
Exact interval propagation for the efficient solution

of position analysis problems on planar linkages

Enric Celaya∗, Tom Creemers, and Llúıs Ros

Institut de Robòtica i Informàtica Industrial (CSIC-UPC)
Llorens Artigas 4-6, 08028 Barcelona, Spain
E-mails: {celaya,creemers,ros@iri.upc.edu}

Abstract

This paper presents an interval propagation algorithm for variables in planar
single-loop linkages. Given intervals of allowed values for all variables, the
algorithm provides, for every variable, the whole set of values, without over-
estimation, for which the linkage can actually be assembled. We show further
how this algorithm can be integrated in a branch-and-prune search scheme,
in order to solve the position analysis of general planar multi-loop linkages.
Experimental results are included, comparing the method’s performance with
that of previous techniques given for the same task.

Keywords: Interval propagation, planar linkages, box approximation, loop
equation, position analysis, forward and inverse kinematics.

1. Introduction

In recent years there has been a growing interest in the use of interval
methods in Kinematics, specially for the task of finding the feasible configu-
rations of complex linkages—the so-called position analysis problem—which,
when performed analytically, may involve a large number of equations or
high-degree polynomials [1–3]. When the solution space is continuous, in-
terval methods can provide a discrete approximation of such space as a set
of enclosing boxes, which can, at least in principle, be refined as much as
desired [4]. Advantages of interval methods include their completeness, the

∗Corresponding author. Phone: +34 93 401 5787

Preprint submitted to Mechanism and Machine Theory March 20, 2012

fact that they do not require complex algebraic manipulations, and that the
solution set is not populated with imaginary values.

Interval methods for position analysis of linkages usually rely on a branch-
and-prune strategy: given a set of intervals for the involved variables, which
determine an initial box where solutions are to be sought, a pruning method
is applied to the box to eliminate regions of the box that cannot contain
a solution. When the box cannot be further reduced, it is split, usually
into two halves (or branches), each of which is treated recursively by the
same process. The pruning method may be a general interval propagation
algorithm applied to the kinematic equations of the linkage [1, 4–7], or a
more specific method suited to the problem [2, 3, 8].

Often, interval methods are, by design, subject to overestimation [9]. This
fact prevents reducing a box as much as possible before branching, which
may result in important efficiency losses. There is a trade-off between the
accuracy of the pruning process and its efficiency: an excessive complexity of
the pruning algorithm may overshadow its better accuracy in the reduction
of a box, resulting in a globally less efficient algorithm.

In this paper we present an exact, though simple, interval propagation
algorithm for variables in planar single-loop linkages with revolute joints.
The algorithm provides the exact angle intervals for which a solution exists,
assuming that the remaining angles can vary within specified ranges. By
“exact”, we mean here that the intervals are obtained with no over- or under-
estimation, at least in the ideal case of performing all computations with
infinite precision. Note however that, in practice, actual computations almost
always introduce approximations which prevent obtaining mathematically
exact results. On this regard, the tools of Interval Analysis [9] provide a
means to perform computations with approximate values and still make sure
that the result will be enclosed in a certain interval. Our algorithm can indeed
be implemented using such tools to provide guaranteed intervals, however,
since this is not the focus of the paper, we implemented the algorithm using
standard, floating-point computations. In fact, in the context of Interval
Analysis, our propagation algorithm constitutes an optimal contractor [4] for
equations of planar single-loop linkages with interval-constrained variables,
providing the smallest box that contains the solution set of such a constraint
satisfaction problem.

The paper also shows how the previous propagation algorithm may be
embedded within a branch-and-prune process as described above, in order
to solve complex, multi-loop linkages. For clarity purposes, the analysis is

2

limited to planar linkages with revolute joints only, but the method can also
be extended to deal with slider joints, and equivalent results can also be
obtained for spherical linkages [10].

The paper is organized as follows. Section 2 considers the case of single-
loop linkages and derives the exact intervals containing all joint angles for
which the loop closes, assuming all joints can freely rotate within the [0, 2π]
range. The following three sections compute the corresponding intervals
assuming that further constraints hold on the joint angles: Section 3 assumes
one joint is held fixed, Section 4 assumes one joint can only move within a sub-
interval of [0, 2π], and Section 5 assumes all joints move within different sub-
intervals each. Based on these results, Section 6 presents a branch-and-prune
algorithm for the position analysis of multi-loop linkages. Section 7 shows
some experiments on an implementation of this algorithm. Finally, Section 8
concludes the paper and highlights points deserving further attention.

2. Feasibility ranges in single-loop linkages

Consider a single-loop planar linkage formed by n links of positive lengths
l1, . . . , ln, cyclically connected through revolute joints (Fig. 1). It is well

Lk

lk

lk−2

lk−1

lk+1

θk−1

θk

θk+1

Figure 1: A single-loop planar linkage with revolute joints.

3

known that the n joint angles θ1, . . . , θn define a feasible configuration of the
linkage if, and only if, they satisfy the loop equation

R(θ1) Tx(l1) . . . R(θn) Tx(ln) = I, (1)

where R(θ) and Tx(l) denote homogeneous matrices encoding a rotation of
angle θ, and a translation of distance l along the x axis, respectively.

Our goal is to determine the feasibility range for each angle θk in Eq. (1),
i.e., the set of values for θk for which Eq. (1) has a solution, allowing the n
links to form a closed polygon. Hereafter, we will use the symbols en and
Sk(en) to refer to Eq. (1), and to the feasibility range for θk in this equation,
respectively. All indices will be understood modulus n, so that, e.g., index
n+ 1 corresponds to index 1, and index 0 corresponds to index n.

Eq. (1) is solvable, and hence the ranges Sk(en) are non-empty, whenever
the lengths l1, . . . , ln verify a certain condition, called the closure condition

for the links. We next derive this condition for different values of n, and
show how the feasibility ranges Sk(en) can be determined in each case.

For n = 2, the closure condition is simply l1 = l2, in which case the
feasibility ranges for θ1 and θ2 reduce to a single point, i.e.:

S1(e2) = S2(e2) =

{

{π}, if l1 = l2,
∅, if l1 6= l2.

For n = 3, the closure condition is given by the triangle inequalities

|l1 − l2| ≤ l3 ≤ l1 + l2, (2)

and the exterior angles of the triangle can be found by using the cosine rule.
For the angle θ2, for example, the rule dictates

l23 = l21 + l22 + 2l1l2 cos(θ2), (3)

so that

θ2 = ± arccos

(

l23 − l21 − l22
2l1l2

)

. (4)

Eq. (4) provides real values only when the argument of the arccosine function
is in the interval [−1, 1] or, equivalently, when the triangle inequalities (2)
hold. In this case, the feasibility range for θ2 consists of two points. Denoting
by θ−2 and θ+2 the two determinations provided by Eq. (4), we have:

S2(e3) =

{

{θ−2 , θ
+

2 } , if |l1 − l2| ≤ l3 ≤ l1 + l2,
∅ , otherwise.

4

The two determinations θ−2 and θ+2 coincide when the argument of the arcco-
sine function is +1 or −1, in which case S2(e3) reduces to a single point. The
feasibility ranges S1(e3) and S3(e3) can be obtained in an analogous way.

For n > 3, Eq. (1) can have an infinite number of solutions in general.
In this case, an expression of the closure condition that is convenient for
our purposes can be formulated in terms of the length Lk of the segment
connecting joints k−1 and k+1 (Fig. 1). Since the subchain formed by links
k − 1 and k constrains Lk to the interval

Ik = [|lk−1 − lk|, lk−1 + lk], (5)

the condition for the linkage to form a closed polygon is that the end-points
of the subchain formed by the remaining n− 2 links i 6∈ {k − 1, k} can also
reach some length in the interval Ik. To determine when this is possible, we
prove the following.

Lemma 1. The set of lengths reachable by a chain of m links of lengths

l1, . . . , lm articulated through revolute joints is the interval

A = [Amin, Amax], (6)

with

Amax =
m
∑

i=1

li, (7)

and

Amin = max{0, lM −

m
∑

i = 1,

i 6= M

li}, (8)

where lM is the largest li, i.e., lM ≥ li, i = 1, . . . , m.

Proof. It is easy to see that for m = 1 and m = 2 the lemma holds: For
m = 1 we get A = [l1, l1], so that the lemma is trivially true. For m = 2 we
get A = [|l1− l2|, l1 + l2], which corresponds to the result established in (5).
The proof for m ≥ 3 is by induction: We assume that the lemma is true for
m− 1 links, and we prove it for m links.

Clearly, the maximum length is reached when the chain is fully stretched,
which corresponds to the upper bound Amax. If we vary one or more of the
θi, this length will vary continuously, with a minimum value that we will
determine next. We distinguish two cases:

5

a) lM >
∑m

i=1,i 6=M li. In this case the lower bound Amin is lM−
∑m

i=1,i 6=M li.
Such value can be reached by making all θi = 0, except for the angles
adjacent to link M , for which we make θM−1 = θM = π, and is clearly
the minimum possible.

b) lM ≤
∑m

i=1,i 6=M li. In this case, the lower bound Amin is 0, and we
must prove that it can be always reached by the m-link chain. This
amounts to proving that the length lM can be reached by the chain of
the remaining m − 1 links. By induction hypothesis, the chain with
m− 1 links i 6= M , can reach any length in the interval

A′ =

max{0, lM ′ −
m
∑

i = 1,

i 6= M,M ′

li},
m
∑

i = 1,

i 6= M

li

, (9)

where lM ′ is the largest of the m − 1 link lengths: lM ′ ≥ li, i =
1, . . . , m; i 6= M . Now, we have the following inequalities for lM :

lM > 0, (10)

lM ≥ lM ′ > lM ′ −

m
∑

i = 1,

i 6= M,M ′

li, (11)

lM ≤
m
∑

i = 1,

i 6= M

li, (12)

and therefore lM ∈ A′, so that according to the induction hypothesis,
it can be effectively reached by the chain with m− 1 links. �

Using Lemma 1, it is now possible to formulate the closure condition for
n ≥ 3. For a given joint k, we define Ak as the interval of lengths, given by
Lemma 1, reachable by the chain of the n − 2 links not adjacent to joint k,
i.e., i /∈ {k−1, k}. Then, a closure condition for Eq. (1) to have a solution is
that the interval Ik defined in Eq. (5) has a non-empty intersection with Ak:

Ik ∩Ak 6= ∅. (13)

Note that an equivalent closure condition can be obtained for each joint k in
the linkage, as was the case for the triangle inequalities.

6

Algorithm 1: Find Range

Input : A loop equation en in the form of Eq. (1) and a variable θk.
Output: The set Sk(en) of feasible values for θk.

Ik ← [|lk−1 − lk|, lk−1 + lk]
Akmax ←

∑n

i=1,i 6∈{k−1,k} li
lM ← maxi 6∈{k−1,k}{li}
Akmin ← max{0, lM −

∑n

i=1,i 6∈{M,k−1,k} li}

Ak ← [Akmin, Akmax]
if Ik ∩ Ak = ∅ then
S+

k ← ∅

S−
k ← ∅

else
[a, b]← Ik ∩ Ak

θ+k (a)← +arccos((a2 − l2k−1
− l2k)/2lk−1lk)

θ+k (b)← +arccos((b2 − l2k−1
− l2k)/2lk−1lk)

S+

k ← [θ+k (b), θ
+

k (a)]
S−
k ← [2π − θ+k (a), 2π − θ+k (b)]

Return: Sk(en) = S
+

k ∪ S
−
k

When the closure condition holds, the feasibility range Sk(en) for θk can
be obtained noting that each value in the interval [a, b] = Ik∩Ak corresponds
to a valid length for Lk, which yields two solutions for the angle θk in general.
By applying the cosine rule to the triangle defined by lk−1, lk, and Lk (Fig. 1),
the corresponding solutions for θk, as a function of Lk, are given by

θ±k (Lk) = ± arccos

(

L2
k − l2k−1

− l2k
2lk−1lk

)

. (14)

Thus, the complete set Sk(en) can be easily obtained from the interval [a, b] =
Ik∩Ak of valid values for Lk, simply by computing the angles θ+k (a) and θ+k (b)
corresponding to each bound of this interval. Since each determination of the
arccosine function is a monotonic continuous function, the set Sk(en) is the
union of two equal-length intervals defined by the corresponding bounding
values. The complete procedure for computing Sk(en) is given in Algorithm 1.

It is useful to note that the structure of Sk(en) depends on the way Ak

and Ik intersect. There are four different possibilities:

7

1. Ak and Ik do not intersect. In this case Sk(en) is empty.

2. Ak and Ik partially overlap. In this case Sk(en) is a single interval,
given by Sk(en) = [θ+k (b), 2π−θ

+

k (b)] when Ak contains the lower bound
of Ik, and Sk(en) = [2π − θ+k (a), θ

+

k (a)] when Ak contains the upper
bound of Ik.

3. Ak is interior to Ik. In this case Sk(en) has two disjoint intervals,
S+

k = [θ+k (b), θ
+

k (a)] and S
−
k = [2π − θ+k (a), 2π − θ+k (b)].

4. Ak includes Ik. In this case Sk(en) is the whole range [0, 2π].

A remark concerning the notation used in this paper is required here:
when denoting circular intervals as [α, β] we refer to all angular values found
between α and β following a counter-clockwise direction. Thus, for example,
the interval [−π/2, π/2] = [3π/2, π/2] corresponds to the right half of the
circumference, while [π/2,−π/2] = [π/2, 3π/2] corresponds to the left half.
When possible, we will denote angular values by their determination included
in [0, 2π].

3. Value propagation from one variable to another

Suppose now that we fix some variable θj to a given value α, and that we
want to obtain the set of values for another variable θk that are compatible
with such an assignment, i.e., the values for θk for which equation en with
the condition θj = α has a solution. This set will be called the propagation
of the value α from θj to θk in equation en, and will be denoted by Pjk(α).

In order to compute Pjk(α), we will first substitute the value α for θj in
en, and we will then find the feasibility range for θk in the resulting equation.
If we denote the new equation by (en|θj = α), and the feasibility range for θk
in this equation by Sk(en|θj = α), we clearly have Pjk(α) ≡ Sk(en|θj = α).

The substitution θj = α in en gives

. . .R(θj−1) Tx(lj−1) R(α) Tx(lj) R(θj+1) . . . = I, (15)

but note from Fig. 2 that fixing θj = α corresponds to fixing the distance
between joints j − 1 and j + 1 to the value

lα =
√

l2j−1
+ l2j + 2lj−1lj cos(α). (16)

Thus, when lα 6= 0, Eq. (15) can be rewritten as

. . .R(θ̃j−1) Tx(lα) R(θ̃j+1) . . . = I, (17)

8

lα

lj

lj−2

lj−1

lj+1

θj−1

α

θj+1

γ

δ

Figure 2: Substitution of variable θj by a constant value α.

where

θ̃j−1 = θj−1 + δ, (18)

θ̃j+1 = θj+1 + γ, (19)

δ = atan2 (lj sin(α), lj−1 + lj cos(α)), (20)

γ = α− δ, (21)

which corresponds to the loop equation of a linkage with n− 1 links.
When lα = 0, which occurs when lj = lj−1 and α = π, the linkage is said

to be in a singular configuration, and Eq. (15) must be rewritten as

. . . R(θ̃j−1) . . . = I (22)

where
θ̃j−1 = θj−1 + π + θj+1, (23)

which corresponds to the loop equation of a linkage with n− 2 links.
Note now that because Eqs. (17) and (22) adopt the standard form of

Eq. (1), we can readily use the Find Range algorithm to compute the feasi-
bility ranges for their variables. On both equations, the algorithm directly

9

provides the range Pjk(α) for θk if k 6= j ± 1. For k = j ± 1, the Find Range

algorithm applied on Eq. (17) provides the ranges for θ̃j±1, from which the
ranges Pj,j±1(α) for θj±1 can be obtained using Eqs. (18)-(21). Applied on
Eq. (22), the algorithm provides the range for θ̃j−1, and depending on whether
such range is empty or not, we see from Eq. (23) that the ranges for θj−1 and
θj+1 will both be empty or [0, 2π].

4. Interval propagation from one variable to another

In some situations, a given variable θj may have been constrained to take
not just a specific value, but any value inside an interval C = [α, α]. In this
case, we are interested in obtaining the set of values for another variable θk
that are compatible with at least one value α ∈ C of θj , i.e., the set

Pjk(C) ≡
⋃

α∈C

Pjk(α), (24)

which will be called the propagation of interval C from θj to θk in equation en.
In this Section, we will derive an interval propagation algorithm to compute
Pjk(C) efficiently. To this end, we next introduce some properties of the
propagation map Pjk(θj).

4.1. Properties of the propagation map

Let Pjk denote the graph of Pjk(θj), i.e., the set of all points (α, β) such
that β ∈ Pjk(α). Fig. 3 shows an example graph for a particular loop equa-
tion, where Pjk is composed of two subsets, P+

jk and P−
jk, corresponding to

the two determinations of the arccosine function, which in this case are dis-
joint. It is clear that β ∈ Pjk(α) if, and only if, α ∈ Pkj(β), and hence,
(α, β) ∈ Pjk ⇔ (β, α) ∈ Pkj, so that the graph of Pjk(θj) can also be in-
terpreted as the graph of the inverse map Pkj(θk) with its axes permuted.
In what follows we will say that two variables θj and θk of equation en are
adjacent if they appear in consecutive joints of the linkage.

Definition 1 (Singular and regular values). Let θj and θk be two adja-
cent variables of equation en. We say that β is a singular value of Pjk(θj)
if the substitution θk = β in en gives rise to a singular configuration of the
linkage as defined in Section 3. Points (α, β) ∈ Pjk for which β is a singular
value of Pjk(θj) will be called singular points of Pjk. Non-singular values of
Pjk(θj) will be called regular values of Pjk(θj), and points (α, β) ∈ Pjk for
which β is a regular value of Pjk(θj) will be called regular points of Pjk.

10

To avoid confusions, we remark that singular values of Pjk(θj) are values
taken by θk, not by θj . Singular values always correspond to β = π, and they
appear when the two links joined by θk have the same length, in which case,
β = π is a singular value of the two maps Pjk(θj) with j = k±1. Also observe
that, if (α, β) ∈ Pjk is a singular point of Pjk, then (θj , β) ∈ Pjk for all θj ,
and all of them are singular points, and Pkj(β) = [0, 2π] or, equivalently,
β ∈ Pjk(θj) for all θj ∈ [0, 2π].

It is important to note that the bounds of the intervals forming the image
set Pjk(α) vary smoothly with α except, possibly, at singular values of the

θj

θk

l+k

u+
k

l−k

u−k

S+k

S−k

S
+j

S
−j

α

β

P+
jk

P−jk

Pjk(α)

P
k
j (β

)

0 π

π

π/2 3π/2

2π

2π

Sk(en)

S
j (e

n)

Figure 3: Graph of Pjk(θj) for variables θj = θ2 and θk = θ5 in the loop equation
R(θ1)Tx(4)R(θ2)Tx(8)R(θ3)Tx(1)R(θ4)Tx(8)R(θ5)Tx(6)= I. The same figure can also
be interpreted as the graph of Pkj(θk) by looking at it with a left turn of 90◦. The slices
θj = α and θk = β provide Pjk(α) and Pkj(β), respectively.

11

inverse map Pkj(θk). Effectively, to compute the set Pjk(α) = Sk(en|θj = α)
when α is a regular value of Pkj(θk), first, equation (en|θj = α) will be rewrit-
ten using Eqs. (16)-(21), then, using the Find Range algorithm, the corre-
sponding intervals Ik and Ak, defined as in (13), will be determined and their
intersection found, and finally, if this intersection is not empty, the bounds
for θk will be obtained using (14). All of the functions involved in the pro-
cess are continuous with respect to α, with the only exception of (20), which
becomes undetermined just when α is a singular value of Pkj(θk). There-
fore, while θj takes only regular values of Pkj(θk), the bounds of Pjk(θj) vary
continuously with θj , eventually splitting into two equal length intervals (or
joining into a single one), or perhaps shrinking to a point and then vanishing
when the intersection Ik∩Ak becomes empty (or growing from a single initial
point when Ik and Ak enter in contact).

On the contrary, if a value α ∈ Sj(en) is a singular value of Pkj(θk), then
Pjk(α) = [0, 2π], as discussed above, and it may correspond to a discontinuity
in the bounds of Pjk(θj).

Our purpose, now, is to show that those local extrema of Pjk(θj) that
correspond to regular values of θk must coincide with one of the bounds that
define the set Sk(en) of valid values for θk. But before, since Pjk(θj) is not
a function (the image of each point is composed, in general, of one or two
intervals), we must introduce an appropriate definition of local extremum of
Pjk.

Definition 2 (Local extrema). A point (αm, βm) ∈ Pjk is a local maxi-

mum of Pjk if there exists a ball Bρ with center (αm, βm) and radius ρ > 0
such that (α, β) ∈ Pjk ∩ Bρ ⇒ β ∈ [βm − ρ, βm]. Similarly, (αm, βm) is a
local minimum of Pjk if (α, β) ∈ Pjk ∩ Bρ ⇒ β ∈ [βm, βm + ρ]. If (αm, βm)
is a local maximum (resp. minimum) of Pjk, we will say that βm is a local
maximum (resp. minimum) value of Pjk(θj). A local maximum or minimum
will be called strict if (αm, βm) is the only point (α, β) ∈ Pjk ∩Bρ such that
β = βm.

With these definitions, we can see that, in the example of Fig. 3, Pjk has
two strict local maxima, (0, u−

k) and (π, u+

k), and two strict local minima,
(0, l+k) and (π, l−k). On the contrary, Pkj(θk) has no local extrema.

There is an important relationship between strict local extrema and reg-
ular points: If (αm, βm) is a local extremum of Pjk, the inverse map Pkj(θk)
changes from empty to non-empty (or vice-versa) when θk passes through

12

βm. Whether (αm, βm) is a strict local extremum or not depends on whether
Pkj(βm) is a single point or an interval. As we have seen previously in this
Section, if (αm, βm) is a singular point of Pjk, then Pkj(βm) = [0, 2π], while if
it is regular, Pkj(βm) must reduce to a point before vanishing. Thus, we can
conclude that a local extremum of Pjk is strict if, and only if, it is a regular

point of Pjk. Next we prove the main property of Pjk we were seeking.

Property 1. If (αm, βm) is a strict local extremum of Pjk, then βm is a

bound of one of the intervals composing the feasibility range Sk(en) for θk.

Proof. We prove the property for local maxima; the proof for minima is
analogous. The condition for a value β to be the upper bound of an interval
of Sk(en) is that Pkj(β) 6= ∅ and Pkj(β + ε) = ∅ for any sufficiently small
ε > 0. Therefore, it is enough to show that if (αm, βm) is a strict local
maximum of Pjk, then for any sufficiently small ε > 0, Pkj(βm + ε) = ∅.

The proof is by contradiction. Let us assume that (αm, βm) is a strict
local maximum of Pjk, but Pkj(βm + ε) 6= ∅ for arbitrarily small ε > 0.
This means that we can find values αε such that, for arbitrarily small ε > 0,
(αε, βm+ ε) ∈ Pjk. But, since (αm, βm) is a local maximum of Pjk, there is a
ball Bρ centered at (αm, βm) with radius ρ > 0 to which points (αε, βm + ε)
can not belong, what means that |αε − αm| > ρ. This implies that there is
a discontinuity in the bounds of Pkj(θk) at θk = βm, which is only possible
if βm is a singular value of Pjk(θj), in which case, (αm, βm) could not be a
strict local maximum of Pjk. �

4.2. Interval propagation algorithm

In order to determine the set Pjk(C) for C = [α, α], we already know that

{Pjk(α) ∪ Pjk(α)} ⊂ Pjk(C) ⊂ Sk(en). (25)

Thus, we are led to determine which parts of the difference set

Djk(C) ≡ Sk(en) \ {Pjk(α) ∪ Pjk(α)} (26)

are also included in Pjk(C) (Fig. 4). For this we will use an important fact
about Djk(C), derived from Property 1 of Pjk:

Property 2. If D is an interval for θk fully contained in the difference set

Djk(C), then either D ⊂ Pjk(C), or D ∩ Pjk(C) = ∅.

13

Proof. We first show that if D contains a local extremum of Pjk(θj), then
it must be a strict local extremum. To show this, observe that D can not
contain singular values of Pjk(θj) because, if β ∈ Sk(en) is a singular value
of Pjk(θj), then, as discussed before, β ∈ Pjk(α) for all α, so that, according
to (26), β would be excluded from Djk(C), and hence from D. Since we have
already established that a local extremum is strict if and only if it is regular,
we conclude that D can only contain strict local extrema.

Now, to prove the property, assume that there are two points, ϕ ∈ D and
ξ ∈ D, such that ϕ ∈ Pjk(C) and ξ 6∈ Pjk(C). We will see that this yields
a contradiction. Let d and d be, respectively, the lower and upper bounds
of D (which may be included in D, or not). Assume by the moment that
ϕ ∈ [d, ξ]. Let Ω be the maximum value in [ϕ, ξ] such that Ω ∈ Pjk(C). This

θj

θk

Sk(en)Djk(C)

Pjk(C)

0

π

ππ/2 3π/2

2π

2π

α αC

Figure 4: Propagation of interval C = [α, α] from θj to θk, obtaining Pjk(C).

14

implies that ξ /∈ [d,Ω]. Since Ω is a maximum value of Pjk(C) = Pjk([α, α]),
and Ω 6∈ {Pjk(α) ∪ Pjk(α)}, this means that Ω is a local maximum value of
Pjk(θj). Since Ω ∈ D, it is a strict local maximum of Pjk(θj) and, by Property
1, Ω must be an upper bound of Sk(en). By construction of Djk(C), if D
contains an upper bound of Sk(en), it must be the upper bound of D, so that
we have d = Ω, and therefore [d,Ω] = [d, d] ⊃ D, and the above implication
ξ /∈ [d,Ω] would mean that ξ /∈ D, in contradiction with the hypothesis. A
similar reasoning can be done assuming that ϕ ∈ [ξ, d]. �

Property 2 shows that if D is an interval contained in Djk(C), then it
must be either completely contained in Pjk(C) or disjoint with it, so that it
is enough to check the inclusion in Pjk(C) of a representative point ξk ∈ D
to determine whether the whole interval D is included in, or excluded from,
Pjk(C). The inclusion of a point ξk into Pjk(C) can be checked by computing
Pkj(ξk) and intersecting it with C. The intersection will be non-empty if,
and only if, C contains some ξj ∈ Pkj(ξk), which is equivalent to saying
that ξk ∈ Pjk(ξj) ⊂ Pjk(C). Then, since Djk(C) can be decomposed into
a collection of intervals Di, we can determine which parts of Djk(C) are
included in Pjk(C) by checking the inclusion of a single point of each Di

(e.g., its middle point).
Summarizing, the algorithm for the propagation of the interval C from

θj to θk (Algorithm 2) requires finding the feasibility range Sk(en) using the
algorithm Find Range presented in Section 2, propagating the two bounds
of C to θk as explained in Section 3, and, eventually, propagating an interior
point of each connected interval of the difference set Djk(C) to θj , which in
the worst case will consist of six different intervals.

5. Simultaneous propagation of intervals for multiple variables

In this Section, we consider the general case in which constraints are
imposed on several variables at the same time, and the goal is to find the set
of values for another variable that are compatible with all these constraints
simultaneously.

In the simplest case, which we will call multiple value propagation, each
constrained variable is restricted to a single value. In this case, if θ1, . . . , θr

1

1Without loss of generality, and to ease the notation, we rename the constrained vari-
ables with consecutive indexes 1 to r.

15

Algorithm 2: Propagate Interval

Input : A loop equation en, an input variable θj , its interval
constraint C = [α, α], and an output variable θk.

Output: The set Pjk(C) of compatible values for θk.

S ← Sk(en) // Call the algorithm Find Range

P ← Pjk(α) ∪ Pjk(α) // Propagate α and α (Section 3)

D ← S \ P // Compute the difference set Djk(C)
foreach connected interval Di forming D do

ξk ← midpoint of Di

Pj ← Pkj(ξk) // Propagate the value ξk (Section 3)

if Pj ∩ C 6= ∅ then
P ← P ∪Di

Return: Pjk(C) = P

are respectively restricted to the values α1, . . . , αr, the set of values for
θk simultaneously compatible with all these constraints will be denoted by
P1...r,k(α1, . . . , αr). This set can be easily computed by recursively applying
the method for equation rewriting used for value propagation (Section 3).
The process starts by fixing θ1 to the value α1 and rewriting the loop equa-
tion en to get (en|θ1 = α1), then fixing θ2 to the value α2 in the new equation
to get (en|θ1 = α1, θ2 = α2), and so on, until all constrained variables are
fixed, giving rise to the equation (en|θ1 = α1, . . . , θr = αr). Then, the set
of compatible values for θk can be obtained using the algorithm Find Range

with this equation, taking into account the possible changes of variables af-
fecting θk that may have been introduced along the process.

In the general case, different variables may have been constrained with
either interval or value constraints, in which case the above procedure is not
enough, since the method of equation rewriting can not be applied with
interval constraints. Thus, if p variables θ1, . . . , θp are respectively con-
strained to the intervals C1, . . . , Cp, and r − p variables θp+1, . . . , θr are con-
strained to the r − p values αp+1, . . . , αr, we are interested in obtaining the
set P1...r,k(C1, . . . , Cp, αp+1, . . . , αr) of values for θk that are compatible with
all of these constraints simultaneously. In this case, we can use the rewriting
method with the r − p value constraints, reducing the problem to one with

16

only interval constraints. We will use the notation

P1...p,k(C1 . . . Cp|θp+1 = αp+1 . . . , θr = αr) ≡ P1...r,k(C1, . . . , Cp, αp+1, . . . , αr),

to indicate that the result of propagating multiple value and interval con-
strains in equation en is equivalent to propagating only the interval con-
straints in equation (en|θp+1 = αp+1, . . . , θr = αr).

Now, to derive an algorithm for multiple interval propagation, we con-
sider the properties of the multiple propagation map P1...r,k(θ1, . . . , θr) and
its graph P1...r,k, whose local extrema are defined in a way completely anal-
ogous to that of Definition 2. We next show that, like in the r = 1 case,
the sets P1...r,k satisfy the important property that all of their strict local
extrema correspond to bounds of Sk(en).

Property 3 (Generalization of Property 1). If a point (α1, . . . , αr, βm)
is a strict local extremum of P1...r,k, then βm is a bound of one of the intervals

composing the feasibility range Sk(en) for θk.

Proof. We prove the property for the case r = 2 corresponding to Pijk.
The extension to higher dimensions is easily obtained by induction on the
number r of input variables.

Consider the set Pijk for a given equation en (see Fig. 5 for a particular
example). Note that its projection onto the θj-θk plane is the graph of Pjk(θj).
Let P = (ζm, αm, βm) be a strict local maximum of Pijk. Consider the slice
of Pijk normal to the θj axis, taken at θj = αm. This slice is actually the
graph of Pik(θi|θj = αm), and its projection onto the θj-θk plane is Pjk(αm).
Since P = (ζm, αm, βm) is a strict local maximum of Pijk, then (ζm, βm) is a
strict local maximum of the slice Pik(θi|θj = αm) containing P . By applying
Property 1 on the graph of the map Pik(θi|θj = αm), βm must be a bound of
Sk(en|θj = αm) = Pjk(αm). Since P is a strict local maximum of Pijk, this
bound must decrease for slices of Pijk taken at values slightly different from
θj = αm, which means that (αm, βm) must also be a strict local maximum of
the projected graph Pjk. Now, using Property 1 on Pjk, we conclude that
βm must be a bound of Sk(en). �

For the generalization of Property 2 we first consider the case r = 2. In
this case, we are interested in Pijk(Ci, Cj) and, if Ci = [αi, αi], we can say
that

{Pijk(αi, Cj) ∪ Pijk(αi, Cj)} ⊂ Pijk(Ci, Cj) ⊂ Sk(en). (27)

17

θj = αm

Pjk(αm)
Sk(en)

θi

θj

θk

ζm

αm

βm
P

Figure 5: The graph of an example map Pijk(θi, θj) and its projection onto the θj-θk
plane, Pjk(θj).

Similar inclusions can be established using the bounds of Cj = [αj, αj], so
that we can say that the set of values of θk compatible with some point in
the box Ci×Cj of the space of θi-θj obviously includes the set of values of θk
compatible with the points lying in any of the four edges of the box. Now,
we can construct the difference set

Dijk(Ci, Cj) = Sk(en)\{Pijk(αi, Cj)∪Pijk(αi, Cj)∪Pijk(Ci, αj)∪Pijk(Ci, αj)},

and, as in the r = 1 case, if βk ∈ Dijk(Ci, Cj), it can not be a non-strict
local extreme value of Pijk(θi, θj). Otherwise, at least one of the projections
of βk onto the θi-θk or θj-θk planes would be a non-strict local extreme value
of the corresponding map, Pik(θi) or Pjk(θj), and consequently, βk would be
a singular value of one of these maps. This would imply that βk ∈ Pik(αi)
or βk ∈ Pjk(αj), and would be excluded from Dijk(Ci, Cj). Therefore, we
can use Property 3 to conclude, following a reasoning analogous to that
of Property 2, that each connected interval of Dijk(Ci, Cj) must either be

18

completely included in, or completely disjoint with Pijk(Ci, Cj).
In the general case, for r ≥ 2, the difference set D1...r,k(C1, . . . , Cr) is

defined by subtracting from Sk(en) all the (r − 1)-dimensional walls of the
box C1×. . .×Cr. It is not hard to see that the intervals composing the dif-
ference set D1...r,k(C1, . . . , Cr) defined in this way always satisfy the property
of being either completely included in, or completely disjoint with the set
P1...r,k(C1, . . . , Cr), so that it is enough to check the inclusion in this set of
a single point in each connected interval forming D1...r,k(C1, . . . , Cr), to fully
determine the complete set P1...r,k(C1, . . . , Cr).

Algorithm 3 summarizes the multiple interval propagation procedure.
Note that the algorithm is defined recursively, since the propagation of a
box of dimension r requires 2r calls to the algorithm to propagate its 2r
walls, which, in turn, are boxes of dimension r − 1. To this end we use the
equivalence:

P1...r,k(C1, . . . , αi, . . . , Cr) ≡ P1...i−1,i+1...r,k(C1, . . . , Ci−1, Ci+1, . . . , Cr|θi = αi),

which is computed by calling the algorithm with one less argument, but using
equation (en|θi = αi) instead of en.

To check the inclusion of a value ξk of θk in P1...r,k(C1, . . . , Cr), we fix this
value in en to get (en|θk = ξk) and check the compatibility of the intervals
Ci for this equation. This can be achieved by intersecting, e.g., C1 with the
propagation of the r−1 remaining intervals into θ1: P2...r,1(C2 . . . Cr|θk = ξk).
If this intersection is not empty, the intervals are compatible and the interval
Di containing ξk must be included in the result.

6. Solving multi-loop linkages

In the preceding sections we dealt only with single-loop linkages. General
linkages, though, may consist of multiple interconnected loops sharing some
joints between them (Fig. 6). In this case, one loop equation is imposed by
each one of the loops, and a value for a variable, to be feasible, must be com-
patible, not only with a solution of the equations involving this variable, but
with a global solution for all variables of all loop equations simultaneously.
Unfortunately, no procedure is known to compute the exact feasibility ranges
for variables in general multi-loop linkages but, as shown next, the propaga-
tion algorithm of the previous section can be used iteratively to isolate all
the feasible configurations of such linkages.

19

Algorithm 3: Propagate Multiple Intervals

Input : A loop equation en, r input variables θ1, . . . , θr, their
respective interval constraints C1, . . . , Cr, and an output
variable θk.

Output: The set P1...r,k(C1, . . . , Cr) of compatible values for θk.

if r = 1 then
P ← P1k(C1) // Call the algorithm Propagate Interval

else
for i = 1, . . . , r do // Propagate all (r-1)-dimensional walls

// Recursive call using the lower bound

αi ← lower bound of Ci

Li ← P1...i−1,i+1...r,k(C1, . . . , Ci−1, Ci+1, . . . , Cr|θi = αi)

// Recursive call using the upper bound

αi ← upper bound of Ci

Ui ← P1...i−1,i+1...r,k(C1, . . . , Ci−1, Ci+1, . . . , Cr|θi = αi)

P ←
⋃r

i=1
{Li ∪ Ui}

S ← Sk(en) // Call the algorithm Find Range

D ← S \ P // Compute the difference set D1...r,k(C1, . . . , Cr)
foreach connected interval Di forming D do

ξk ← midpoint of Di

P1 ← P2...r,1(C2, . . . , Cr|θk = ξk) // Propagation to θ1
if P1 ∩ C1 6= ∅ then

P ← P ∪Di

Return: P1...r,k(C1, . . . , Cr) = P

To this end, we start choosing a loop basis of the linkage [11] and writing
an equation of the form of Eq. (1) for each loop in the basis. Note that
the longer a loop is, the less constrained its angles result. Thus, among
all possible loop bases, the minimal ones are preferred in practice [12], as
they keep the loop lengths to a minimum. Then, we label as shared those
variables corresponding to joints involved in more than one loop. Let s be
the number of shared variables and consider an s-dimensional box B defined
as the Cartesian product of given initial intervals for the shared variables in
which solutions are to be sought, e.g., B = [0, 2π]s if the whole set of solutions

20

is wanted. For each equation, we (1) get the list of shared variables involved
in the equation and their corresponding intervals defining the box, (2) for
each variable in the list, use Algorithm 3 to compute the set of values for
the variable that are compatible with the intervals of the remaining variables
in the equation, intersect the result with the interval for the variable, and
replace it in the definition of the box, and (3) in the case that, as a result of
the previous step, the interval for some variable gets split into two or more
intervals, take the fist interval as the new one for the box and create, for each
remaining interval, a new “child” box that will be included in a list of boxes
to be identically processed later. Any time the interval of a shared variable
is reduced as a consequence of this process, the variable is said to have
been “touched”. The touching of a variable triggers all equations sharing the
variable (except the one that provoked the touch), and all triggered equations
are kept on a “wake-up” stack. To ensure that all possible propagations are
performed, we repeatedly select one equation from the stack, apply steps
(1) to (3) to the equation, and if some variable becomes touched, we trigger
any other equations sharing the variable, until the wake-up stack gets empty.
The latter situation is known as a fixpoint of the propagation process [13],
meaning that all intervals for the shared variables defining the box are locally
consistent within each equation. However, this does not necessarily mean
that these intervals are globally consistent, in the sense that we can not
guarantee that any value in the interval of a variable is compatible with a
feasible configuration of the linkage.

To isolate all feasible configurations, we embed the previous process in a
standard branch-and-prune algorithm [14]. Two operators will be employed
to this end, Trim-Box and Split-Box. The former prunes portions of a
box containing no solution, by executing a single iteration of the propagation
mechanism of the previous paragraph. The latter simply bisects a box into
two sub-boxes by dividing its largest interval at its midpoint. Initially, the
algorithm applies Trim-Box to the whole box [0, 2π]s. As mentioned earlier,
such reduction may yield several compatible child boxes in general, and either
one of four actions is applied on each one of them:

1. If the box has an empty interval, then it contains no solution and the
box is labeled as empty.

2. If the box is “small enough”, then the box is labeled as a solution box.

3. If the box is not “small enough” and a fixpoint has not been reached,
then Trim-Box is applied.

21

4. If the box is not “small enough” and a fixpoint has been reached, then
the box is bisected into two sub-boxes using Split-Box.

If the last case occurs, the whole process is recursively applied to the new
sub-boxes until all non-empty boxes are “small enough”. A small-enough
box is defined as one for which all of its intervals are shorter than a given
threshold σ.

Note that, on termination, this process will have explored a tree of boxes
whose internal nodes are boxes being split at some time, and whose leaves
are either solution or empty boxes. Solution boxes form an approximation
of the set of mutually compatible values for the shared variables that corre-
spond to feasible configurations of the linkage. Actual linkage configurations
can be easily obtained from each one of the solutions found for the shared
variables by propagation to the non-shared variables. Note also that the ac-
curacy of the box approximation can be adjusted through the σ threshold.
In other words, the lower the chosen σ, the less the error committed when
approximating a solution by any point inside a box.

7. Experiments

The previous algorithm has been implemented in C++, and all CPU
times will be given for an Intel(R) Core(TM) i7 870 processor at 2.93 GHz,
under Windows 7.

Results for two experiments are provided. The first one solves the position
analysis of the “double butterfly” linkage (Fig. 6) when θ3 is a fixed, known
angle, which yields a finite number of isolated solutions. The second one
solves the same linkage but assuming that θ3 is a free variable, yielding a one-
dimensional continuum of solutions. The same benchmarks have been used
previously to show the performance of elimination [15, 16], continuation [17,
18], and relaxation techniques [2]. We compare our results with those derived
by such techniques, and employ the same linkage dimensions used in these

22

papers. Namely:

a0 = 7 b0 = 13 γ0 = 36.87◦

a1 = 7 b1 = 6 γ1 = 22.62◦

a2 = 5 b2 = 3 γ2 = 53.13◦

a6 = 3 b6 = 2 γ6 = 36.87◦

l3 = 7 l4 = 9 l5 = 12 l7 = 11

7.1. A rigid butterfly

The number of solutions of the double butterfly linkage varies depending
on which joint angle is fixed and on the specific value given to it. If we set
θ3 = 75.75◦, the number of obtained solutions is six [2, 15, 16]. They are given
in Table 1. Actually the cited papers employ absolute orientation angles for
the links. Fixing our θ3 = 75.75◦ corresponds to fixing the angle θ6 used

θ1

θ2θ3

θ4

θ5

θ6
θ7

θ8

θ9 θ10

γ0

γ1
γ2

γ6

a0

a1
a2

l3

l4

l5

a6

l7

b0

b1 b2

b6

Figure 6: The double butterfly linkage involves three interconnected loops.

23

in those works to 67.38◦. We note that, while continuation and elimination
methods must filter the solutions among the eighteen possible complex roots,
the method given here directly provides the six real solutions shown in the
table. The obtained solutions are in accordance with those in [2, 15, 16].

Due to the nature of the algorithm all solutions are obtained as intervals
that bound them, which allows estimating the error with respect to the exact
position of the roots. This error must be equal or less than the chosen σ
threshold, which was set to 10−4 in this case. The solutions were found in
0.25 sec of CPU time, after processing 11 boxes. From them, only the six
shown in Table 1 were labeled as solutions (thus returning the minimum
possible number of boxes) and 5 boxes were found to be empty.

It is difficult to tell at this point whether the presented algorithm out-
performs the previous methods based on Dixon’s resultant [15, 16], mainly
because no statistics are given in this respect in those works, and we have
found no publicly available package implementing them. We have checked,
however, that our method converges in substantially shorter times than those
used by the continuation method in [17, 18], using the implementation avail-
able at Jan Verschelde’s home page, which spent about 3 seconds of CPU
time on the same example. We remark, though, that we are comparing our
algorithm with a general-purpose solver targeted to arbitrary systems of al-
gebraic equations, and that a better performance of our algorithm was to
be expected, given that we exploit the specific structure of the equations in-
volved. Moreover, in the experiments done on this and other rigid linkages of
a similar size, the algorithm converges at rates similar to those of relaxation
methods [2].

7.2. A mobile butterfly

If we now free θ3, a one-dimensional continuum of solutions is obtained.
Fig. 7 depicts the projection of the returned boxes onto the θ10-θ5 plane, on
four successive runs of the algorithm, at decreasing values of the σ parameter.
If the algorithm is exploring in breadth-first order, the first three plots can
also be interpreted as earlier stages of the run for the fourth case (σ = 0.005).
In every plot we indicate the σ threshold, the CPU time spent in seconds (t),
the number of solution boxes returned (ns), and the number of empty boxes
found (ne).

We note that, although from the plots it seems that the different solution
branches cross at many points, these are not true bifurcations of the linkage,
as revealed by observing other 2D projections of the same output. Actually,

24

θ1 [3.94335, 3.94335] [3.71220, 3.71220] [2.48312, 2.48318]
θ2 [3.77017, 3.77017] [3.35355, 3.35356] [3.95859, 3.95862]
θ4 [5.51396, 5.51396] [5.99340, 5.99340] [2.63872, 2.63877]
θ5 [3.83643, 3.83643] [3.97137, 3.97138] [3.60317, 3.60322]
θ6 [1.86725, 1.86726] [2.70201, 2.70202] [0.68130, 0.68133]
θ7 [4.69841, 4.69841] [3.25715, 3.25716] [5.28944, 5.28951]
θ8 [2.54508, 2.54508] [1.46203, 1.46204] [1.78324, 1.78326]
θ9 [0.58905, 0.58906] [4.25173, 4.25174] [5.00799, 5.00809]
θ10 [5.22246, 5.22246] [0.66219, 0.66222] [4.67617, 4.67623]

θ1 [2.49296, 2.49301] [3.03749, 3.03750] [3.03639, 3.03642]
θ2 [3.96481, 3.96482] [1.51266, 1.51266] [2.19170, 2.19172]
θ4 [3.02025, 3.02028] [2.06012, 2.06014] [2.22075, 2.22080]
θ5 [3.13912, 3.13917] [1.19287, 1.19287] [0.60626, 0.60635]
θ6 [5.53558, 5.53563] [3.02443, 3.02445] [3.27436, 3.27438]
θ7 [0.97042, 0.97049] [5.71000, 5.71002] [3.43216, 3.43218]
θ8 [2.82075, 2.82078] [5.74756, 5.74760] [5.33808, 5.33812]
θ9 [1.27232, 1.27238] [1.25375, 1.25376] [4.26191, 4.26195]
θ10 [3.16983, 3.16988] [2.82874, 2.82876] [5.01411, 5.01414]

Table 1: The six configurations of the double butterfly linkage for θ3 = 1.322 rad (75.75◦).

25

V0

(a) (b)

σ=1.0, t=1.6, ns=155, ne=66 σ=0.5, t=3.3, ns=285, ne=139

(c) (d)

1

1

1

2

2

2

2

2

2

2

3

3

4

4

σ=0.1, t=16.1, ns=1356, ne=448 σ=0.005, t=339, ns=28274, ne=8014

Figure 7: Output boxes at increasing resolution. The horizontal and vertical axes corre-
spond to θ10 and θ5, respectively, spanning the range [0, 2π] in all cases. Labels in figure
(d) help identifying the four connected components of this linkage configuration space.

four disjoint cyclic paths appear, corresponding to the four possible ways of
assembling this mobile linkage. The labels in Fig. 7-(d) help identifying such
paths.

26

To the authors’ knowledge, the only box approximations reported so far
for the mobile double-butterfly linkage are those in [2], derived with a linear
relaxation technique. A significant difference is that [2] employs absolute
orientation angles for the links, while the present technique uses the relative
angles between them, which allows a natural definition of constraints on the
joints’ ranges of movement. It is worth noting that, in principle, elimination
methods like [15, 16] can also be applied to this mobile linkage. However,
these methods are targeted to zero-dimensional solution spaces, and could
only generate plots similar to that in Fig. 7-(d) by iteratively sampling an
input angle, and solving for the rest of angles at each iteration. Although
in general this approach would yield accurate plots for dense-enough sam-
plings, it could be problematic in some cases. For example, on linkages with
both rigid and mobile assembly modes, it would fail to detect the former
modes, since isolated points in configuration space would almost never get
sampled. Difficulties could also arise when the value of the input angle does
not determine the overall configuration of the linkage.

8. Conclusions

This work fits within a larger effort aimed at providing a general tool for
the position analysis of arbitrary multi-loop linkages, using branch-and-prune
algorithms of the kind presented. At the core of such algorithms there always
exists a procedure for pruning the solution set of the linkage within a rect-
angular box of the search space. The “degree of exactness” of this procedure
is crucial to attain efficiency in the search process. Note that, ideally, one
would like to generate a search tree without empty boxes, and this can only
be assured if the pruning procedure always returns the exact bounds. To the
authors’ knowledge, this is the first time that an exact pruning procedure
is given for planar single-loop linkages. On single-loop linkages, thus, the
algorithm is advantageous over related algorithms like [2], which would only
provide exact bounds in the limit of an iterative process. On multi-loop link-
ages, as a counterpart, the method in [2] is advantageous in that it prunes the
boxes using linear relaxations of all equations simultaneously. Both methods
exhibit similar convergence times on the reported experiments, but further
tests should be carried out to elucidate how their performance scales compar-
atively, on linkages of increasing complexity. On the other hand, the method
in [2] can be generalized to deal with spatial linkages [3], while the method
presented here is generalizable to spherical linkages and a restricted class of

27

spatial linkages using the results in [8, 19]. The extension of the presented
technique to deal with general spatial linkages is a point deserving further
attention.

It is worth noting that the Find Range algorithm presented in Section 2
is of interest in itself, since it can be used to readily obtain feasible configu-
rations of single-loop linkages by successively fixing one angle after another.
The process would start by selecting any variable in the loop, finding its
feasibility range, and then taking some value in this range. The loop equa-
tion would then be rewritten without the selected variable as explained in
Section3, and the process would be applied recursively with the remaining
variables, until all of them become fixed. Provided that the link lengths
fulfill the required closure condition, reaching a feasible solution is granted
independently of the value chosen for each variable. The same procedure
would also be applicable to multi-loop linkages, though at the greater cost
implied by the iterative nature of the solution process in this case. This
approach may be useful in applications that require finding feasible configu-
rations of the linkage, like in probabilistic path planning for closed kinematic
chains [20–22], since it allows a directed generation of valid samples in con-
figuration space, avoiding inefficient trial-and-error strategies based on an
undirected search in the whole parameter space.

Acknowledgements

This work has been partially supported by the Spanish Ministry of Edu-
cation and Science through the I+D project DPI2010-18449.

References

[1] J.-P. Merlet, Solving the forward kinematics of a Gough-type paral-
lel manipulator with interval analysis, The International Journal of
Robotics Research 23 (3) (2004) 221–235.

[2] J. M. Porta, L. Ros, T. Creemers, F. Thomas, Box approximations
of planar linkage configuration spaces, ASME Journal of Mechanical
Design 129 (2007) 397.

[3] J. M. Porta, L. Ros, F. Thomas, A linear relaxation technique for the po-
sition analysis of multi-loop linkages, IEEE Trans. Robot. 25 (2) (2009)
225–239.

28

[4] L. Jaulin, M. Kieffer, O. Didrit, E. Walter, Applied interval analysis,
Vol. 66, Springer London, 2001.

[5] A. Castellet, Solving inverse kinematics problems using interval meth-
ods, Ph.D. thesis, Technical University of Catalonia (1998).

[6] R. S. Rao, A. Asaithambi, S. K. Agrawal, Inverse kinematic solution of
robot manipulators using interval analysis, ASME Journal of Mechanical
Design 120 (1998) 147–150.

[7] O. Didrit, M. Petitot, E. Walter, Guaranteed solution of direct kine-
matic problems for general configurations of parallel manipulators, IEEE
Trans. on Robotics and Automation 14 (2) (1998) 259–266.

[8] E. Celaya, C. Torras, Solving multiloop linkages with limited-range
joints, Mechanism and Machine Theory 29 (3) (1994) 373–391.

[9] R. Moore, R. Kearfott, M. Cloud, Introduction to interval analysis, So-
ciety for Industrial Mathematics, 2009.

[10] E. Celaya, C. Torras, On finding the set of inverse kinematic solutions for
redundant manipulators, in: J. Angeles, G. Hommel, P. Kovács (Eds.),
Computational Kinematics, Kluwer Academic Publishers, 1993, pp. 85–
94.

[11] G. Chartrand, L. Lesniak, Graphs and Digraphs, 3rd Edition, Chapman
and Hall, 1996.

[12] D. M. Chickering, D. Geiger, D. Heckerman, On finding a cycle ba-
sis with a shortest maximal cycle, Information Processing Letters (54)
(1994) 55–58.

[13] K. R. Apt, The essence of constraint propagation, Theoretical Computer
Science 221 (1-2) (1999) 179–210.

[14] F. Rossi, P. Van Beek, T. Walsh, Handbook of constraint programming,
Vol. 35, Elsevier Science, 2006.

[15] J. Nielsen, B. Roth, Solving the input/output problem for planar mech-
anisms, ASME Journal of Mechanical Design 121 (1999) 206–211.

29

[16] C. W. Wampler, Solving the kinematics of planar mechanisms by
Dixon’s determinant and a complex plane formulation, ASME Journal
of Mechanical Design 123 (2001) 382–387.

[17] J. Verschelde, Algorithm 795: PHCpack: A general-purpose solver for
polynomial systems by homotopy continuation, ACM Transactions on
Mathematical Software 25 (2) (1999) 251–276.

[18] A. J. Sommese, J. Verschelde, C. W. Wampler, Advances in polyno-
mial continuation for solving problems in kinematics, ASME Journal of
Mechanical Design 126 (2004) 262–268.

[19] E. Celaya, Interval propagation for solving parallel spherical mecha-
nisms, in: J. Lenarčič, F. Thomas (Eds.), Advances in Robot Kinemat-
ics, 2002, pp. 415–422.

[20] J. Cortés, T. Siméon, Sampling-based motion planning under kinematic
loop-closure constraints, in: Workshop on Algorithmic Foundations of
Robotics, Springer, 2005, pp. 75–90.

[21] M. Stilman, Task constrained motion planning in robot joint space,
in: IEEE International Conference on Intelligent Robots and Systems,
IEEE, 2007, pp. 3074–3081.

[22] D. Berenson, S. Srinivasa, D. Ferguson, J. Kuffner, Manipulation plan-
ning on constraint manifolds, in: IEEE International Conference on
Robotics and Automation, IEEE, 2009, pp. 625–632.

30

