process:

• Although the purpose of the first learning cycle is not to learn the
OAC AgnoGrasp (the aim is to attain physical control over an ob-
ject), learning is nevertheless taking place by calls to the updateCP

and updateM functions, as a process parallel to those processes steered
by, e.g., intentions or automated behaviours. This demonstrates the
principle of “ongoing learning” mentioned in Section 3.

• OACs can be combined to produce complex behaviour. The interaction
of multiple OACs, as demonstrated in the two learning cycles, can
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First learning cycle
while statusGrasp 6= stable do

open gripper
expr = execute(AgnoGrasp);
updateCP(expr);
updateM(expr);

end
Accumulate object representation oi
if accumulation successful then

transfer oi into object memory MO

initialise ObjGraspoi in MOAC

Second learning cycle
while instance of object oi in scene do

state.targetObj = oi
expr = execute(ObjGraspoi);
updateCP(expr);
updateM(expr);
open gripper

end

end

Algorithm 5: Grounding of object shape knowledge and object-specific grasp knowl-
edge by cooperative application of the OACs AgnoGrasp and ObjGrasp.

result in the grounding of symbolic entities usable for planning (see
Section 8.2).

8.2. Performing Plans

We now demonstrate how higher-level OACs can be executed by calling
lower-level OACs, in the context of performing a plan. To do this, we consider
an agent that is given the high-level goal of achieving inGripper(o) in a
world described by the high-level state:

{focusOfAttn(o), gripperEmpty,¬reachable(o),
pushable(o), onTable(o), clear(o)}.

Since reachable(o) does not initially hold in the world, a high-level planner
must build a plan that makes this property true. Using the OACs from
Section 7.4, one possible plan is an action sequence that first pushes o into a
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Figure 10: Grounding the OAC ObjGrasp in two learning cycles. In the first learning
cycle, physical control over a potential object is obtained by the use of AgnoGrasp.
Once control over the object is achieved and the visual structure changes according to
the movement of the robot arm, a 3D object representation is extracted and stored in
memory. In the second learning cycle, ObjGrasp is established and refined. First, the
object representation extracted in the first learning cycle is used to determine the pose
of the object in case it is present in the scene. Random samples of these are then tested
individually. Successful grasps are turned into a probability density function that repre-
sents the grasp affordances associated to the object, in the form of success likelihoods of
the grasp parameters.

graspable position, followed by an action that picks up o (see Figure 11).11

This results in the following plan consisting of the two high-level OACs:

PlanPush,PlanGrasp.

Recall from Section 6.2 that successful planning using OACs relies on
representational congruency and the hierarchical relationship between high-
level OACs and lower-level OACs. Further, recall from Section 7.4 that the
execution specifications of our high-level OACs are defined in terms of lower-

11We refer the reader to [56, 57] for more details on how such planning can be done.
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Figure 11: Execution of the plan involving the OACs PlanPush, AgnoPush,
PlanGrasp, and ObjGrasp. From left to right: (1) the object is not graspable, (2)
pushing moves the object into a graspable pose, (3) the object is grasped, and (4) the
object can finally be picked up by the agent.

level OACs, so that the execution of a high-level OAC effectively calls a
lower-level OAC as a subroutine, i.e.,

EPlanPush = execute(AgnoPush),
EPlanGrasp = execute(ObjGrasp).

To understand the execution of the above plan, we must consider the
ordering of the respective execution calls—and the experiments returned by
those calls—in each of the component OACs in the plan. In this discussion,
we assume that the world and the agent act as predicted and planned, without
plan or execution failures. For reasons of space, we will also ignore all calls
to the associated learning functions. However, even under such simplifying
assumptions, the execution of the above plan requires a number of steps. We
note that these steps should not be seen as a code fragment but rather as a
trace of an executing system:

1. The execution of PlanPush is defined in terms of the execution of
AgnoPush. By our definition of representational congruency, we are
guaranteed that information can be translated from PlanPush’s high-
level representation into AgnoPush’s model. For focusOfAttn(o),
a process must first be invoked to acquire bin(o) and extract loc(o)
from the environment. Second, a process must identify τ and a for the
desired push operation.

2. As we described in Section 7.1, executing AgnoPush invokes a low-
level control program that performs the task of actually pushing o, by
making use of the agent’s end effector.

3. Executing AgnoPush returns the experiment:

({(loc(o), bin(o))}, {T (bin(o), loc(o), a, τ)}, {loc(o)′})
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(which can, as all other experiments, either been stored in short term
memory or used directly for learning). Representational congruency
allows us to use loc(o)′ to determine the truth value of the high-level
predicate reachable(o) which is used in the experiment returned by
PlanPush.12

4. Executing PlanPush therefore returns the experiment:

({¬reachable(o), pushable(o), clear(o), gripperEmpty, onTable(o)},
{reachable(o)},
{reachable(o)})

indicating that reachable(o) is now true in the actual world, and the
agent can update its model with this information. This completes the
execution of the first action in the plan.

5. The execution of PlanGrasp is defined in terms of the execution of
ObjGraspo. As with PlanPush, information must be translated
from the high-level representation into AgnoPush’s model. Since
focusOfAttn(o) is true in the world, the translation process, based
on representational congruency, ensures that targetObj = o.

6. As we described in Section 7.3, executing ObjGraspo invokes a low-
level control program that performs the task of actually grasping o, by
making use of the agent’s end effector.

7. Executing ObjGraspo returns the experiment:

({statusGripper = empty, targetObj = o},
{statusGrasp = stable},
{statusGrasp = stable}).

Again, representational congruency ensures statusGrasp = stable

can be translated into the attribute space of the higher-level OAC, to
determine the truth value of the predicate inGripper(o). This predi-
cate can then be included in the experiment returned by PlanGrasp.

12We can imagine more complex execution specifications that would monitor the exe-
cution of the lower-level pushing OAC and call this OAC repeatedly until reachable(o)
is true. In this case, we have assumed that a single push is all that is necessary, and we
leave the definition of such complex execution specifications as an area for future work.
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8. Executing PlanGrasp returns the experiment:

({reachable(o), clear(o), gripperEmpty, onTable(o)},
{inGripper(o),¬gripperEmpty,¬onTable(o)},
{inGripper(o),¬gripperEmpty,¬onTable(o)})

indicating that inGripper(o) is now true in the world. As before, the
agent can update its high-level model to reflect this fact. This ends the
execution of the second action of the plan, and the plan as a whole.

As illustrated in the above example, the successful execution of a plan
may typically require OACs to be invoked at multiple levels of abstraction,
translating the calls between different models, and monitoring the results to
confirm the success of the actions involved. We note that while our definitions
support this simple example, more work is needed to extend our formal OAC
definitions to more complex control structures for grounding, specifically in
the areas of OAC execution, representation congruency, and OAC hierarchies.
For instance, if planning is to be effective in real-world domains, execution
monitoring is essential for detecting divergences of planned states from actual
sensed states, and replanning accordingly (see, e.g., [60]). Such processes rely
on the structural guarantees that properties like representational congruency
provide. We leave the task of generalising such control structures as an area
for future work.

9. Conclusion

This paper introduced Object-Action Complexes (OACs) as a framework
for modelling actions and their effects in artificial cognitive systems. We
provided a formal definition of OACs and a set of concrete examples, showing
how OACs operate and interact with other OACs, and also how certain
aspects of an OAC can be learnt.

The importance of OACs lies in their ability to combine the properties
of multiple action formalisms, from a diverse range of research fields, to
provide a dynamic, learnable, refinable, and grounded representation that
binds objects, actions, and attributes in a causal model. OACs have the
ability to represent and reason about low-level (sensorimotor) processes as
well as high-level (symbolic) information and can therefore be used to join
the perception-action space of an agent with its planning-reasoning space.
In addition, OACs can be combined to produce more complex behaviours,
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and sequenced as part of a plan generation process. As a consequence, the
OAC concept can be used to bridge the gap between low-level sensorimotor
representations, required for robot perception and control, and high-level
representations supporting abstract reasoning and planning.
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[52] M. Popović, D. Kraft, L. Bodenhagen, E. Başeski, N. Pugeault,
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Lab which focuses on computer vision and cognitive systems, in
particular the learning of object representations in the context of

grasping. He has also been working in the areas of computational neuro-
science and machine learning.

Christopher Geib is a Research Fellow at the University of Edin-
burgh School of Informatics. He holds an M.S. and Ph.D. from the
University of Pennsylvania. His research focuses broadly on deci-
sion making and reasoning about actions under conditions of uncer-
tainty, including planning, scheduling, constraint-based reasoning,
human-computer interaction, human-robot interaction, and proba-
bilistic reasoning. His recent research has focused on probabilistic

intent recognition through weighted model counting and planning based on
grammatical formalisms.

Justus Piater is a professor of computer science at the University of
Innsbruck, Austria. He earned his Ph.D. degree at the University of
Massachusetts Amherst, USA, where he held a Fulbright graduate
student fellowship. After a European Marie-Curie Individual Fel-
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Aleš Ude studied applied mathematics at the University of Ljubl-
jana, Slovenia, and received his doctoral degree from the Faculty
of Informatics, University of Karlsruhe, Germany. He was awarded
the STA fellowship for postdoctoral studies in ERATO Kawato Dy-
namic Brain Project, Japan. He has been a visiting researcher at
ATR Computational Neuroscience Laboratories, Kyoto, Japan, for

a number of years and is still associated with this group. Currently he is
a senior researcher at the Department of Automatics, Biocybernetics, and
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