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Llorens i Artigas, 4-6, 2nd floor, 08028 Barcelona, Spain

‡Automatic Control Department (ESAII), Technical University of Catalonia
Pau Gargallo, 5, 08028 Barcelona, Spain

Abstract

This paper focuses on the control of a low-temperature ethanol steam reformer forin-situ hydrogen production. For this purpose,
three optimization-based control configurations are proposed, namely, a linear model-based predictive controller, a linear quadratic
regulator with output error integral action and a cascade control combining the two previous configurations. In all cases, control
objectives aim at obtaining the desired flow of hydrogen while keeping the carbon monoxide at its nominal working point under
input and output operational constraints. Output tracking and robustness of each configuration are compared using two key perfor-
mance indicators that evaluate the output errors and the smoothness of the control signals. Simulation results allow to compare the
characteristics of each control configuration when applied to the non-linear model of the ethanol steam reformer.

Keywords: Ethanol steam reformer, model predictive control, linear quadratic regulator, cascade control, multi-objective
optimization

1. Introduction

Hydrogen can store and deliver usable energy. Nowadays, it
is considered a promising energy vector for both stationary and
mobile applications. Likewise, hydrogen presents costly dis-
tribution and storage which makesin-situ hydrogen production
techniques to become more interesting.

Steam reforming is a current option forin situ hydrogen pro-
duction. It consists of an endothermic process that requires
an external heat source and produces a gas stream composed
primarily of hydrogen (H2), carbon monoxide (CO) and car-
bon dioxide (CO2). Among the different reforming techniques,
steam reforming is the one that presents the lowest operating
temperature (about 800 K) and produces the reformate with the
highest H2/CO. Conversely, it does have the highest CO emis-
sions [1].

Among the different fuels for hydrogen production by steam
reforming, ethanol is the one that has got more interest in
the last decade. Basically, ethanol is renewable as it can be
extracted from corn and sugar cane; it is easy to transport,
biodegradable and low in toxicity; it can be easily decomposed
in the presence of water to generate a hydrogen-rich mixture
and it is free from catalysts poison such as sulfur [2].

Since steam reforming is a catalytic process, selection of cat-
alysts is a fundamental aspect that affects the performance of
the reformer. Improvements in the field of the ethanol steam
reformers (ESR) have been achieved with the development of
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cobalt-based catalysts, which allow reforming ethanol at low
temperatures (about 673 K) [3]. While cobalt-based catalysts
present important practical advantages in terms of energy con-
sumption, two major concerns appear when reducing the tem-
perature, namely, fast catalyst deactivation by coking and hy-
drogen consuming by-products formation by methanation. First
and second stages of the reforming process solve those prob-
lems by an ethanol dehydrogenation followed by an acetalde-
hyde reforming [4]. The reforming process is completed with
a third stage that reduces CO content by means of a water gas
shift reaction. The kinetic expressions for the reactions taking
place in first to second stages and third stage are taken from [4]
and [5], respectively.

In the meanwhile, the modeling of the chemical system is
still an open research subject. The work presented in [6] de-
rives a complex simulation-oriented model of the ESR while
[4] shows how to obtain a model oriented for control purposes.
Both works share the fact that the catalytic packed bed reac-
tor can be modeled using the same dynamic equations as those
used for modeling a plug-flow reactor, found in [7].

In this paper simulations are based on a non-linear model that
corresponds to a one-dimensional, pseudo-homogeneous, non-
steady-state model based on mass balances [8]. The non-linear
model is improved from the model presented in [8] by consider-
ing the volumetric flow rate of the gases inside the reactor as a
function of time and location along the reactor. A linear control-
oriented model, obtained after linearization, model-order re-
duction and temporal discretization of the non-linear model, is
used to design the linear controllers.



Literature concerning the design of controllers for ESR is
limited. In [8] the authors perform a controllability analysis on
the ESR in order to determine the best input-output pairing for
PIDs controllers while [9] performs this controllability analy-
sis in terms of the global plant with plantwide global efficiency
objectives. Although control structures are given in both cases,
any controllers are designed for the closed-loop.

The multivariable control configurations proposed in this pa-
per must handle the high non-linearities present in those chem-
ical systems and should be able to satisfy the desired references
in hydrogen production while keeping the carbon monoxide at
its nominal working point.

The two control techniques used in this paper, linear model-
based predictive control (LMPC) [10] and linear quadratic regu-
lator with output integral action (LQRi) [11], minimize a multi-
objective function. Several advantages make both control tech-
niques suitable for the ESR application: they can deal with
MIMO, non-minimum phase, inverse response, large-scale sys-
tems and allow multi-objective optimization. Furthermore, the
LMPC can introduce operational constraints into the control
problem naturally.

The main contribution of this paper is to present and compare
optimization-based control strategies that can tackle with the
non-linear behaviour of the ESR showing an alternative to the
classical control configurations based on decentralized PIDs.

The paper is structured as follows: Section2 gives a chem-
ical description of the ESR. Section3 details the basic math-
ematical equations modeling the dynamics of the system and
the assumptions used to simplify the model. Furthermore, the
non-linear model used for simulations and the linear control-
oriented model used for the design of the controllers are pre-
sented. Section4 presents the control specifications and the per-
formance indicators used for the analysis of the performance of
the control configurations. Section5 shows the characteristics
and the schemes for each control configuration. Section6 ex-
poses and compares the simulation results in two different sce-
narios: first, output tracking and second, rejection of additive
load disturbances. Finally, Section7 gathers the conclusions of
the work and gives some further work lines.

2. System Description

This paper considers an isothermal low-temperature ESR for
the production of hydrogen. Cobalt-based catalysts allow the
steam reforming of ethanol to take place at low temperatures
(613-673K) [3]. However, a direct transformation from ethanol
to hydrogen using these catalysts presents two major draw-
backs, namely, methanation and oxidizing atmosphere. The for-
mer favors a costly side reaction that produces methane by con-
suming hydrogen, and the latter restricts the creation of metallic
cobalt necessary for the reforming process.

The reforming process is split into three independent stages
[4]. In order to create a reducing atmosphere, in the first stage
ethanol (C2H5OH) dehydrogenates into acetaldehyde (C2H4O)
and hydrogen (H2) over a tin dioxide catalyst (SnO2) at 648K,

Figure 1: Scheme of the ethanol reformer unit.

i.e.,

C2H5OH
SnO2−−−−−−−−−−−→
648K

C2H4O+ H2, (1)

and in the second stage, acetaldehyde is reformed under pres-
ence of water (H2O) into hydrogen and carbon monoxide (CO)
and carbon dioxide (CO2) over a zinc oxide-supported cobalt
with iron addition catalyst (Co(Fe)/ZnO) at 673K, i.e.,

C2H4O+ H2O
Co(Fe)/ZnO Na+
−−−−−−−−−−−→

673K
2CO+ 3H2, (2a)

C2H4O+ 3H2O
Co(Fe)/ZnO Na+
−−−−−−−−−−−→

673K
2CO2 + 5H2, (2b)

CO+ H2O
Co(Fe)/ZnO Na+
−−−−−−−−−−−→

673K
CO2 + H2. (2c)

Reactions (2a) and (2b) take place in parallel while reaction
(2c) occurs in series with reaction (2a). In order to reduce the
methane formation and coking on the second stage, iron and
sodium are added to the Co/ZnO catalyst [12].

Finally, the CO content is reduced in a third stage by means
of a water gas shift reaction. The CO reacts under presence of
water over an iron trioxide/chromium trioxide catalyst (Fe2O3-
Cr2O3) producing CO2 and H2, i.e.,

CO+ H2O
Fe2O3-Cr2O3←−−−−−−−−−→

613K
CO2 + H2. (3)

Each one of the three stages corresponds to a monolithic re-
actor. Figure1 shows the reformer unit with the three mono-
lithic reactors in series. Inputs correspond to ethanol and water
and outputs correspond to ethanol, water, acetaldehyde, hydro-
gen, carbon monoxide and carbon dioxide.

For control purposes, ethanol and water act as the manipu-
lated variables and hydrogen and carbon monoxide are the mea-
sured and controlled output variables.

3. Mathematical Modeling

An accurate knowledge of the dynamic response of the re-
actor results essential towards the design of model-based con-
trollers for the whole reformer. This section presents the non-
linear model (NLsys) used for simulation as well as the linear
control-oriented model (LRDsys) used for the controllers de-
sign.

3.1. Non-linear Simulation Model
A one-dimensional, pseudo-homogeneous, dynamic model

has been used to represent the ethanol reforming process in the
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already referenced series of monolithic reactors (Figure1). The
major assumptions underlying the model are the following:

• Isothermal operation within each stage is considered.

• Plug-flow reactor modeling is assumed since the flow in-
side the channels is laminar.

• Diffusion action is assumed to be slower than the convec-
tion action and therefore, terms related to diffusion are ne-
glected.

• The use of low-diameter monoliths supports the assump-
tion of 1-D model avoiding the occurrence of pronounced
radial mass profiles.

• Isobaric conditions are assumed due to the high void frac-
tion of the monolithic structures (ξ = 0.66). Thus, the
pressure inside the reformer is 101,325Pa.

• Gas properties are function of temperature and gas con-
centration. Ideal gas law is applicable due to low operating
pressure.

As it is found in [4], the mass balance equation together with
the initial and boundary conditions can be expressed, after con-
sidering all the assumptions, as

∂C j

∂t
+
∂(C jv)
∂z

= ν j,i ri, (4a)

C j(0, z) = C j,0(z), ∀z ∈ [in, L], (4b)

C j(t, 0) = C j,in(t), ∀t > 0, (4c)

where j is the component numberj = 1, . . . , 6 (C2H5OH, H2O,
C2H4O, H2, CO, CO2, respectively),i is the reaction num-
ber i = 1, . . . , 3 (reactions (1) to (3), respectively),C is the
concentration given in mol m−3, r is the reaction rate given in
mol m−3 s−1, v is the linear velocity of the gases given in m s−1,
t is the time given in s,0 denotes the initial time,in denotes
the reactor inlet andL denotes the reactor outlet. Refer to the
Appendix Afor the kinetic expressions.

In the simplified mass balance expression presented in (4a), v
should also be expressed in function ofC j in order to be able to
solve the set of PDEs. This work improves the model reported
in [4] considering thatv varies not only with time but also with
the position along the reactor’s axial directionz. According
to [13], in a plug-flow reactor under isothermal and isobaric
conditions,v can be expressed as

v = vin(1+ εX), (5)

X =
ε
(

C j,in −C j
)

C j −C j,in
, (6)

whereX is the conversion given in % andε is the adimensional
reagents-products molar relation for the considered reaction.
However, in the sequel, the velocity of gases in the reactor will
be calledvolumetric flow rate which is expressed asQ = Av,
beingA the section of the tubular reactor given in m2. Also the
termmolar flow rate, denoted asF, which is related with the

Figure 2: Schematic representation of the ESR.
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Figure 3: Numerical divergence in conservation of mass in function of the total
number of discretization volumes∆V alongz.

concentrations asF j = QC j is used. BothQ andF are given in
m3 s−1 and mol s−1, respectively. Figure2 shows the schematic
representation of each one of the three monolithic reactors.

3.1.1. Spatial Discretization
The set of mass balance equations presented in (4) to (6) rep-

resents the spatial derivatives of the concentrations with respect
to time and space. This space dependence is discretized using
backward finite differences,

∂C j

∂z
=
C j(z) −Ci(z − 1)

∆z
,

resulting in a model where the concentrations vary with time
and are considered as constants within each differential volume
(∆V = A∆z). Spatial discretization results in a lumped parame-
ter system and allows the use of lumped systems theory. How-
ever, it carries a numerical divergence in the conservation of
mass that increases when decreasing the number of differential
volumes along the reactor.

Figure3 shows the loss of mass in percentage between the in-
put and the output in function of the total number of∆V alongz.
A mass balance for each one of the three stages independently
is shown as well as the global mass balance for the whole re-
actor. Moreover, it is shown the number of variables that need
to be solved in function of the number of discretization points
considered.

Notice from Figure3 that the divergence only happens on
stages 1 and 2, whereQ presents a variable profile withz. This
divergence happens since the volumetric flow rate is assumed
to be constant within each differential volume but changes
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abruptly from one volume to another. With the increment of
∆V, this difference in the volumetric flow rate between neigh-
bor volumes decreases and consequently, the loss of mass de-
creases. Stage 3 presents a constantQ, i.e. the reaction implies
the same number of moles in reagents and products, and the
numerical divergences are zero.

In this paper, simulations have been carried out consider-
ing 45∆V which represents 240 variables (concentrations). In
this case, the mass divergence considering all the stages corre-
sponds to -7.23%. Due to the high computational burden when
solving the set of DAEs, and therefore, from a practical point
of view, this divergence is accepted.

3.1.2. Behavioral Analysis
Characteristics of the NLsys model can be obtained from

static and dynamic tests in open loop. Static analysis consid-
ers static profiles of each variable with respect to the position in
z direction while dynamic analysis examines the behavior of the
output variables after step changes around the nominal values
in the input variables.

Figure4 shows the static profiles for the molar flow rates and
the concentrations of all the species present in the reactor, as
well as the profiles of the volumetric flow rate and temperature.
Note thatT remains constant within each stage at its optimal
working value, i.e.,T1 = 648 K,T2 = 673 K, andT3 = 613 K
[4]. In the transitions between stages, coexistence of two tem-
peratures is assumed since no energy balances are considered.
This assumption affects all the other variables, showing abrupt
changes in their values at the transition between stages.Q in-
creases in the first and second stages alongz because there are
more moles of product than moles of reagents (ε1, ε2 > 0).
However, in the third stage the reaction produces the same num-
ber of moles andε3 = 0. ConcerningF andC profiles, inert
gases in stages 1 and 2 (H2O and C2H5OH, respectively) show
a constantF profile while itsC profile changes. This is the
result of keeping the productF j = QC j constant within each
stage. In stage 3,Q remains constant, and hence, inert gases
(C2H5OH and C2H4O) present constant profiles both inF and
C.

Figure5 shows the evolution in time of all theF j outputs for
step changes of±20% onFC2H5OH,in, andFH2O,in inputs (left and
right columns, respectively). Analyzing the output responses,
the following effects should be noticed:

• a sudden change in all the outputs when the steps are ap-
plied, which is a consequence of the constant pressure as-
sumption inside the reformer,

• in some outputs, after the instant response, a combination
of a non-minimum phase and very slow dynamics behavior
of about 9 s, and

• an inverse response inFH2O,L for steps inFC2H5OH,in and in
FH2,L, FCO,L andFCO2,L for steps inFH2O,in.

3.2. Control-oriented Model
The first step to obtain the model used for the design of the

linear controllers is to linearize theNLsysmodel. Thus, a linear
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Figure 4: Molar flow rate profiles (top), concentration profiles (middle) and vol-
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along the reactor length at steady state.

model (Lsys) of 240 states is obtained. In this model, states
have a physical meaning and represent theC j within each∆V.

Unfortunately, the Lsys model is not fully-state observable,
which is required for control purposes since only outputs can be
measured. Therefore, the second step consists in a model-order
reduction based on a Hankel-norm approximation of the Lsys
model. All the dynamic information of the system is concen-
trated in less than 15 states. Only the first 12 states are kept for
practical purposes, obtaining a 12-states fully-state observable
model, named LRsys. A drawback resulting from the model
reduction procedure is the loss of the physical sense of the state
variables. However, for control purposes this physical meaning
feature is not necessarily relevant since the most important fea-
tures are related to the trade off between accuracy, simplicity
and compactness.

Finally, the last step consists in a temporal discretization of
the LRsys model since all the configurations proposed in this
paper are in discrete time. Time discretization is made assum-
ing piecewise constant control inputs over the sampling time
(zero-order hold method). The sampling time is chosen to be
T s = 0.3 s, which is ten times faster than the fastest time con-
stant of the NLsys.

The LRDsys model used for the design of the linear con-
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trollers can be expressed in state-space representation as

xr (k + 1) = Ardxr (k) + Brdu (k) , (7a)

y (k) = Crdxr (k) + Drdu (k) , (7b)

where xr (k) ∈ R
12 is the vector of the state variables and

Ard ∈ R
12×12, Brd ∈ R

12×2, Crd ∈ R
2×12 andDrd ∈ R

2×2 are
the matrices for the LRDsys model. Input and output vectors
are, respectively,u (k) ∈ R2 andy (k) ∈ R2.

The direct input-output feed-through represented by matrix
Drd results from the assumption that pressure must be constant
inside the reformer, i.e., at the time one molecule of gas enters
the reactor, another molecule must leave it.

Nominal working values correspond to the steady state val-
ues given in Table1 whereηH2 is the H2 yield, XC2H5OH is the
C2H5OH conversion,XC2H4O is the C2H4O conversion andγCO
is the CO molar fraction. All those values are calculated as
defined in [8].

Validation of the LRDsys model against the NLsys model
for steps of± 20% in both inputs around the nominal working
point is shown in Figure6. It can be noted that H2 steady-state
absolute errors are in the range [0.27%, 0.53 %], which can
be considered as negligible. On the contrary, CO steady-state
absolute errors are in the range [6.90 %, 16.90%], which must
be translated into keeping the CO at its nominal working point
in the control specifications.

Table 1: Steady state values for the ESR.

Variable
Nominal point

Variable
Nominal point

[mmol/s] [%]

FC2H5OH, in 1.34 ηH2 80.85
FH2O, in 8.21 XC2H5OH 92.53
FH2,L 6.50 XC2H4O 82.33
FCO,L 0.18 γCO,L 0.47
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Figure 6: Validation of the LRDsys model with the NLsys model.

4. Control Specifications and Performance Indicators

Usually the application of the hydrogen produced by the ESR
determines de control specifications to consider. Since this fact
has not been taken into account in this paper, the control speci-
fications have been chosen as a function of the accuracy of the
LRDsys to represent the NLsys model.

Thus, the control objectives are chosen to track the H2 output
set point while keeping the CO output at its nominal working
point. The reason is that the final purpose of an ESR is to sup-
ply the H2 demand no matter the considered application. Refer-
ring to the CO output, the accuracy of the LRDsys model de-
creases when being far from the nominal working value which
limits the performance of the controllers to keep this output
at its nominal working value. Besides, those two control ob-
jectives should simultaneously satisfy certain operational con-
straints and reject additive load disturbances. Note that model
(7) only considers the water and ethanol inflows as exogenous
manipulated inputs. Disturbances, when considered, act as ad-
ditive signals affecting the inflows.

Table2 summarizes the control specifications considered in
this paper. The role of each variable indicates whether the vari-
able is a manipulated input (MI) or a controlled measured out-
put (CMO). Set point values, constraints and load disturbances
are expressed as a percentage variation around the nominal
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Table 2: Control specifications for the ESR.

Variable Role Symbol
Set Cons- Distur-

points traints bances

FC2H5OH, in MI uC2H5OH – ±20% ±10%
FH2O, in MI uH2O – ±20% ±10%
FH2, L CMO yH2 ±10% ±20% –
FCO,L CMO yCO 0 ±20% –

value. Constraints on the MI and CMO fixed at a maximum
variation of±20% are imposed.

In addition to the specifications shown in Table2, the control
configuration should keep the output steady state errors as close
to zero as possible. The trade off between fast H2 response and
overshoots both in H2 and CO outputs is not specified. When
using LMPC, the optimization time should allow real-time ap-
plications, i.e., it should be at most half the sampling time of
the controller.

The performance of the different controllers is evaluated with
two key performance indicators (KPI). The output indicator,
namelyKPIyc , represents the mean-square error between the
outputs and their references. The smoothness indicator, namely
KPI∆ug , is related to the smoothness of control movements.
They are defined as

KPIyc =

√

√

√

1
N

N
∑

k=1

[

yr,c (k) − yc (k)
yr,c (k)

]2

,

KPI∆ug =

√

√

√

1
N

N
∑

k=1

[

∆ug (k)
u(N)

]2

,

whereN denotes the total number of samples,yr,c (k) is the
output set point for the output componentc at time k, yc (k)
is the measured output at timek with c ∈ {H2,CO}, ∆ug
is the incremental control movement applied at time k with
g ∈ {C2H5OH,H2O} andu(N) corresponds to the last control
signal within the simulation horizon.

5. Closed-Loop Configurations

The four closed-loop configurations compared in this paper
correspond to decentralized PID, LMPC, LQRi and cascade
LMPC-LQRi. As explained in Section3, the NLsys model is
used for simulation of the ESR and the LRDsys model is used
for the design of the linear controllers.

5.1. Decentralized PID
In this configuration two different closed loops controlled

by two independent PIDs are considered, one for the pair
C2H5OH – H2 and another one for the pair H2O – CO. This
input-output pairing has been proved, in previous works, to be
the best pairing when comparing different input-output control-
lability indexes, such as the relative gain array, the condition
number and the Morari resiliency index [8].

yr,H2

yr,CO

PIH2

PICO

uC2H5OH

uH2O

NLsys

yH2

yCO

Figure 7: PID decentralized closed loop scheme.

Table 3: PIDs tuning parameters

Controller kp · 10−3 ki
PIH2 5.0765 0.3641
PICO -7.4378 285.9578

yr MPC
LRDsys

u
NLsys

y

Full State
Observer

x̂r

Figure 8: LMPC closed-loop scheme.

The decentralized PID control configuration is shown in Fig-
ure 7. The structure of the controllers correspond to the ideal
PID form with a first order derivative filter,

G(s) = kp
(

1+
ki
s
+

kd s
T f s + 1

)

, (8)

whereG(s) is the transfer function of the PID controller,kp is
the proportional gain,ki is the integral gain,kd the derivative
gain andT f is the filter time constant.

The tuning procedure was made by means of the interactive
PID tuning toolbox Simulinkr Control DesignTM. The PID
parameters in (8) for each control loop are shown in Table3.
The derivative gain is considered to bekd = 0 in all the cases,
what actually corresponds to a PI controller.

5.2. LMPC
This configuration faces the control of the MIMO plant using

a centralized LMPC with output feedback. Figure8 shows the
block diagram for this configuration. The MPC problem formu-
lation presented in [10] and adapted to the ESR can be written
as

min
∆u

Hp−1
∑

p=0

∥

∥

∥ y(k + p |k ) − yr,c(0 |k )
∥

∥

∥

2

wy
+ ‖ ∆u(k + p |k ) ‖2wr ,

(9a)
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Table 4: LMPC tuning parameters

Weights Constraints

Time instant qH2 qCO rC2H5OH rH2O ui y j
p ∈ [0,Hp − 2] 1 0.01

0.5 1 ±20%
±20%

p = Hp − 1 102 102 ±1%

subject to

xr(k + p + 1 |k ) = Ard xr(k + p |k ) + Brd u(k + p |k ), (9b)

y(k + p |k ) = Crd xr(k + p |k ) + Drd u(k + p |k ), (9c)

xr(k |k ) = x̂r(0 |k ) (9d)

umin ≤ u(k + p |k ) ≤ umax, (9e)

ymin ≤ y(k + p |k ) ≤ ymax, (9f)

wherep = 0, . . . ,Hp − 1 is the time instant within the predic-
tion horizonHp ; wy andwr are the output errors and inputs
smoothness penalty weights for the cost function, respectively;
x̂r(k) ∈ R

12 is the vector of estimated states; andumin, umax,
ymin, ymax correspond to the lower and upper constraints for the
inputs and the outputs, respectively.

Note that solving problem (9), a vector of optimal slew rates,

∆U(k)∗ , [∆u(0 |k )∗T . . . ∆u(Hp − 1 |k )∗T ]T ∈ R2Hp

is obtained. At each time instantk, problem (9) is solved for the
current state and the control movement applied to the system in
the previous time instant, namelyu(k−1). Only the first optimal
slew rate∆u(0 |k )∗ of the optimal sequence∆U(k)∗ is applied
to the process previous transformation into a control movement
as

u(k) = u(k − 1)+ ∆u(0 |k )∗.

The remaining optimal slew rates are discarded and the opti-
mization is repeated at time instantk + 1.

In addition, a full-order state observer is depicted in the block
diagram. Since the complete state vector is not available, state
estimation from the measurement of the NLsys outputs is re-
quired. The solution of the optimization problem will be based
on an estimation of the reduced state vector, ˆxr (k), instead of
the true reduced state vectorxr (k). For this purpose, a full-state
Luenberger observer is used [14], which is expressed as

x̂r (k + 1) = (Ard − LCrd) x̂r (k)+ Brdu (k)+ L (y (k) − Drdu (k)) ,
(10)

whereL is the estimator gain matrix. The observer is designed
by solving the associated Riccati equation assuring that the es-
timator poles of(Ard − LCrd) are faster than those of the con-
trolled plant.

The LMPC controller has been tuned considering the previ-
ous analysis of the system’s behavior. The weights of the cost
function are presented in Table4. Terminal weights and ter-
minal constraints are added in order to ensure stability [15].
Setting Hp = 37 time instants (i.e., 11 s) ensures that the LMPC

yr
Integrator

xi
−K

u
NLsys

y

Full State
Observer

x̂r

Figure 9: LQRi closed-loop scheme.

controller considers thedelay of the NLsys (which is of about
9 s) and also assures an adequate horizon for the open-loop pre-
diction. TheqpSolve (Active-set) solver from the Tomlabr 7.5
allows optimization times inferior to 0.1 s, which correspond to
a third of the sampling time considered.

5.3. LQRi

Since the LMPC configuration, as defined in Section5.2,
cannot deal with modeling errors or assure error-free steady
state, a centralized LQR plus an integrator with output feed-
back is considered. Figure9 shows the block diagram for this
configuration. The full-state observer corresponds to the one in
(10). The discrete-time integrator is based in the forward Euler
formula [16],

xi (k + 1) = xi (k) + T s (yr (k) − y (k)) ,

wherexi(k) ∈ R
2 is the vector of integral states of the output

errors andyr(k) ∈ R2 is the vector of output references.
The addition of this integrator increases the number of states

of the linear system used for the design of the LQR controller.
Therefore, the states of the modelLRDsys have to be aug-
mented withxi(k). Thus, the new augmented plant can be ex-
pressed as

[

xr (k + 1)
xi (k + 1)

]

=

[

Ard 0
−Crd I

] [

xr (k)
xi (k)

]

+

[

Brd
−Drd

]

u (k) . (11)

The LQRi controller is computed using the matrices of the
augmented model (11). The discrete LQR controller corre-
sponds to an optimal state feedback matrix,K, obtained from
the unconstrained minimization of the objective function

J(u) =
∞
∑

n=1

[

xra(n)TQxra(n) + u(n)TRu(n)
]

,

where, xra = [xr, xi]T corresponds to the states of the aug-
mented model (11). The gain matrixK = [Ki,Kp]T has also
two terms, the first gain matrixKi concerning thexi and the
secondKp concerning thexr. The weights Q are formed by

Q =
[

qp
qi

]

,
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whereqp are the weights penalizing the states of the plant and
qi are the weights penalizing the two states of the output error
integrator.

Tuning of the LQRi controller corresponds to the weights
ratio qi

R = 10. Weightsqp = 0 since the states of the controlled
plant should not be minimized.

5.4. Cascade LMPC + LQRi

Integratorxi −K u
NLsys

y

Full State
Observer

x̂r

yr MPC
LRDsysLQRi

Figure 10: LMPC-LQRi closed-loop scheme.

Since the LQRi configuration assures free steady-state error
but does not deal with constraints and the LMPC configuration
deals with constraints but does not assure free steady-state er-
ror, a combination of both configurations in a cascade scheme
is considered in order to overcome the drawbacks of each con-
figuration alone. Thus, two closed loops are considered. The
inner loop contains an LQRi as the one presented in Section
5.3, which deals with the modeling errors between the LRDsys
and the NLsys models directly. The external loop contains the
LMPC, which manages the references given to the LQRi con-
figuration. Figure10shows the block diagram for this configu-
ration.

The new model for the external LMPC will be the whole in-
ner loop. Taking the references to the LQRi as the new inputs
and the outputs of the NLsys system as the outputs, the state-
space representation of the inner closed loop is

ξ (k + 1) =





















Ard −BrdKp −BrdKi
LCrd ω −BrdKi
−T sCrd T sDrdKp I + T sDrdKi





















ξ (k) +





















0
0
T s





















ry(k),

(12a)

y (k) =
[

Crd −DrdKp −DrdKi
]

ξ (k) , (12b)

with the new vector of states

ξ (k) =





















x̂r (k)
xobs (k)
xi (k)





















,

whereω = Ard −LCrd −BrdKp andxobs (k) = x̂r (k) corresponds
to the vector of states for the full state observer. The model (12)
is denoted as LRDsysLQRi.

The MPC problem (9) is now modified because the model
has changed. Thus, the LMPC does not control the input vari-
ables to the reformer any more, but the output references given

to the LQRi. The cost function (9a) changes to

min
∆yr,c

Hp−1
∑

p=0

[

∥

∥

∥ y(k + p |k ) − yr,c(k + p |k )
∥

∥

∥

2
wy
+

∥

∥

∥ ∆yr,c(k + i |k )
∥

∥

∥

2
wr

]

, (13)

and the constraints (9e) are expressed now as

yminr,c ≤ yr,c(k + i |k ) ≤ ymaxr,c , (14)

whereyminr,c , ymaxr,c correspond to the lower and upper constraints
for the output references and the weightswr now penalize vari-
ations in the references. The new optimization vector for the
LMPC problem contains variations in the references given to
the LQRi configuration, which change within the prediction
horizon.

Tuning parameters for the LQRi inner loop are inherited from
Section5.3. The tuning parameters for the LMPC output loop
arewy,H2 = 1 andwy,CO = wr,H2 = wr,CO = 0.01.

6. Comparison of the Closed-loop Configurations

The performance of the closed-loop configurations presented
in Section5 has been compared in two different scenarios: first,
output tracking and second, additive load disturbances rejec-
tion.

Simulations have been carried out using Simulink 7.6 and
the TOMLABr 7.6 optimization package for Matlabr R2010b
(64 bits). Two solvers have been used, namely, the variable-step
solverode45Dormand-Prince for the NLsys model in Simulink
andqpsolve (AS method) as a quadratic programming solver.
Numerical linearization of the NLsys model has been done us-
ing the Control System ToolboxTM. The computer used to run
the simulations is a PC Intelr CoreTM 2 Duo CPU E8600 run-
ning both cores at 3.33GHz with 8.0GB of RAM.

6.1. Output Tracking

Simulation results are presented in Figure11. This scenario
considers simulations for a+10% step change inyr,H2 while
yr,CO is kept at its nominal value. Constraints are kept at±20%
as specified in Table2. KPI values are shown in Table5. The
lowest KPI, meaning the lowest output error or the smoothest
control inputs, are highlighted. Analyzing the curves and the
KPI, it should be noted that

• Only LQRi and PID configurations ensure error-free
steady-state response because of their integral action.
However, the output steady-state errors for the LMPC and
cascade LMPC-LQRi are less than 1% and can be consid-
ered negligible.

• The PID configuration presents the highest oscillations.
It is the slowest response and it does not fulfill any con-
straints. However, it shows the smoothest control inputs.

• The LMPC configuration shows the best output tracking
performance in bothyH2 andyCO with negligible steady-
state error (less than 1%) and fulfilling all the constraints.
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Figure 11: Output tracking performance of all the control configurations. From
top to bottom, first and second plots show ethanol and water control inputs
while the third and fourth plots show hydrogen and carbon monoxide outputs.

• LQRi and LMPC-LQRi configurations show a better per-
formance than the PID configuration, being the cascade
configuration faster, especially bringingyCO back to its
nominal value. Nonetheless, both exceed the input con-
straints in theuC2H5OH and show aggressive control inputs.

In addition, both LMPC and cascade LMPC-LQRi config-
urations can narrow the upper constraintymaxCO down to+7.5%
instead of the+20% considered in the simulation. Narrowing
the upper constraint reduces theyCO overshoot at the expense of
losing performance in the tracking of theyH2. The lower con-
straintyminCO must be kept at -20% in order to avoid infeasibility
of the optimization problem.

6.2. Additive Load Disturbances Rejection
Simulation results are presented in Figure12. This scenario

considers additive load disturbances at+10% step change in
both uC2H5OH anduH2O with respect to its nominal value, thus
the control signals received by the NLsys would beu + ∆u .
Constraints are kept at±20% as specified in Table2. KPI val-
ues are shown in Table6. The lowest KPI, meaning the lowest
output error or the smoothest control inputs, are highlighted.
Analyzing the curves and the KPI, it can be noted that

Table 5: Performance KPI for all the control configurations at the output track-
ing scenario.

Controller
KPI [·10−3]

H2 CO C2H5OH H2O

PID 19.2695 97.4540 0.1036 0.0054
LQRi 3.1648 42.3001 5.0490 1.2891
LMPC 2.1953 17.4437 0.8919 1.9095
LMPC-LQRi 2.8800 29.0933 8.4317 1.8428

Table 6: Performance KPI for all the control configurations atthe load distur-
bance rejection scenario

Controller
KPI [·10−3]

H2 CO C2H5OH H2O

PID 127.9991 471.4544 0.0995 0.0200
LQRi 2.1886 48.2085 8.6979 1.8433
LMPC 10.9194 147.4150 0.8201 1.2705
LMPC-LQRi 7.9488 36.0637 16.2757 3.4082

• The PID configuration presents the highest oscillations
and does not fulfill any constraints. However, it shows
the smoothest control inputs and ensures error-free steady
state responses.

• The LMPC configuration does not consider feed-forward
compensation of the load disturbances and thus perfor-
mance gets affected showing high steady-state errors. Al-
though theyCO exceeds the upper constraint when the
∆uC2H5OH is applied, the LMPC controller internally ful-
fills all the constraints and this graphical divergence is due
to modeling errors between the LRDsys and NLsys mod-
els (up to 16% on the constraints).

• The LQRi configuration ensures error-free steady-state re-
sponses and shows the lowest output error inyH2. It
presents an aggressiveuC2H5OH exceeding the constraints
when the disturbance∆uH2O is active.

• The cascade LMPC-LQRi configuration presents the low-
est output error inyCO at expenses of presenting the most
aggressive control inputs. Although this configuration can
not ensure error-free steady-state response, it can be con-
sidered negligible (less than 1%).

7. Conclusions and Further Work

Tables7 and8 summarize the performance of each config-
uration based on the output error and input smoothness KPI
obtained during the simulations in the previous section. Table
7 shows characteristics that can be either assured or not, while
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Figure 12: Load disturbance rejection performance of all thecontrol configu-
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Table8 shows a ranking of how the configurations fit different
features. Thus, the characteristics of the four configurations are
the following:

• The decentralized PID configuration assures output error-
free steady-state and ranks the highest input smoothness.
However, this configuration presents high oscillations and
the worst tracking and load disturbance rejection perfor-
mances. None of the constraints can be considered in this
configuration and are therefore exceeded.

• The LQRi configuration assures output error-free steady-
state, presents no oscillations inyH2 and shows the load
best disturbance rejection performance. However, this
configuration ranks both the output tracking and input
smoothness performances at third position. None of the
constraints are considered and are therefore exceeded.

• The LMPC configuration presents no oscillations inyH2,
fulfills all the constraints and allows narrowing theyCO
upper constraint. Furthermore, it presents the best output
tracking with negligible steady-state error (less than 1%)
and good inputs smoothness. However, this configuration

Table 8: Comparison of the output tracking, inputs smoothness and load distur-
bance rejection of each control configuration.Ranking – 1: best performance,
. . . , 4: worst performance.

Ranking
Outputs Load disturbance Inputs
tracking rejection smoothness

1 LMPC LQRi PID
2 LMPC-LQRi LMPC-LQRi LMPC
3 LQRi LMPC LQRi
4 PID PID LMPC-LQRi

shows incapability in load disturbance rejection showing
high steady-state errors while the disturbances are active.

• The LMPC-LQRi configuration combines the perfor-
mance of LQRi and LMPC configurations. Therefore,
both its tracking and load disturbance rejection perfor-
mances are ranked in second place. Furthermore, it
presents no oscillations inyH2, fulfills the output con-
straints and allows narrowing theyCO upper constraint. Al-
though error-free steady state can not be assured, steady-
state error is negligible (less than 1%). However, the con-
trol inputs are the most aggressive and input constraints
are not fulfilled since the LMPC does not deal with the
control inputs directly.

• The cascade LMPC-LQRi configuration is globally the
best positioned. Even so, depending on the priority of
the criteria chosen for the control problem other config-
urations might be more suitable.

Further work would consider a ESR with non isothermal con-
ditions, and therefore, energy balances would also be consid-
ered in the mathematical modeling. Another goal would regard
with multi-rate configurations in order to be able to control both
fast and slow dynamics, i.e., molar flow rates and temperatures
simultaneously. Important aspects related to the efficiency of
the ERS as a part of a hydrogen-based system are open lines
for future research. Moreover, experimental validation of the
NLsys model is also another point to keep in mind in further
steps.
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Notation

C concentration, mmol m−3

F molar flow rate, mmol s−1

Q volumetric flow rate, m3 s−1

r reaction rate, mol m−3 s−1
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Table 7: Comparison of the error, overshoot and constraints fulfillment of each closed-loop configuration.
√
: assured, ”blank”: not assured.

Scheme
Error-free No oscilla- Constraints Constraints

steady state tions in H2 Inputs Outputs narrowing

PID
√

LQRi
√ √

LMPC
√ √ √ √

LMPC-LQRi
√ √ √

v linear velocity of the gases, m s−1

z axial coordinate of the reactor, m
ε reagents-products molar relation,

adimensional
ηH2 H2 yield, %
XC2H5OH C2H5OH conversion, %
XC2H4O C2H4O conversion, %
γCO CO molar fraction, %

Ard, Brd, Crd, Drd state space matrices for the LRDsys
model

CMO measured controlled outputs
K LQR optimal gain state feedback

matrix,K = [Ki,Kp]T
Ki submatrix ofK related to the integrator

states
Kp submatrix ofK related to the plant

states
KPI key performance indicator
L full-state observer gain matrix
LRDsys linear control-oriented model
MI manipulated input
NLsys non-linear simulation model
T s sampling time, s
u control inputs
xr(k) vector of reduced states for the

LRDsys model
xi(k) vector of integrated output states
y outputs of the system

1, 2, 3 (superscript) stages 1, 2 and 3 respectively
c (subscript) outputs,c ∈ {H2, CO}
g (subscript) inputs,g ∈ {C2H5OH, H2O}
i (subscript) reaction number,i = 1, . . . , 3

(reactions (1) to (3))
in (subscript) refers to the inlet of the reactor,z = 0
j (subscript) component number,j = 1, . . . , 6

(C2H5OH, . . . , CO2)
L (subscript) refers to the outlet of the reactor,z = L

References

[1] J. Holladay, J. Hu, D. King, Y. Wang, An overview of hydrogen produc-
tion technologies, Catalysis Today 139 (2010) 244–260.

[2] A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Current status of hy-
drogen production techniques by steam reforming of ethanol: a review,
Energy & Fuels 19 (2005) 2098–2106.

[3] J. Llorca, N. Homs, J. Sales, P. R. de la Piscina, Efficient production of
hydrogen over supported cobalt catalysts from ethanol steam reforming,
Journal of Catalysis 209 (2002) 306–317.
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Appendix A. Kinetic Equations

The reaction rate expresses how fast the reaction happens.
Because this term depends on the chemical reaction that takes
place, it is defined for each of the three stages of the ESR inde-
pendently. Refer toAppendix Bto know more about the values
of the different parameters in each stage. The different parame-
ters were experimentally obtained in [4].

Appendix A.1. Stage 1 - Ethanol Dehydrogenation

In this stage the reaction (1), follows a first order equation,
so the reaction rate can be expressed, using the Arrhenius law,
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as

r1 = k1
∞ e

Ea1

RT CC2H5OH ,

wherek∞ is the pre-exponential factor in s−1, R is the universal
gas constant in J K−1 mol−1, T is the temperature in K andEa is
the activation energy in J mol−1.

Appendix A.2. Stage 2 - Acetaldehyde Reforming
In this stage three reactions take place, two in parallel, reac-

tions (2a) and (2b), and one in series, reaction (2c). Both paral-
lel reactions present a first order rate reaction, while the series
reaction depends on the partial pressures of different compo-
nents as it can be seen in

r1 = k2
∞,1 e

Ea2
1

RT CC2H4O,

r2 = k2
∞,2 e

Ea2
2

RT CC2H4O,

r3 = k2
∞,3 e

Ea2
3

RT CC2H4O pCO pH2O

(

1− 1
Keq3

pCO2pH2

pCOpH2O

)

,

wherepCO, pH2O, pCO2, pH2 correspond to the partial pressures
for the different chemical components in Pa andKeq,3 is a con-
stant in s−1.

Appendix A.3. Stage 3 - Water Gas Shift
Equation (3) is the only reversible reaction in the whole unit.

This reaction follows a Langmuir-Hinshelwood model to de-
scribe its kinetics

rCO = kKCOKH2O

















pCO pH2O −
(

pCO2 pH2

)

/Ke
1+ pCOKCO + pH2OKH2O + pCO2KCO2 + pH2KH2

















.

wherek is the rate constant in mol m−3 s−1, Ke is the adimen-
sional equilibrium constant for homogeneous reaction andKCO,
KH2O, Ke, KCO2 , KH2 are the adsorption equilibrium constants of
each component in Pa−1.

Appendix B. Reformer Parameters

STAGE 1:
V1 = 3 10−3 volume, m3

ε1 = 1/7.14 reagents-products molar relation, adim.
Ea1 = 67.32 activation energy, J mmol−1

k1
∞ = 1.55 105 preexponential const., s−1

STAGE 2:
V2 = 3.1 10−3 volume, m3

ε2 = 6/17.18 reagents-products molar relation, adim.
Ea2

1 = 98.4 activation energy for reaction 1, J mmol−1

Ea2
2 = 98.4 activation energy for reaction 2, J mmol−1

Ea2
3 = 122 activation energy for reaction 3, J mmol−1

k2
∞,1 = 12.49 106 preexponential const. for reaction 1, s−1

k2
∞,2 = 12.49 106 preexponential const. for reaction 2, s−1

k2
∞,3 = 2105 preexponential const. for reaction 3, s−1

STAGE 3:
V3 = 7.38 10−4 volume, m3

ε3 = 0 reagents-products molar relation, adim.
k = 649 108 rate const., mol m−3 s−1

Ke = 62.66 equilibrium const. for homogeneous
reaction, adim.

KCO = 41.62 adsorption equilibrium const.s of CO, Pa−1

KH2O = 3.75 adsorption equilibrium const.s of H2O, Pa−1

KCO2 = 2.75 adsorption equilibrium const.s of CO2, Pa−1

KH2 = 62.66 adsorption equilibrium const.s of H2, Pa−1
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