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C. Llorens Artigas 4-6, 2a planta, 08028 Barcelona, Spain
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Abstract

The median graph has been shown to be a good choice to obtain a represen-
tative of a set of graphs. However, its computation is a complex problem.
Recently, graph embedding into vector spaces has been proposed to obtain
approximations of the median graph. The problem with such an approach
is how to go from a point in the vector space back to a graph in the graph
space. The main contribution of this paper is the generalization of this previ-
ous method, proposing a generic recursive procedure that permits to recover
the graph corresponding to a point in the vector space, introducing only the
amount of approximation inherent to the use of graph matching algorithms.
In order to evaluate the proposed method, we compare it with the set me-
dian and with the other state-of-the-art embedding-based methods for the
median graph computation. The experiments are carried out using four dif-
ferent databases (one semi-artificial and three containing real-world data).
Results show that with the proposed approach we can obtain better medi-
ans, in terms of the sum of distances to the training graphs, than with the
previous existing methods.
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1. Introduction

In structural pattern recognition, the use of graphs to represent complex
and structured objects has gained popularity in recent years. Thus, a number
of different graph matching approaches have been proposed in the literature.
For an extensive review of graph matching methods and applications, we refer
the reader to [1]. However, one drawback of graphs arises from the fact that
there is little mathematical structure in the domain of graphs. For example,
computing the weighted sum, or the product of a pair of entities (which are
elementary operations, required in many algorithms) is not possible in the
graph domain.

Another important operation is the computation of the median graph [2].
Given a set of graphs, the median graph is defined as the graph that has
the minimum sum of distances (SOD) to all the graphs in the set. It can
be seen as the representative of the set. In fact, it has been successfully
applied in classical learning algorithms such as k-means clustering [3] and
kNN-based classification [4]. Moreover, it can be potentially applied to any
graph-based algorithm where a representative of a set of graphs in needed.
However, the cost of the computation of the median graph is exponential
both in the number of input graphs and their size [5]. Up to now, two
exact algorithms have been presented [6, 7]. As the computational cost of
these algorithms is very high, a set of approximate algorithms have also been
presented in the past based on different approaches such as genetic search
[2, 6], greedy algorithms [8] and spectral graph theory [9, 10]. However, all
these algorithms can only be applied to restricted sets of graphs, regarding
either the type or the size of the graphs.

An alternative to simplify the computation of the median graph is graph
embedding. In general, embeddings try to convert points of an original space
into another space with better properties that, potentially, permit to simplify
some of the operations over the original space. Some work has been devoted
to establish a theoretical framework and to propose generic embeddings with
good properties concerning the distortion introduced by the embedding (see
[11] for a good review). Some of these ideas have been applied to trees [12]
and graphs [13] in the context of image categorization. The application of
the generic framework of embedding to graphs permits to convert graphs
into points in any vector space. Thus, graph embedding techniques emerge
as a powerful way to provide access to the rich repository of algorithmic
tools available in statistical pattern analysis. For that reason, a number
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of specific graph embeddings have been recently proposed. For instance,
features derived from the eigen–decomposition of graphs are studied in [14].
An approach dealing with string edit distance applied to the eigensystem
of graphs is presented in [15]. This procedure results in distances between
graphs which are used to embed the graphs into a vector space by means
of multidimensional scaling. In [16], the authors show how the elements of
the spectral decomposition of the Laplacian matrix can be used to construct
symmetric polynomials. The coefficients of these polynomials are used as
graph features in order to encode graphs as vectors. Another approach for
graph embedding has been proposed in [17]. The authors use the relationship
between the Laplace-Beltrami operator and the graph Laplacian to embed
a graph onto a Riemannian manifold. Recently, graph embedding by means
of the graph edit distance [18] has been used to perform classification tasks
[19].

Graph embedding has been already used for the median graph computa-
tion [4]. In that approach, a three-step procedure is followed to approximate
the median graph. In the first step, graphs are embedded into a vector space
by means of the graph edit distance computation. As a result, every graph
in the original set becomes a point in a real-vector space. In the second step,
the median of this set of points (which is supposed to be the vector represen-
tation of the median graph) is computed using the Weiszfeld algorithm [20].
Performing this operation in the vector domain is simpler than computing
it in the graph domain. Finally, in the third step, an approximation of the
median graph is recovered from the vector domain using the weighted mean
of a pair of graphs [21]. Although this work has been shown to be able to
obtain good approximations of the median graph, it is also true that one is
not able to recover the graph corresponding to the median vector but only
a graph corresponding to the median of a subset of the original points (sup-
posed to be close to the median vector). This may cause a deterioration in
the obtained median graph.

The present paper presents a new generic framework to compute the me-
dian graph using graph embedding. The proposed methodology also relies
on embedding a set of graphs into a vector space, computing the median of
such a set in the vector domain and then, recovering the graph corresponding
to this representative point. However, the main contribution of the paper is
made in the third step, i.e. the way of recovering the median graph from the
median vector. We propose a recursive approach that, ideally, would permit
to recover the graph that corresponds exactly to the median vector. The
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basic idea of this approach is as follows. Once all graphs have been mapped
to their corresponding points in the n-dimensional real space and the median
of these points has been computed, we sequentially project the median point
into subspaces of lower dimensionality until a projected point is obtained ly-
ing on a line that connects the maps of two graphs of the given set. The graph
corresponding to this point can be approximately reconstructed by means of
the weighted mean. Next, we recursively consider all other projected points
obtained before in higher dimensional spaces and apply the same reconstruc-
tion principle until the graph corresponding to the median point is obtained.
However, due to the complexity of graph matching problems, we are forced
to use approximate algorithms and, therefore we will only be able to obtain
partial approximations of the real median graph. Nevertheless, the proposed
approach takes into account all graphs of the given set in the recovery of
the median graph from the median vector. This is in contrast with previous
approaches [3, 4], where only a small subset is used for the reconstruction.
Due to the larger set of graphs, we may expect to obtain a better approx-
imation of the median graph by this procedure. In this sense, we analyze
four additional variations of this method which take into account different
sorting schemes of the original set of graphs. These variations can help to
understand the influence of these approximations in the final result. It is
also important to remark that this generic framework could be potentially
used in conjunction with any embedding technique and with any method to
compute the representative of the set in the vector space. A preliminary ver-
sion of this paper appeared in [22]. The current paper has been significantly
extended with respect to the underlying methodology and the experimental
evaluation.

In order to test the quality of the proposed methods, we have made ex-
periments on four different graph databases, one semi-artificial and three
containing real-world data. The underlying graphs have no constraints re-
garding the number of nodes and edges. The results are evaluated, according
to the definition of the median graph, in terms of the sum of distances of the
median graph to all other elements in the training set. We will show that,
in most cases, the new method obtains better results than the set median
and other embedding-based methods. With these results at hand, we can
apply this new approach to any real world graph-based application in pat-
tern recognition and machine learning that requires to compute a median,
for instance, classification and clustering.

The rest of this paper is organized as follows. In the next section we
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define the basic concepts and we introduce the notation we will use later in
the paper. Then, in Section 3 the proposed generic method for the median
computation is described. After that, Section 4 presents a practical imple-
mentation of the proposed generic framework. Section 5 reports a number
of experiments and presents the results achieved with our method. Also a
comparison with a reference system is provided. Finally, in Section 6 we
draw some conclusions and we point out to possible future work.

2. Basic Concepts

This section introduces the basic terminology and notation we will use
throughout the paper.

2.1. Graph

Given L, a finite alphabet of labels for nodes and edges, a graph g is
defined by the four-tuple g = (V,E, µ, ν) where V is a finite set of nodes,
E ⊆ V × V is the set of edges, µ : V −→ L is the node labelling function
and ν : V ×V −→ L is the edge labelling function. The alphabet of labels is
not constrained in any way. For example, L can be defined as a vector space
(i.e. L = Rn) or simply as a set of discrete labels (i.e. L = {∆,Σ,Ψ, · · · }).
Edges are defined as ordered pairs of nodes, that is, an edge is defined by
(u, v) where u, v ∈ V . The edges are directed in the sense that if the edge is
defined as (u, v) then u ∈ V is the source node and v ∈ V is the target node.

2.2. Graph Edit Distance

The basic idea behind the graph edit distance [18, 23] is to define the
dissimilarity of two graphs as the minimum amount of change required to
transform one graph into the other. To this end, a number of edit operations
e, consisting of the insertion, deletion and substitution of both nodes and
edges are defined. Given these edit operations, for every pair of graphs, g1
and g2, there exists a sequence of edit operations, or edit path p(g1, g2) =
(e1, . . . , ek) (where each ei denotes an edit operation) that transforms g1 into
g2 (see Figure 1 for an example). In general, several edit paths may exist
between two given graphs. This set of edit paths is denoted by ℘(g1, g2). To
evaluate which edit path is the best one, edit costs are introduced through a
cost function. The basic idea is to assign a cost c(e) to each edit operation
according to the amount of distortion it introduces in the transformation.
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Then, the edit distance between two graphs g1 and g2, denoted by d(g1, g2),
is the minimum cost edit path over all edit paths that transform g1 into g2.

d(g1, g2) = min
(e1,...,ek)∈℘(g1,g2)

k∑
i=1

c(ei) (1)

A number of optimal and approximate algorithms for the computation of
the graph edit distance have been proposed up to now. Optimal algorithms
are usually based on combinatorial search procedures that explore all the
possible mappings of nodes and edges of one graph to the nodes and edges
of the second graph [23]. The major drawback of such an approach is its
computational complexity, which is exponential in the number of nodes of
the involved graphs. Consequently, its application is restricted to graphs
of rather small size in practice. As an alternative, a number of suboptimal
methods have been proposed to make the graph edit distance less computa-
tionally demanding and therefore usable in real applications. Some of these
methods are based on local optimization [24]. A linear programming method
to compute the graph edit distance with unlabelled edges is presented in [25].
Such a method can be used to obtain lower and upper edit distance bounds
in polynomial time. In [26] simple variants of the standard method are pro-
posed to derive two fast suboptimal algorithms for graph edit distance, which
make the computation substantially faster. Finally, a new efficient algorithm
is presented based on a fast suboptimal bipartite optimization procedure
[27]. In this paper we will use these two last approximate methods for the
graph-edit distance computation.

g g′g′′

a b

Figure 1: Example of a possible edit path between two graphs, g and g′. It consists on an
edge deletion, a node substitution, a node insertion and two edge insertions. Furthermore
g′′ is the Weighted Mean of the Graphs g and g′.

In [18] it was shown that d(g1, g2) is a metric if the underlying cost func-
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tion is a metric. Under the approximation algorithms of [26] and [27] used
in this paper, however, the metric property is no longer guaranteed. But
this does not have any negative impact on the approach proposed in this
paper because, firstly, the embedding procedure that maps each graph onto
an n-dimensional vector can be applied regardless if the underlying distance
function is a metric or not [28] and, secondly, after embedding all points,
which represent the graph, are located in a Euclidean (and in particular a
metric) space.

2.3. Weighted mean of a pair of graphs

For the purpose of median graph computation, the weighted mean of a
pair of graphs [21] is a crucial tool. For this reason we include its definition
in the following.

Let g and g′ be graphs and let U be the set of graphs that can be con-
structed using the labels of their nodes and edges. Let

I = {h ∈ U | d(g, g′) = d(g, h) + d(h, g′)}
be the set of intermediate graphs between g and g, i.e. any of the graphs along
the edit path between g and g′. Given a weight a ∈ R where 0 ≤ a ≤ d(g, g′),
the weighed mean of g and g′ is a graph g′′ such that,

g′′ = arg min
h∈I
|d(g, h)− a| (2)

That is, given two graphs, g and g′ and a parameter a, the weighted mean
is an intermediate graph g′′ between them, whose distance to g is as close as
possible to a. Consequently, its distance to g′ is also the closest to d(g, g′)−a.
From this point on, we will refer the weighted mean as a-mean.

Please note that, due to the discrete nature of the domain of graphs and
the graph edit distance, not for any value of a, a graph g′′ may exist such
that d(g, g′′) = a and d(g′′, g′) = d(g, g′)− a.

Figure 1 shows an example where a coincides with the cost of deletion of
the edge between the red and the green nodes. Therefore, since this deletion
is an edit operation of an optimal edit path, the graph g′′ is an a-mean for
which |d(g, g′′)− a| = 0.

Observe that g′′ is not necessarily unique. Consider, for example, a graph
g consisting of only a single node with label A and a graph g′ consisting of
three isolated nodes labeled with A, B, and C, respectively. Assume that
the insertion and deletion of a node has a cost equal to 1, regardless of the
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label of the affected node. Then we have d(g, g′) = 2. Obviously, for a = 1
there exist two 1-mean graphs: g1, which consists of two isolated nodes, one
with label A and the other with label B, and g2, which also consists of two
isolated nodes, one with label A and the other with label C.

2.4. Median Graph

Given L, a finite alphabet of labels for nodes and edges, let U be the
set of all graphs that can be constructed using labels from L. Given S =
{g1, g2, ..., gn} ⊆ U , the generalized median graph ḡ of S is defined as,

ḡ = arg min
g∈U

∑
gi∈S

d(g, gi) (3)

That is, the generalized median graph ḡ of S is a graph g ∈ U that
minimizes the sum of distances (SOD) to all the graphs in S. Notice that ḡ is
usually not a member of S, and in general more than one generalized median
graph may exist for a given set S. It can be seen as the representative of the
set. Consequently, it can be potentially used by any graph-based algorithm
where a representative of a set of graphs in needed.

Despite its simple mathematical definition (Eq. 3), the computation of
the median graph is extremely complex. As implied by Equation (3), a
distance measure d(g, gi) between the candidate median g and every graph
gi ∈ S must be computed. However, since the computation of the graph
distance is a well-known NP-complete problem, the computation of the gen-
eralized median graph can only be done in exponential time, both in the
number of graphs in S and their size (even in the special case of strings,
the time required is exponential in the number of input strings [29]). As a
consequence, in real applications we are forced to use suboptimal methods
in order to obtain approximate solutions for the generalized median graph
in reasonable time. Such approximate methods [2, 6, 8, 9, 10] apply some
heuristics in order to reduce the complexity of the graph distance compu-
tation and the size of the search space. Recent works [3, 4] rely on graph
embedding into vector spaces. Since they are the foundation of this work,
we introduce them in detail in the next section.

An alternative to the generalized median graph, which is computationally
less demanding, is the set median graph. The difference between the two
concepts consists in the search space where the median is looked for. As it
is shown in Equation (3), the search space for the generalized median graph
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is U , that is, the whole universe of graphs. In contrast, the search space for
the set median graph is simply S, that is, the set of given graphs. It makes
the computation of set median graph exponential in the size of the graphs,
due to the complexity of graph edit distance, but polynomial with respect
to the number of graphs in S. The set median graph is usually not the best
representative of a set of graphs, but it is often a good starting point towards
the search of the generalized median graph. As a matter of fact, we will use
the set median graph as a reference system in the experiments presented in
Section 5.

3. A generic approach to compute the Median Graph via Embed-
ding

Generally speaking, graph embedding [11] aims to convert graphs into
another structure, such as real vectors, and then operate in the associated
space to facilitate some typical graph-based tasks, such as matching and
clustering [30, 31]. To this end, as we already explained in the introduction,
different graph embedding procedures have been proposed in the literature
so far.

Graph embedding has been used recently for the approximate median
graph computation [4]. In that work, a three–step based process is used to
perform the median computation. Here, we take this three step procedure
as the basis to propose a generic framework to compute the median graph.
In the following we will describe the three steps of this procedure, although
our main contribution is made in the third step where we will introduce
a new generic method to recover the graph corresponding to the median
vector. For the rest of the section we will suppose that a set S of n graphs
S = {g1, g2, . . . , gn} is given.

Step I: In a first step every graph in S is embedded into the real n-
dimensional space, i.e. each graph becomes a point in Rn. In principle, any
embedding which fulfils this condition could be used in this step. However,
it is expected that the best results will be obtained when the distance re-
lationships in the vector space resemble as much as possible the distance
relationships in the original graph space.

Step II: The second step consists of computing a representative of the set
in the vector space. Here, the median vector ~M arises as a natural choice [4].
Given a set ℘ = {P1, P2, . . . , Pm} of m points with Pi ∈ Rn for i = 1 . . .m,
the median vector is a point Mn ∈ Rn that minimizes the sum of the distances
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to all the points in ℘. As we can see, its definition is exactly the same as the
median graph but in the vector space. Thus, if the embedding preserves the
distance structure of the graph domain, the median vector should be the a
good representation of the median graph in the vector space.

Step III: Finally, the resulting median vector has to be mapped back
to a corresponding graph. This last step of mapping back from the vector
space to the graph domain is a difficult problem for a number of reasons. To
mention just two, depending on the embedding technique not every point in
the (continuous) vector space corresponds to a graph. Secondly it might be
that for a particular vector a one–to–many relationship to the graph domain
exists. These difficulties have been shown in recent works. For instance, in
[4] the three closest points to the computed median vector ~M are used to

compute the median ~M ′ of the three points (which always falls on the plane
defined by them). Using these three points (corresponding to known graphs)

and the new median ~M ′, the weighted mean approach [21] is used to recover

a graph ḡ′ (corresponding to ~M ′), which is taken as an approximation of the
median graph ḡ of S. Although the results of this approach are better than
other approximations of the median graph, the method to recover the median
graph from the median vector is not exact. It only permits to recover the
graph that corresponds to the median vector of the three selected points and
not the graph that corresponds to the median vector of the whole set.

In the remaining of this section we present a new recursive approach to
get the mapping between the median vector and the median graph. The
novelty of the approach lies in the fact that the complete set of graphs,
or more precisely, their representation in the vector space, will be used for
establishing this mapping. Note that all geometric operations needed in
the reconstruction are carried out in the n-dimensional real space using the
Euclidean distance. Hence, all the operations take place in a metric space.
Thus, if we were able to compute the exact edit distance between two graphs,
we would be able to obtain the graph that corresponds to the median vector
of the whole set. However, as we will discuss later in Section 4, we will be
forced to use several approximations in the practical implementation of the
procedure. As a result we will only be able to obtain approximations of the
median graph but still better than those obtained using existing methods as
we will show in Section 5.

10



3.1. Median Graph Recovering

The graph corresponding to the median vector will be recovered by means
of the recursive application of the weighted mean of a pair of graphs. Let us
introduce some important aspects before explaining the method.

1. Given a set of n linearly independent points in Rn we can define a
hyperplane Hn−1 of dimensionality n-1 (e.g. in the case of n=2, two
points define a unique 1D line, in the case of n=3, three points define
a unique 2D plane, etc).

2. The Euclidean median Mn
1 of these n points will always fall on the

hyperplane Hn−1. More concretely, it will fall within the volume of the
n-1 dimensional simplex with vertices Pi with i = 1, 2, . . . , n. Figure 2
shows an example for n = 4 and n = 3.

3. Assume that we can define a line segment in the vector space that
connects two points P1 and P2 corresponding to known graphs g1 and
g2, such that the calculated median M2 lies on this line segment. We
can then calculate the graph gM2 corresponding to the median M2 as
the weighted mean of g1 and g2.

P1

P2

P3

P4

M4

Hyperplane H3

(a)

M3

P1

P2

P3

Hyperplane H2

(b)

Figure 2: (a) The 3D-Hyperplane H3 is defined by the 4 points Pi = {P1, P2, P3, P4}. The
Euclidean median M4 falls in the 3D space defined by the 4 points and specifically within
the pyramid (3D simplex) with vertices Pi (i = 1 . . . 4). (b) The 2D-Hyperplane H2 is
defined by the 3 points Pi = {P1, P2, P3}. The Euclidean median M3 falls in the 2D space
defined by the 3 points and specifically within the triangle (2D simplex) with vertices Pi

(i = 1 . . . 3).

1For clarity, in the remainder, we will refer to the median of n points as Mn.
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From the third point we can observe that, given n embedded points
{P1, P2, . . . , Pn} and their corresponding median Mn, in order to obtain the
graph corresponding to Mn, the problem is to find two points in the vector
space, whose corresponding graphs are known, such that the median Mn lies
on the line defined by these two points. In this way, we can then apply the
weighted mean on these two points in order to find the graph corresponding
to Mn. In the following we will describe how we can obtain these two points
and, thus, such a graph. We will illustrate this procedure with the exam-
ple shown in Figure 3 with four points. Figure 3(a) shows the four points
{P1, P2, P3, P4} and their median M4

Given P1, P2, . . . , Pn, we can choose without loss of generality, any one of

them, say Pn, and create the vector ~(Mn − Pn) (vector ~(M4 − P4) in Figure
3(b)). This vector will lie fully on the hyperplane Hn−1 defined by these n
points. Then, if we call Hn−2 the hyperplane of dimensionality n-2 defined
by the set of the remaining n-1 points {P1, P2, . . . , Pn−1}, that is all the
original points except Pn, then the intersection of the line defined by the

vector ~(Mn − Pn) and the new hyperplane Hn−2 will be a single point. We
will call this new point Mn−1 (M3 in Figure 3(b) which lies on the hyperplane
H2 (plane) defined by P1, P2 and P3). As mentioned before, in order to use
the weighted mean of a pair of graphs to calculate the graph corresponding
to Mn, we need to first find a point (whose corresponding graph is known)

that lies on the line defined by the vector ~(Mn − Pn), and specifically on
the ray extending Mn (so that Mn lies between Pn and the new point).
Now we have two points (Pn and Mn−1), and the median Mn falling on
the line defined by them. However, although we already know the graph
corresponding to the point Pn (Pn comes from the graph gn), we do not
know yet the graph corresponding to the point Mn−1. Therefore, we cannot
apply the weighted mean to find the graph corresponding to Mn. However,
we can follow exactly the same procedure as before, and consider a new line

defined by the vector ~(Mn−1 − Pn−1) ( ~(M3 − P3) in Figure 3(c)). Again, as
we did for Mn−1, we can define the point of intersection of the above line with
the n-3 dimensional hyperplane Hn−3 which is defined by the n-2 remaining
points {P1, P2, . . . , Pn−2}. Then, we will get a new point Mn−2 (M2 in Figure
3(c) which lies on the line defined by points P1 and P2). This process is
recursively repeated until M2 is obtained. The case of M2 is solvable using
the weighted mean of a pair of graphs, as M2 will lie on the line segment
defined by P1 and P2 which correspond to the known graphs g1 and g2 (we
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obtain gM2 corresponding to M2 in Figure 3(d)).
Having calculated the graph gM2 corresponding to the point M2, the in-

verse process can be followed all the way up to Mn. Once gM2 is found,
in the next step, the graph gM3 corresponding to M3 can be calculated as
the weighted mean of the graphs corresponding to M2 and P3 (Figure 3(e)).
Generally the graph gMk

corresponding to the point Mk will be given as the
weighted mean of the graphs corresponding to Mk−1 and Pk. The weighted
mean algorithm can be applied repeatedly until the graph gMn corresponding
to Mn is obtained, which is the median graph of the set (gM4 in Figure 3(f)).

4. A practical implementation of the generic framework

In the previous section we introduced the generic framework to compute
the median graph as a three–step process and, particulary, our contribution
to recover the median graph from the median vector in the last step. In this
section we describe the practical issues concerning our specific implementa-
tion of this generic framework. We explain the choices we have made for
the first two steps, that are basically the same as in [4], and we discuss some
practical considerations about the approximation introduced in the last step.

Step I (Graph Embedding): In this work we will use a class of graph
embedding procedures based on the selection of some prototypes and graph
edit distance computation. This approach was first presented in [32], and it
is based on the work proposed in [33]. The basic intuition of this work is
that the description of the regularities in observations of classes and objects
is the basis to perform pattern classification. Thus, based on the selection of
concrete prototypes, each point is embedded into a vector space by taking its
distance to all these prototypes. Assuming these prototypes have been chosen
appropriately, each class will form a compact zone in the vector space. For
the sake of completeness, we briefly describe this approach in the following.

Assume we have a set of training graphs T = {g1, g2, . . . , gn} and a graph
dissimilarity measure d(gi, gj) (i, j = 1 . . . n; gi, gj ∈ T ). Then, a set P =
{p1, . . . , pm} ⊆ T of m prototypes is selected from T (with m ≤ n). After
that, the dissimilarity between a given graph g ∈ T and every prototype
p ∈ P is computed. This leads to m dissimilarity values, d1, . . . , dm where
dk = d(g, pk). These dissimilarities can be arranged in a vector (d1, . . . , dm).
In this way, we can transform any graph of the training set T into an m-
dimensional vector using the prototype set P .
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P1, g1

P2, g2

P3, g3

P4, g4

M4

(a)

P1, g1

P2, g2

P3, g3

P4, g4

M4

M3

(b)

P1, g1

P2, g2

P3, g3

P4, g4

M2

M3
M4

(c)

M3

P1, g1

P2, g2

P3, g3

P4, g4

M4

M2, gM2

(d)

P1, g1

P2, g2

P3, g3

P4, g4

M4

M2, gM2

M3, gM3

(e)

P1, g1

P2, g2

P3, g3

P4, g4

M2, gM2

M3, gM3

M4, gM4

(f)

Figure 3: Complete example of the median recovering with four points {P1, P2, P3, P4} .
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For our purposes, given a set of graphs S = {g1, g2, . . . , gn}, we use the
graph embedding method described above to obtain the corresponding n-
dimensional points {P1, P2, . . . , Pn} in Rn. However, in our case, we set
P = S, i.e., we avoid the problem of selecting a proper subset P ⊆ S of
prototypes and use the whole set of graphs.

It is important to mention that, as long as there are no identical graphs

in the set S, the vectors ~vi = (Pi −O), where O is the origin of the n-
dimensional space defined, can be assumed to be linearly independent. This
arises from the way the coordinates of the points were defined during graph
embedding. Note that this point was an important observation in Section 3.1.

An important relation that has been shown in [32] is,

‖ φ(g)− φ(g′) ‖≤
√
n · d(g, g′) (4)

where φ(g) and φ(g′) denote the maps of graphs g and g′, respectively, after
embedding. That is, the upper bound of the Euclidean distance of a pair of
graph maps φ(g) and φ(g′) is given by

√
n · d(g, g′). In other words, if g and

g′ have a small distance in the graph domain, they will have a small distance
after embedding in the Euclidean space as well.

Step II (Median Vector Computation): As we already commented
at the beginning of Section 3, the median vector is used as the representative
of the set in the vector domain.

The median vector cannot be calculated in a straightforward way. The
exact location of the median vector can not be found when the number of
elements in ℘ is greater than 5 [34]. No algorithm in polynomial time is
known, nor has the problem been shown to be NP-hard [35]. In this work
we will use the most common approximate algorithm for the computation
of the median vector, that is, the Weiszfeld’s algorithm [20]. It is s a form
of iteratively re-weighted least squares that converges to the median vector.
To this end, the algorithm first selects an initial estimate solution M ′

n0
(this

initial solution is often chosen randomly). Then, the algorithm defines a set
of weights that are inversely proportional to the distances from the current
estimate M ′

ni
to the samples x, and creates a new estimate M ′

ni+1 that is the
weighted average of the samples according to these weights.
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M ′
ni+1

=

∑m
j=1

xj

‖xj−M ′
ni
‖∑m

j=1
1

‖xj−M ′
ni
‖

(5)

The algorithm may finish when a predefined number of iterations is
reached, or under some other criteria, such as that the difference between
the current estimate and the previous one is less than a predefined threshold.

Step III (Median Graph Recovering): To recover the median graph
corresponding to the median vector Mn, we will use the recursive procedure
presented in Section 3.1. In that section, it was claimed that the method to
recover the median graph from the median vector should permit to obtain
the exact median graph in case that the embedding preserves the distance
structure and that we were able to perform exact computations of the graph
edit distance. In general, these two conditions are not easy to satisfy. Con-
cerning the first condition, the procedure simply requires that the edit path
between two graphs follows a path along the straight line joining the two
corresponding vectors in the vector space. Although there are some cases
where using the selected embedding procedure this can be shown to be true,
in general, it is not always satisfied. Regarding the second condition, the ex-
act computation of the edit distance is a well-known NP-problem. So, we are
forced to use some approximation. Finally, the computation of the median
vector is also based on an approximate algorithm. For all these reasons, we
are only able to get approximations of the median graph.

In order to analyze the effect of all these approximations in the final
result, we can examine the order in which points Pi in the vector space are
considered in the recursive procedure (and consequently the order in which
the graphs are taken). This is an issue not defined in the original procedure
as, if computations were exact, the order would not matter. However, in
case of approximate computations, the order can be important in the final
solution. For instance, if we start the process of recovering the median graph
using the points that are further from the optimal solution to define the
connecting line in the vector space, we will probably start introducing some
approximation errors in the first steps as the quality of the weighed mean
is better the shortest the edit path is. However, in the final steps we will
consider the points that are closer to the optimal solution and thus, we will
probably balance this effect as we will give more weight to these points in
the final solution. If we take the reverse order the expected effect would be
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the contrary. The final result of these opposite effects is not clear.
Therefore, we have defined different sorting schemes to consider the points

in the recursive procedure according to the sum of distances of every point
in the graph or the vector domain to the rest of points. Points with a low
sum of distances will correspond to points close to the optimal solution.Thus,
we present four variants of the basic recursive scheme presented in Section
3.1 (BRS in short), which include a pre–processing to sort the graphs. Note
that, to be consistent with the notation and the explanations performed in
Section 3.1, the words ascending or descending used in the following, refers
to graphs from gn to g1. These sorted schemes will be referred as SRS (sorted
recursive schemes).

• Graph-domain-based Recursive Scheme sorted in descending
order (SRS-GD): In this approach, the graphs are ordered in descend-
ing order, taking into account the SOD to the rest of the graphs in S of
each of them. Consequently, gn is the graph with maximum SOD and
g1 is the set median graph. Under this sorting, the graph corresponding
to the point M2 is calculated as the weighted mean of g1 and g2, the
two graphs with lowest SOD, i.e. the set median (g1) and the next one
in terms of the minimum SOD to S (g2).

• Graph-domain-based Recursive Scheme sorted in ascending
order (SRS-GA): This sorting is the inverse to the previous one. The
graphs are ordered upwards, based on the SOD. This way, the graph
corresponding to M2 is obtained from the two graphs with maximum
SOD, and the graph corresponding to Mn is obtained from the weighted
mean between the graph corresponding to Mn−1 and gn (the set me-
dian).

• Vector-domain-based Recursive Scheme sorted in descending
order (SRS-VD): Here the criterion for the ordering is still the SOD,
but it is evaluated in the Euclidean space. That is, the SOD of each of
the points {Pn, . . . , P1} to the other points of the set. In this case, gn
is the graph such that the corresponding point has the maximum sum
of distances,

Pmax = arg max
P∈{Pn,...,P1}

n∑
i=1

‖Pi − P‖.
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• Vector-domain-based Recursive Scheme sorted in ascending
order (SRS-VA): As before, in this last sorting, the SOD in the Eu-
clidean space, is used to sort the points. The points are ordered up-
wards with respect to the SOD, such that the first two points used to
computed the weighted mean are those with maximum SOD.

In addition note that, given n graphs, in the procedure to recover the
median graph we obtain n-1 intermediate graphs (from M2 to Mn). As we
go through the process we get closer to the graph corresponding to the median
vector. But, at the same time, at every step we are also introducing more
approximation in the final solution. As a result, it could happen that some
of the intermediate graphs has a SOD better than the final median graph.
Given this situation, we have also analyzed the SOD of these intermediate
graphs.

In order to see the differences along these 5 recursive schemes (BRS and
the four variations) we computed several medians using the Letter dataset.
In this dataset, we consider the 15 capital letters of the Roman alphabet
that consist of straight lines only (A, E, F, H, I, K, L, M, N, T, V, W, X, Y,
Z). For each class, a prototype line drawing is manually constructed. These
prototype drawings are then converted into prototype graphs by representing
lines by undirected edges and ending points of lines by nodes. Each node
is labeled with a two-dimensional attribute giving its position relative to a
reference coordinate system. Edges are unlabeled. (see Table 2 for charac-
teristics of this dataset, or [36]). More concretely, we took sets of 50 and 100
elements randomly from the dataset and we computed the median with each
of the methods. Figure 4 shows the evolution of the SOD of the interme-
diate medians graphs for each recursive method. The x -axis represents the
recursive level being 1 for the first graph we obtain (i.e. M2), and the last
point representing the last final median (i.e. Mn). The y-axis represents the
SOD of each corresponding intermediate graph. Results are the mean over
10 repetitions for each size of the set.

First of all, as expected, it is important to note that the results are dif-
ferent for each of the 5 recursive schemes. As it can be seen in Figure 4,
the evolution of the SOD shows different behavior depending on the initial
sorting. However, while the BRS approach shows a random-like behavior
(there is no clear tendency in the evolution of the SOD), the sorted schemes
show a general tendency in the SOD evolution. Note also that this tendency
is independent of the size of the set used to compute the median. One of the

18



5 10 15 20 25 30 35 40 451 4990

100

110

120

130

140

150

160

170

180

# intermediate graph

SO
D

SOD Evolution

 

 

BRS
SRS GD
SRS GA
SRS VD
SRS VA

(a)

101 9920 30 40 50 60 70 80 90200

220

240

260

280

300

320

340

360

380
SOD Evolution

# intermediate graph

SO
D

 

 

BRS
SRS GD
SRS GA
SRS VD
SRS VA

(b)

Figure 4: SOD Evolution for the Letter Dataset using (a) sets of 50 elements and (b) sets
of 100 elements.
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most striking facts is that the domain on which the sorting is based is unim-
portant. That is, in the descending methods (SRS-GD and SRS-VD), there
is a clear tendency in starting with graphs with lower SODs and terminate
with higher SODS. This fact can be explained because in the descending
methods, the first intermediate graph (i.e. M2) is computed using graphs
having lower SOD (in the case of SRS-GD method, M2 is computed with the
set median and the next graph in terms of the lower SOD). Consequently,
M2 has a SOD close to that of the set median. Then, as we compute more in-
termediate graphs, they are computed using graphs with higher SODs. This
translates into a degradation in terms of the SOD in the intermediate graph.
On the contrary, in the ascending schemes (SRS-GA and SRS-VA) the ten-
dency in the evolution is exactly complementary. Here, we start with graphs
having high SODs (and consequently M2 has a high SOD) and then we use
better graphs in terms of the SOD. This translates in a decreasing curve. As
a conclusion, we can state that we get better solutions as we take points that
are closer to the optimal solution. However, the behavior of the two sorting
schemes is not completely complementary in the sense that the loss in terms
of SOD in the descending methods is not the same as the gain obtained in
the ascending methods. For this reason, the minimum (or maximum) values
of SOD in these evolutions differs. However, the fact that the tendency is
kept regardless of the domain of the sorting, supports the idea that relative
distances are well conserved after mapping graphs ito points.

Another important observation is that if we analyze the SOD of the inter-
mediate graphs we can find intermediate solutions along the recursive path
with a lower SOD than the final solution. This fact validates our previous
hypothesis that there is a compromise between the amount of approximation
and how close we are to the final solution. For this reason, when we compare
these methods to other existing approaches for the median graph computa-
tion in the next section, we will take into account not only the final solution
but also the best solution along the recursive path.

Recursive methods sorted in descending order (specially SRS-GD) obtain,
in general, the best intermediate graphs. This fact seems to lead to the
conclusion that it is better to start the approximation with a graph as closer
as possible to the optimal solution. In addition, in these methods, the best
median is usually obtained in a very interior call, when few intermediate
graphs have been computed. Table 1 shows for each dataset and for each of
the five recursive schemes the mean position of the best intermediate median
(for 50/100 elements) along all the repetitions. Note that the values obtained
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by the BRS method are very close to the mid position (i.e. 25 in the case of 50
elements and 50 in the case of 100 elements), while the descending methods
have in general lower values than the mid value and the ascending methods
have in general higher values than the mid value. This could be used in a
future work to improve the method in order to obtain good approximations
of the median without need of computing all the intermediate graphs.

Table 1: Mean value of the position of the median with minimum SOD.

Letter Molecule Mutagenicity Webpages
BRS 21/50 18/48 23/48 24/42

SRS-GD 11/18 21/39 15/25 23/44
SRS-GA 36/56 25/58 31/63 26/55
SRS-VD 20/50 15/33 14/20 23/45
SRS-VA 28/48 33/60 33/76 28/56

5. Experimental Evaluation

In this section we provide the results of an experimental evaluation of
the proposed algorithm against the two previous embedding methods for the
median graph computation. To this end we have used four different graph
databases representing Letter shapes, Molecular compounds (two databases),
and Webpages. Table 2 show some characteristics of each dataset. For more
information of these databases see [36]2.

5.1. Experimental Setup

In the experiments presented in this section we have proceeded as follows.
For each class in each dataset 50 and 100 elements were randomly chosen.
Then, we calculate the approximate median of each set using 8 different
methods. Namely, the set median (SM), the previous embedding method
using the two closest points to the median vector to recover the approximate
median graph (E2P) [3], the embedding method using the three closest points
to the median vector (E3P) [4], and the five recursive schemes explained

2http://www.iam.unibe.ch/fki/databases/iam-graph-database
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Table 2: Summary of dataset characteristics, viz. the size, the number of classes (#
classes), the average size of the graphs (∅ nodes) and and the maximum size of the graph.

Database Size # classes ∅ nodes max nodes
Letter 2,250 15 4.7 8
Molecules 2,000 2 15.7 95
Mutagenicity 4,337 2 30.3 417
Webpages 2,340 6 186.1 834

before. For these 5 recursive schemes we also include results taking the best
median along the recursive path. This procedures were repeated 10 times
each.

The set median graph (SM) is used in the experiments as a reference
line. As the set median graph is the graph belonging to the training set with
minimum SOD, it is a good reference to evaluate the generalized median
graph quality. For a given dataset, the same edit distance algorithm is used
to compute the set median and the approximate median. In this sense, since
they are computed using the same method, the same amount of error or
distortion (due to the approximation) is introduced to both of them. Thus,
we can say that they are fairly comparable. Clearly, with the size of the
sets and the graphs we are managing, it is not possible to obtain the true
median graph. This is the main reason for which we use the set median as
the reference line for our comparisons.

Tables 3 and 4 show, for each dataset, the mean value of the SOD of
the median obtained for each method. Results marked with the • are those
better than the set median. Results marked with the ◦ are those better than
both of the previous embedding methods. Results marked with the ? are
those better than one of the previous embedding methods. The best results
for each dataset and size of the training set (50 or 100) is marked with bold
face.

5.2. Results and Discussion

First of all, it is important to note that in all cases, the best results in
terms of the SOD are achieved by one of the recursive methods, and more
specifically, when we take the best intermediate graph along the recursive
path. In addition to that, in 80% of the cases (32 out of 40) the best re-
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Table 3: SOD comparison for the Letter and the Molecule datasets (•: Methods better
than the set median. ◦: Methods better than both of the previous embedding methods.
?: Methods better than one of the previous embedding methods. Global best results are
marked with bold face).

Letter Molecule
50 100 50 100

SM 97.02 194.08 306.9 587.1
E2P 117.03 241.95 341.5 705.8
E3P 120.80 245.42 277.7 • 566.5 •
BRS 127.83 260.86 374.1 590.3

SRS-GD 149.39 308.47 504.9 1038.9
SRS-GA 109.71 ◦ 220.31 ◦ 290.9 • 599.3
SRS-VD 149.39 307.20 508.6 1069.8
SRS-VA 122.92 247.42 314.9 649.7

BRS/Best 98.93 ◦ 196.75 ◦ 259.5 •, ◦ 493.2 •, ◦
SRS -GD/Best 92.60 •, ◦ 183.79 •, ◦ 266.3 •, ◦ 518.2 •, ◦
SRS-GA/Best 103.10 ◦ 193.68 ◦ 255.23 •, ◦ 508.9 •, ◦
SRS-VD/Best 100.54 ◦ 195.83 ◦ 269.9 •, ◦ 523.7 •, ◦
SRS-VA/Best 102.26 ◦ 196.35 ◦ 265.35 •, ◦ 515.28 •, ◦

cursive methods outperform the set median. In all cases they outperform at
least one of the previous embedding methods and in the 92.5% of cases they
outperform both previous embedding methods. Keeping in mind that the
previous embedding methods are already better than the set median in 10
out of the 16 cases, this last result shows that the best recursive schemes are
able to outperform two already good previous methods for the median graph
computation.

For the non-best recursive methods, the SRS-GA method shows to be
superior over the others. In particular, it achieves better SOD than the set
median in four out of the eight cases, and it is also better than the embedding
methods in two cases. These results show a high correlation with the SOD
evolution experiment, where the SRS-GA method achieved the lower SOD
among all the recursive methods.

As a final conclusion we can say that in practice, in the recursive methods,
selecting the best intermediate graph is better than taking the graph at the
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Table 4: SOD comparison for the Mutagenicity and the Web datasets (•: Methods better
than the set median. ◦: Methods better than both of the previous embedding methods.
?: Methods better than one of the previous embedding methods. Global best results are
marked with bold face).

Mutagenicity Web
50 100 50 100

SM 367.1 723.9 1,910.8 3,886.4
E2P 336.9 • 666.9 • 1,344.1 • 2,693.6 •
E3P 317.6 • 643.3 • 1,467.4 • 2,998.2 •
BRS 399.6 945.2 2,106.1 4,141.1

SRS-GD 909.5 1,732.1 3,019.1 6,195.3
SRS-GA 373.1 713.3 • 1,865.1 • 3,387.9 •
SRS-VD 877.6 1,895.9 2,754.5 5,602.5
SRS-VA 388.3 771.1 1,997.4 4,246.1

BRS/Best 314.7 •, ◦ 610.1 •, ◦ 1,298.1 •, ◦ 2,418.1 •, ◦
SRS -GD/Best 321.5 •, ? 622.5 •, ◦ 1,298.5 •, ◦ 2,453.5 •, ◦
SRS-GA/Best 329.5 •, ? 613.8 •, ◦ 1,309.8 •, ◦ 2,446.6 •, ◦
SRS-VD/Best 316.4 •, ◦ 611.41 •, ◦ 1,293.7 •, ◦ 2,441.7 •, ◦
SRS-VA/Best 322.1 •, ? 615.3 •, ◦ 1,306.5 •, ◦ 2,482.7 •, ◦

end of the recursive path and, as we said, better that the set median and
the existing embedding methods. Moreover, we can also observe that all
the best intermediate graphs are always better than all the best final graphs
obtained with any of the recursive methods. In addition, recursive methods
perform similarly among them. There is no recursive method clearly better
than the others. Thus, it is worth to highlight and recall the fact that by
means of descendent methods the best intermediate graph is found earlier.
This could give us the option to avoid some of the computation, by stopping
the recursion without calculating all the intermediate graphs. The proposed
recursive embedding method shows to be an excellent guide through the
search space, so that we have been able to find intermediate graphs which,
with few exceptions, have lower SOD than those returned by the rest of the
methods.
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6. Conclusions

The median graph has been shown to be a good choice to obtain a repre-
sentative of a set of graphs. However, its computation is extremely complex.
As a consequence, in real applications we are forced to use suboptimal meth-
ods in order to obtain approximate solutions for the generalized median graph
in reasonable time. Recently, two different procedures using graph embed-
ding into vector spaces have been presented for its approximate computation.
Both procedures are based on three key steps. However, they introduce a
source of error due to some approximation in the third step (i.e. mapping
back from the vector domain to the graph domain), which may cause a de-
terioration in the obtained medians.

In this paper we proposed a generic recursive embedding procedure based
on the weighted mean of a pair of graphs which tries to minimize such an
approximation in the third step. First, the graphs are mapped to points in an
n-dimensional vector space using the graph edit distance. Then, the crucial
point of obtaining the median of the set is carried out in the vector space, not
in the graph domain, which dramatically simplifies this operation. Finally,
we proposed a recursive application of the weighted mean of a pair of graphs
to obtain the graph corresponding to the median vector. This last step is the
main difference with the previous existing embedding-based methods. We
also proposed four variations of the base algorithm taking into account the
order the graphs (and therefore the points) are considered in the recursive
path.

In order to evaluate the proposed method (and all its variations), we have
made experiments on four different graph databases, one semi-artificial and
three containing real-world data. The underlying graphs have no constraints
regarding the number of nodes and edges. We compared our approaches
with these state-of-the-art embedding-based methods for the median graph
computation and also with the set median approach. Results show that with
the proposed recursive approach we can obtain, in general, better medians,
in terms of the SOD, than the previous embedding methods and also the set
median.

The proposed novel method for median graph computation is approximate
in a double sense, namely through the graph embedding and graph recovery
step. Nevertheless, as experiments on a number of databases with quite
different characteristics have shown, it is able to find median graphs of better
quality than previous approximate methods that use the set median or the
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closest two or three points.
A number of important questions remain open regarding the nature of

the median graph and the selection of the best representative graph for of
a given set. For example it would be interesting to establish under what
circumstances such a graph could be unique and in what ways it depends on
the particular costs associated with the edit distance. These are interesting
and relevant questions that should guide future research on the topic.

Finally, it should be noted that although we have concentrated on the
concept of median graph, our generic approach can be easily adapted to ob-
tain other graph representatives. For instance, if the barycenter vector is
computed instead of the median vector, we can think that the corresponding
graph should be more similar to the sample mean of graphs than the me-
dian graph. With these results at hand, we can think of applying this new
approach to real world graph-based applications in pattern recognition and
machine learning, such as classification and clustering, or more generally to
any machine learning algorithm where a representative is needed.
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