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Abstract—This paper presents an approach for optimal path
planning on implicitly-defined configuration spaces such as those
arising, for instance, when manipulating an object with two arms
or with a multifingered hand. In this kind of situations, the
kinematic and contact constraints induce configuration spaces
that are manifolds embedded in higher dimensional ambient
spaces. Existing sampling-based approaches for path planning
on manifolds focus on finding a feasible solution, but they do
not optimize the quality of the path in any sense. Thus, the
returned paths are usually not suitable for direct execution.
Recently, RRT* and other similar asymptotically-optimal path
planners have been proposed to generate high-quality paths in
the case of globally parametrizable configuration spaces. In this
paper, we propose to use higher dimensional continuation tools
to extend RRT* to the case of implicitly-defined configuration
spaces. Experiments in different problems validate the proposed
approach.

I. INTRODUCTION

The last years have witnessed a significant growth in the
complexity of the robotic platforms. Nowadays, two arms
service robots [21], anthropomorphic hands [28], or even
humanoid robots [23] are relatively common in research
labs. The availability of these platforms allows addressing
increasingly relevant tasks, but they also pose significant
challenges. From the point of view of path planning, one of
the most critical problems is how to deal with the kinematic
and contact constraints arising when manipulating an object.
These constraints reduce the dimensionality of the set of
valid configurations, which is in principle beneficial for path
planning. However, this comes at the expense of converting
the configuration space into an implicitly-defined manifold
embedded in the ambient space of the variables representing
the degrees of freedom of the system.

Due to the relevance of the applications in and beyond
Robotics [30], several approaches have addressed the problem
of path planning on manifolds. Complete planners [4] are
able to find a solution path whenever one exists, but they
are only adequate for low dimensional problems. A more
practical approach is to adapt the successful sampling-based
path planning algorithms developed in globally parametrizable
spaces [16, 19]. The difficulty is that these approaches assume
a parametrization of the configuration space to sample it
uniformly. Since, except for some families of mechanisms [8],
such parametrization does not exist, most of the existing
algorithms generate samples in the configuration space from
samples in the parametrizable ambient space using inverse
kinematic functions [7], or iterative techniques [3, 29]. Al-
though being probabilistically complete [3], these methods
cannot guarantee a uniform distribution of samples on the

Fig. 1. Two paths connecting the same points for a small ball moving
on a torus while avoiding obstacles. Left A low quality path obtained with
AtlasRRT. Right A close to optimal path obtained with the AtlasRRT*
algorithm proposed in this paper when optimizing the path length.

configuration space, which hinders its effective exploration.
To solve this issue, approaches based on higher dimensional
continuation have been recently proposed [11]. In these ap-
proaches, local parametrizations of the manifold are defined
and coordinated, allowing an effective exploration of the
configuration space. Despite their efficiency, all these planners
do not focus on the quality of the paths and their outputs are
not suitable for direct execution, as shown in Fig. 1-left.

When the cost is the length of the path, the determination
of optimal paths on manifolds is related to the computation of
geodesic distances. This is an active field of research in Com-
puter Graphics where the problem is addressed for triangulated
meshes using variants of the fast marching method [17].
Even though some exceptions exist [22], these approaches
are mainly limited to 3D surfaces and they cannot be directly
applied to the configuration spaces arising in path planning. In
Robotics, a recent method addresses the problem of optimal
path planning on manifolds [10], but it requires an exhaustive
representation of the manifold using a dense set of samples,
which negatively effects the scalability of the method.

In globally parametrizable spaces, some approaches have
been proposed that are less affected by the curse of dimen-
sionality and that can deal with generic cost functions. On
the one hand, locally optimal paths can be obtained using
smoothing techniques [6, 26]. On the other hand, globally
optimal paths can be approximated combining the construction
of a RRT with stochastic optimization [12]. More recently,
different sampling-based path planners have been introduced
that asymptotically converge to the globally optimal path.
The seminal work proposed the RRT* algorithm that achieves
optimality with a moderate computational cost [14]. Latter
on, many variants have been presented to speed up the
convergence to the optimal path [1, 2, 15, 20].



Algorithm 1: RRT* asymptotically-optimal path planner

RRT*(COST,xs,xg)

input : A cost function for paths, COST, and a pair of samples
to connect, xs and xg .

output: A minimum-cost path connecting the two samples.

T ← {(∅,xs)}1
C(xs)← 02
for i← 1 to N do3

xr ← SAMPLECONF4
xc ← NEARESTNODE(T ,xr)5
xn ← STEER(xc,xr)6
if xn 6= ∅ then7

γ ← γRRT∗(log(|T |)/|T |)1/k8
X ← NEAR(T ,xn, γ)9
xm ← xc10
cm ← C(xc) + COST(PATH(xc,xn))11
for x ∈ X do12

c← C(x) + COST(PATH(x,xn))13
if c < cm then14

cm ← c15
xm ← x16

T ← T ∪ {(xm,xn)}17
C(xn)← cm18
for x ∈ X do19

c← C(xn) + COST(PATH(xn,x))20
if c < C(x) then21

C(x)← c22
PARENT(T ,x)← xn23

RETURN(PATHINTREE(T ,xg))24

The purpose of this paper is to extend the sampling-based
asymptotically-optimal path planners to the case of implicitly-
defined configuration spaces. Section II describes the main
challenges of adapting RRT* to path planning on manifolds.
Those challenges are addressed in Section III using higher
dimensional continuation tools [9]. This leads to the definition
of the AtlasRRT* algorithm that is described and analyzed in
Section IV and that can approximate optimal paths as shown in
Fig. 1-right. Section V experimentally evaluates this algorithm
and, finally, Section VI summarizes the contributions of this
paper and suggests points that deserve further attention.

II. CHALLENGES OF ASYMPTOTICALLY-OPTIMAL
PATH PLANNING ON MANIFOLDS

Algorithm 1 gives the pseudo-code of the RRT* path plan-
ner [13, 14]. This algorithm takes as input a cost function and
a pair of configurations xs,xg ∈ Rk and attempts to connect
them with a minimum-cost, collision-free path in N iterations.
The algorithm initializes a tree, T (Line 1) and extends it by
adding nodes towards points selected at random (Line 4). Each
node x has an associated value C(x) estimating the cost of
the best path from xs to x, at a given iteration. New nodes are
connected to the tree, minimizing this cost (Lines 10 to 18) and
they are used to rewire the tree, eventually reducing the cost
for neighboring nodes (Lines 19 to 23). The algorithm is fairly
general and it can optimize paths using any cost function that

is non-negative, additive, and somehow bounded by the path
length. To devise a version of the RRT* planner for manifolds,
the basic functions of RRT* (SAMPLECONF, NEARESTNODE,
NEAR, STEER, and PATH) must be generalized.

First, SAMPLECONF (Line 4) generates a sequence of
random samples in the configuration space. The distribution
of the samples should be uniform since this property is
assumed when fixing γRRT∗, a parameter of the algorithm
that determines the span of the connections at each iteration.
The asymptotic optimality of the algorithm basically depends
on the value of this parameter. The generation of uniformly
distributed samples in an Euclidean space is straightforward,
but this is not the case when the configuration space is an
implicit manifold since a global parametrization of this space
is generally not available.

The NEARESTNODE function (Line 5) identifies the node
in T closer to xr. This should be done using the intrinsic
metric of the configuration space. In a parametrizable space
this metric is simple, but on a manifold, it corresponds to
the more complex geodesic distance. The implementation of
an efficient nearest-neighbor procedure for implicitly-defined
manifolds is difficult and it has been only addressed recently
in an approximated way [5]. A usual solution, that will be
adopted in this paper, is to resort to the ambient space nearest-
neighbor as an approximation of the manifold one, despite this
may sometimes lead to inadequate tree extensions.

A related problem appears in function NEAR (Line 9) that
identifies the set of nodes in T whose distance to xn is less
than γ. In this case, however, the NEAR function based on the
ambient space metric returns a conservative set of neighbors.
Then, each one of them can be checked for connection to xn

along geodesic curves to discard nodes that are actually too
far away. This solution, though, relies on the ability to find
geodesic paths between arbitrary points on the manifold.

Function STEER (Line 6) generates a new node moving on
a collision-free path from xc towards xr. If the motion of the
robot is subject to differential constraints, xr cannot be exactly
reached and xn is generated with the control inputs that better
approximate xr [15]. Without differential constraints, that is
the case addressed in this paper, STEER follows the shortest
path from xc to xr. In parametrizable spaces, this shortest path
corresponds to the straight line between those points. When
operating on a manifold, though, a procedure to approach xr

from xc along a geodesic path is necessary.
Finally, function PATH (Lines 11, 13 and 20) should identify

the lowest-cost path between nearby configurations. However,
the determination of the lowest-cost path between apparently
near configurations can be arbitrarily difficult, specially when
operating on manifolds. Thus, at this local path planning step,
the RRT* algorithm considers the shortest path between the
two configurations to connect. Since the cost is bounded by the
scaled path length, any optimal path can be piecewise linearly
approximated with a bounded error, that in the limit vanishes.
In parametrizable spaces, the shortest path corresponds to the
straight line but, on manifolds, this naturally translates to a
geodesic path, which is more difficult to determine.
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Fig. 2. Left A generic approximation of the exponential map is obtained
by orthogonally projecting on F a point xi

j on the tangent space at xi.
Right When a new chart is defined at xj , the applicability areas of the two
charts, Ai and Aj , are coordinated to avoid overlaps.

III. EXPLOITING THE LOCAL PARAMETRIZATION OF
MANIFOLDS

As seen before, the main challenges to develop a version
of RRT* on manifolds are the need to uniformly sample on
the manifold and the necessity to connect configurations along
geodesic curves. Both problems would be trivially solved if a
global isometric parametrization of the manifold was avail-
able, but these parametrizations do not exist even for simple
manifolds such as a sphere in 3D. However, from Differential
Geometry, it is well known that a manifold can be described
by a collection of local parametrizations called charts, which
can be coordinated within an atlas [25]. Higher-dimensional
continuation techniques provide principled numerical tools to
compute the atlas of an implicitly defined manifold starting
from a given point [9]. In this paper, we rely on such tools to
define an asymptotically-optimal path planner on manifolds.

A. Local Parametrization of a Manifold

Let us consider a n-dimensional joint ambient space and a
k-dimensional configuration space, F , implicitly defined by a
set of constraints

F(x) = 0,

with F : Rn → Rn−k, n > k > 0 and where we assume
that the configuration space is a smooth manifold everywhere,
without considering the presence of singularities.

A chart, Ci, locally parametrizes the k-dimensional manifold
around a given point, xi, with a bijective map, xj = ψi(u

i
j),

between parameters ui
j in Rk and n-dimensional points xj

on the manifold, with ψi(0) = xi. The map from the
parameter space to the manifold is the exponential map and the
inverse is the logarithmic map. A generic approximation to the
exponential map valid for any manifold can be implemented
using Txi

F , the k-dimensional space tangent at xi (see Fig. 2-
left). An orthonormal basis for this tangent space is given by
the m× k matrix, Φi, satisfying[

J(xi)
Φ>i

]
Φi =

[
0
I

]
,

with J(xi) the Jacobian of F evaluated at xi, and I, the
identity matrix. Using this basis, the mapping ψi is computed

by first computing the mapping φi from parameters in the
tangent space to coordinates in the joint ambient space,

xi
j = φi(u

i
j) = xi + Φi ui

j , (1)

and then, orthogonally projecting this point on the manifold
to obtain xj . This projection can be computed by solving{

F(xj) = 0,
Φ>i (xj − xi

j) = 0,

using a Newton procedure [27].
The logarithmic mapping, ψ−1i , can be approximated as the

projection of a point on the tangent subspace

ui
j = ψ−1i (xj) = Φ>i (xj − xi).

B. Defining a RRT on a Manifold

Using the exponential and logarithmic maps, a full atlas of
the manifold can be defined [9]. Thus, in principle, one could
use such a full atlas to determine an optimal path between any
two given configurations using a fast marching like algorithm.
However, the construction of a full atlas is computationally
demanding, specially in high dimensions. Therefore, we depart
from our previous work [11], where the atlas construction is
intertwined with the definition of a RRT.

In this approach, the RRT is initiated on a manifold by
sampling on Txs

F and projecting on the manifold when
necessary using the exponential map. Formally, if xc is a point
on F already included in the RRT (initially xs) and uc are
the parameters of this point in chart Cc, then a new vector or
parameters un is generated with a small displacement from uc

towards ur, a random vector of parameters on Cc. Then, the
next point to add to the RRT is obtained as xn = ψc(un).
However, the area of the manifold properly parametrized by
a given chart is limited. As the norm of un increases, the
distance to the manifold and the curvature typically increase
too, and the Newton process implementing ψc could even
diverge. Thus, a new chart is added to the atlas whenever
there is a large error with respect to the manifold, i.e., when

‖φc(un)− xn‖ > ε, (2)

or when the curvature of the manifold with respect to Cc is
large, i.e., when

‖uc − un‖
‖xc − xn‖

< cos(α), (3)

for user-defined parameters ε and α. Finally, a new chart is
also added when the tree expands too far away from the chart
center, i.e., when

‖un‖ > R, (4)

for a given R. This maximum span for a chart helps to obtain
a regular covering of the manifold.

The area of the manifold parametrized by a new chart
overlaps with those for charts already in the atlas. To reduce
the overlaps, the area of applicability Ai of a given chart Ci
is bounded by a set of lineal inequalities, as illustrated in
Fig. 2-right. These inequalities are defined in the tangent



space associated with each chart and points not fulfilling them
correspond to points on the manifold that are parametrized by
a neighboring chart. The set of inequalities bounding Ai is
initially empty and enlarged as new charts are created around
chart Ci. If a new chart Cj is created on a point xj then

2 u>ui
j ≤ ‖ui

j‖2 ,
is added to the set of inequalities bounding Ai, with
ui
j = ψ−1i (xj). This inequality bisects the vector ui

j , keeping
the half-space including the origin. When a chart Ci is fully
surrounded by other charts, Ai becomes a convex polytope.

C. Defining a RRT* on a Manifold

The local parametrization provided by the charts can be
exploited to address the issues raised in Section II. First, the
parametrization allows obtaining a close to uniform distribu-
tion of samples in the part of the manifold covered by the
charts at a given moment. To this end, we select a chart at
random, we sample a vector of parameters u, rejecting the
samples that are not in the corresponding applicability area.
In this way, the probability of generating a valid sample in
a given chart is proportional to the size of its applicability
area. Therefore, the distribution of samples will be uniform in
the union of the applicability areas for all charts. Moreover,
using Eq. (3), we have that for any two points xi and xj

parametrized by ui and uj in the same chart

‖xi − xj‖ ≤ sec(α) ‖ui − uj‖. (5)

Thus, there is a bounded distortion between points in the
tangent space and the associated points on the manifold.
Therefore, the volume of the patch of the manifold covered
by a given chart is a scaled factor of the volume of the
corresponding applicability area. With this, when sampling on
the atlas, the critical value for γRRT∗ (Theorem 38 in [13]) is

γRRT∗ >

[
2

(
1 +

1

k

)
µ(Afree)

ζk
sec(α)

]1/k
, (6)

where k is the dimension of the manifold, µ(Afree) is the
Lebesgue measure of the applicability areas of the charts
that correspond to collision free configurations, and ζk is the
volume of the unitary k-dimensional ball.

The local parametrization provided by the charts can also
be exploited to approximate geodesic paths. In particular,
consider a linear interpolation, (u1,u2, . . . ,um), between two
points, u1 and um, in the tangent space of a given chart Cc
and the corresponding path on the manifold (x1,x2, . . . ,xm)
with xi = ψc(ui), i ∈ {1, . . . ,m}. Then, the length of the
path can be approximated by

p =

n∑
i=2

‖xi−1 − xi‖,

and its length in parameter space is

l =

n∑
i=2

‖ui−1 − ui‖ = ‖un − u1‖.

Algorithm 2: Sampling on an atlas.

SampleConf (A)
input : An atlas, A.
output: A random point.

repeat1
r ← RANDOMCHARTINDEX(A)2
ur ← RANDOMINBALL(Rs)3

until ur ∈ Ar4

RETURN(φr(ur))5

Note that l ≤ p and that, using Eq. (5), p ≤ sec(α) l.
Moreover, assume that p∗ is the length of the geodesic path
connecting the two points and l∗ is its length in parameter
space. Since paths are defined as straight lines in parameter
space we have that l < l∗ and, thus

l ≤ l∗ ≤ p∗ ≤ p ≤ sec(α) l ≤ sec(α) l∗.

With this, the relative error of a path generated from a straight
line in parameter space with respect to the geodesic path is

p− p∗
p∗

≤ sec(α) l − l
p∗

≤ sec(α)− 1.

In practice, this upper bound is overly confident since as
samples get denser the relative error tends to vanish. In any
case, α should be always below ±π/2 to get a bounded
error. Geodesic paths can be approximated in large areas by
generating new charts as the curvature grows.

As in the Euclidean case [13], the asymptotic optimality
of RRT* on manifolds is given by the ability to generate
samples close to the optimal path and to connect to other
samples also close to this path, at a given sample density.
The first property is guaranteed by the atlas-based sampling
and the second is given by the bound for γRRT∗ in Eq. (6).
Note that the optimality is achieved irrespectively of whether
some connections between samples fail or are too long at the
beginning of the process, or if in some areas the density of
samples is higher than the average (e.g., in the overlap between
charts). These aspects only have influence on the convergence
rate of the approach, but not on its long term optimality.

IV. ATLASRRT* ALGORITHM

Using the tools described above, we define the AtlasRRT*
algorithm, an adaptation of Algorithm 1 to operate on man-
ifolds. AtlasRRT* has the same structure as RRT*, but it
additionally maintains an atlas. The atlas is initialized with
one chart at xs and new charts are added taking into account
Eqs. (2) to (4). Moreover, AtlasRRT* keeps track of the chart
parametrizing each node of the tree. Besides this, the only dif-
ference between AtlasRRT* and RRT* is the implementation
of functions SAMPLECONF, STEER, and PATH.

Using the atlas, SAMPLECONF is implemented as described
in Algorithm 2. A chart is selected at random with uniform
distribution and then, a point, ur is sampled within a ball of
radius Rs > R. The process is repeated until ur is inside



Algorithm 3: The STEER/PATH functions.

Steer/Path(A,xn,xr)

input : The atlas A and two points, xn and xr .
output: In the case of PATH, a collision-free path connecting

the two samples, if it exists. In the case of STEER, a
point on the manifold as close as possible to xr .

c← CHARTINDEX(xn)1
un ← ψ−1

c (xn)2
ur ← ψ−1

c (xr)3
d← ‖xn − xr‖4
if STEER then5

ur ← un + (ur − un)(d/‖ur − un‖)6
xr ← φc(ur)7

BLOCKED ← FALSE8
P ← ∅9
while not BLOCKED and ‖un − ur‖ > δ and d > 0 do10

uj ← (ur − un) δ/‖ur − un‖11
xj ← ψc(uj)12
if COLLISION(xj) then13

BLOCKED ← TRUE14

else15
NEW ← FALSE16
if ‖φc(uj)− xj‖ > ε or17
‖un − uj‖/‖xn − xj‖ < cos(α) or ‖uj‖ > R then

c← NEWCHART(A,xn)18
NEW ← TRUE19

else20
if uj /∈ Ac then21

c← NEIGHBORCHART(c,uj)22
NEW ← TRUE23

if NEW then24
uj ← ψ−1

c (xj)25
ur ← ψ−1

c (xr)26
if STEER then27

ur ← uj + (ur − uj)(d/‖ur − uj‖)28
xr ← φc(ur)29

P ← P ∪ {xj}30
if STEER then31

d← d− ‖xn − xj‖32

xn ← xj33
un ← uj34

if PATH then35
if ‖un − ur‖ > δ then36

RETURN(∅)37

else38
RETURN(P)39

else40
RETURN(LAST(P))41

the applicability area Ar, i.e., until it fulfills the inequalities
created by neighboring charts, if any. Finally, the process re-
turns the ambient space coordinates for ur computed using φr
defined in Eq. (1). To accelerate the convergence to a solution,
a bias towards xg is typically used. In our implementation, xg

has a 1% chance of being selected as random sample, as long
as a path to the goal has not been found.

The main difference between the STEER and PATH functions
is that STEER aims towards a point that is not on the manifold,
but on the tangent space of a chart, giving a direction to
expand the tree instead of a particular point to reach. Thus,
Algorithm 3 presents the two functions in a compact way.
Both functions get as input the atlas maintained by AtlasRRT*
and two points, xn and xr. First, they determine the chart
parametrizing xn (Line 1) and compute the parameters of xn

and xr in this chart (Lines 2 and 3). In the case of STEER, we
ensure that ur is at least at distance d from un (Lines 6 and 7),
with d the original distance between xn and xr (Line 4). Then,
the functions proceed to move from un towards ur in small
steps of size δ (Lines 11 and 12). If the new configuration, xj ,
is in collision, the expansion is stopped (Line 14). Otherwise,
the algorithm checks if the new point triggers the creation of
a new chart (Line 17) or if it is in the applicability area of a
neighboring chart (Line 21). In any of these cases, uj and ur

are recomputed projecting xj and xr (Lines 25 and 26) on
the new or neighbor chart determined at Lines 18 and 22,
respectively. In the case of STEER, the random sample is also
projected on the new chart, checking again that it is far enough
from the previous point (Lines 28 and 29). Finally, the new
configuration is added to the computed path, P (Line 30)
and it is set as the point from where to continue the path
(Lines 33 and 34). In the case of the STEER function, the
distance already travelled is discounted (Line 32) to avoid
growing an infinite branch. At the end of the PATH procedure,
the computed path is returned, unless the goal configuration is
not actually reached. The STEER function always returns the
last element included in the path, if any.

The additional computational complexity of AtlasRRT*
with respect to RRT* concentrates in the computation of the
mapping ψc (Line 12) and in the addition of new charts to the
atlas (Line 18). The first operation scales with O(n3) since it is
implemented as a Newton process with a bounded number of
iterations, where at each iteration a QR decomposition is used.
The second operation, which is executed less often, requires
to generate the new chart, that is O(n3), and to identify the
neighboring charts in the atlas to avoid the overlaps. This last
operation can be implemented using hierarchical structures
reducing their cost to logarithmic in the number of charts in
the atlas.

V. EXPERIMENTS AND RESULTS

Figure 3 shows the four benchmarks used to evaluate the
AtlasRRT* algorithm. The first one is a small ball (shown in
red) moving on a implicitly-defined torus with two obstacles
forming a narrow corridor. This example is used since, due to
its simplicity, the results are easy to visualize. The second test
case is the cyclooctane, a molecule that can be modelled with
eight revolute joints forming a kinematic loop. In this problem,
there is a collision whenever two hydrogen atoms (shown in
white in the figure) are closer than the sum of their Van der
Waals radii. This example is used to illustrate the ability of
AtlasRRT* to determine the optimal path among many feasible
ones. The third example is the Barret arm solving a simple
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Fig. 3. The four benchmarks used in this paper. (a) A ball moving on a torus. (b) The cyclooctane molecule. (c) The Barret arm and hand solving a maze.
(d) The PR2 service robot moving a box with the two arms.

TABLE I
DIMENSION OF THE CONFIGURATION AND AMBIENT SPACES, AND

RELATIVE ERRORS RESPECT TO THE OPTIMAL PATH OBTAINED WITH
ATLASRRT∗

0 AND WITH ATLASRRT* USING THE γRRT∗ VALUES GIVEN
IN PARENTHESIS. IN BOTH CASES, COLLISIONS ARE NOT ACTIVE.

Benchmark k n AtlasRRT∗
0 AtlasRRT*

Torus 2 3 82.54 % 0.25 % (10)
Cyclooctane 2 8 40.32 % 8.75 % (12)
Barret 3 9 98.23 % 0 % (2.5)
PR2 4 16 127.08 % 0 % (4)

maze. The figure shows the initial configuration and the goal
is marked with a red circle. The task is constrained because
the peg must remain in contact with and orthogonal to the
maze plane without rotating about its axis. Finally, the last test
case is the PR2 robot executing a coordinated manipulation
task consisting in placing a box on a table moving it from
underneath the table. The two last problems are used to test
the scalability of the method. In all cases, the cost to optimize
is the path length and the experiments are carried out with
δ = 0.05, ε = 0.1, R = 0.4, Rs = 2, and α =0.45 rad. With
such parameters, the error factor with respect to geodesic is
below sec(α) = 1.1, which is reasonably small. The value of
γRRT∗ depends on the volume of the free space that is different
for each problem. In a simple problem such as the torus, it can
determined by building the full atlas and evaluating Eq. (6).
In the rest of the problems the value for this parameter was
determined experimentally. All the experiments were executed
on an Intel Core i7 at 2.93 Ghz running Mac OS X and
averaged over 25 repetitions. The source code together with
the described benchmarks can be downloaded from [18].

To the best of our knowledge, there are no other sampling-
based asymptotically-optimal path planners for manifolds.
Thus, for the purpose of comparison, we implemented what we
will call C-RRT*, an alternative version of RRT* for manifolds
that samples in the ambient space and uses a Jacobian pseudo-
inverse strategy to connect different samples [3]. In this
algorithm, the sampling is not uniform in the configuration
space and the connection between samples is not guaranteed
to be close to the geodesic path. Comparison are also done
with respect to AtlasRRT∗0, i.e. AtlasRRT* with γRRT∗ = 0.

Table I shows the dimension of the configuration space, k,
the dimension of the ambient space, n, and the average
relative error of the path obtained with AtlasRRT∗0 and
AtlasRRT* after 1000 iterations with respect to the opti-
mum. For AtlasRRT*, the values of γRRT∗ are indicated
in parenthesis. The optimal path is obtained by smoothing
the best trajectory returned by AtlasRRT*. Exceptionally, in
these experiments collisions are not considered and, thus,
the only constraint arises from the manifold structure of
the configuration spaces. The results show that the proposed
algorithm reasonably converges to the optimal path in all cases,
while AtlasRRT∗0 generates paths that have significantly higher
cost.

Figure 4 compares the cost of the paths obtained with
AtlasRRT*, C-RRT*, and AtlasRRT∗0 for the four benchmarks
used in Fig. 3, considering collisions. In all cases, the path
obtained with AtlasRRT∗0 has a high cost and it is not improved
once discovered. The path obtained with C-RRT* progres-
sively improves, but slowly due to the non-uniform sampling,
even in simple problems like the torus one. In the cyclooctane
problem the path obtained by C-RRT* is sometimes worse
than the one obtained with AtlasRRT∗0. The reason is that the
optimal path goes by an inner part of the manifold where
C-RRT* has difficulties sampling [3]. Whereas AtlasRRT*
converges to the optimal path in all cases, C-RRT* does not
find a solution in all of the repetitions in the Barret and
the PR2 problems. Note that in the figure, costs are plotted
when at least half of the repetitions are successful and the
eventual increments in the curves are caused by the different
data averaged at each iteration. In the PR2 experiment, though,
the original AtlasRRT* is too slow and we enhance it with
two heuristics proposed in [24] and [1, 15]. The first one sets
γRRT∗ = 0 until a first path to the goal is found. The second
heuristic prevents expanding nodes that cannot be part of the
optimal path, i.e., if the cost of the path to that node plus
a conservative estimate of the cost to the goal is larger than
the cost of the best path to the goal found so far. The same
heuristics are used for C-RRT* in this benchmark.

Figure 5 shows the trees generated in a typical run of
AtlasRRT* on the torus at two different stages. While in the
left tree the narrow corridor is not yet discovered and, thus,
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Fig. 5. Two stages of the AtlasRRT* tree construction for the torus example.
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Fig. 6. Path cost versus number of iterations for AtlasRRT* on the torus
and for different values of γRRT∗.

the path is sub-optimal, in the right tree the optimal path is
finally found. This latter tree actually provides optimal paths
to all regions of the configuration space.

The selection of the right value for γRRT∗ is critical for
the performance of the algorithm. For the case of the torus,
the value for γRRT∗ given by Eq. (6) can be numerically
computed and is about 8.1. Figure 6 shows the performance
of AtlasRRT* with different values for γRRT∗. Clearly, the
larger the value, the lower the cost of the final path after 10000
iterations. However, with γRRT∗ below 8.1, the convergence
seems stalled before reaching the optimum.

From the previous plot, one could think that using a
large value for γRRT∗ is a good strategy since in this way
AtlasRRT* would always converge to the optimal path. How-
ever, Fig. 7 shows that the larger γRRT∗, the more it takes to
complete the 10000 iterations due to the increment of nearby
samples checked for connection. Thus, with a limited time,
it is advantageous to use a value of γRRT∗ just above the
threshold that guarantees convergence to the optimum.
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Fig. 7. Path cost versus execution time for AtlasRRT* on the torus for 10000
iterations and for different values of γRRT∗.

VI. CONCLUSIONS

In this paper we have demonstrated the feasibility of gener-
alizing asymptotically-optimal sampling-based path planners
to operate on implicitly-defined configuration spaces. This
is achieved by resorting to higher dimensional continuation
tools. Thanks to these tools, the manifold can be properly
sampled and we can determine close-to-geodesic paths for
generic manifolds. Both properties are fundamental to obtain
an efficient, asymptotically-optimal planner.

The introduced path planner can find optimal paths in
configuration spaces with moderate dimension embedded in
high dimensional ambient spaces. However, as the dimension
of the configuration space increases, so does the computational
complexity and we have to resort to heuristics to speed up
the convergence. In the future, we would like to explore new
heuristic strategies exploiting the atlas structure to improve the
performance of the algorithm, possibly accepting sub-optimal
solutions. The atlas structure could also be used to estimate the
local density of samples. This might be used to automatically
adjust γRRT∗ in order to obtain a good trade off between
efficiency and optimality. Finally, the use of a bi-directional
RRT instead of a one-directional tree could also result in a
significant performance improvement.
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Path Planning on Configuration-Space Costmaps. IEEE
Transactions on Robotics, 26(4):635–646, 2010.

[13] S. Karaman and E. Frazzoli. Sampling-based Algorithms
for Optimal Motion Planning. International Journal of
Robotics Research, 30(7):846–894, 2011.

[14] S. Karaman and E. Frazzoli. Incremental Sampling-based
Algorithms for Optimal Motion Planning. In Robotics:
Science and Systems, pages 267–274, 2011.

[15] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and

S. Teller. Anytime Motion Planning using the RRT*. In
IEEE International Conference on Robotics and Automa-
tion, pages 1478 –1483, 2011.

[16] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.
Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transac-
tions on Robotics and Automation, 12(4):566–580, 1996.

[17] R. Kimmel and J. A. Sethian. Computing geodesic paths
on manifolds. Proceedings of the National Academy of
Sciences, 95(15):8431–8435, 1998.

[18] KRD Group. The CuikSuite software. http://www.iri.
upc.edu/people/porta/Soft/CuikSuite2-Doc/html, 2012.

[19] S. M. LaValle and J. J. Kuffner. Rapidly-exploring
random trees: Progress and prospects. In Algorithmic and
Computational Robotics - New Directions, pages 293–
308, 2000.

[20] J. D. Marble and K. E. Bekris. Asymptotically Near-
Optimal is Good Enough for Motion Planning. In
International Symposium on Robotics Research, 2011.

[21] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and
K. Konolige. The Office Marathon: Robust Navigation
in an Indoor Office Environment. In IEEE International
Conference on Robotics and Automation, 2010.

[22] F. Mémoli and G. Sapiro. Fast computation of weighted
distance functions and geodesics on implicit hyper-
surfaces. Journal of Computational Physics, 173:730–
764, 2001.

[23] C. Ott, O. Eiberger, W. Friedl, B. Bauml, U. Hillenbrand,
C. Borst, A. Albu-Schafer, B. Brunner, H. Hirschmuller,
and G. Hirzinger. A Humanoid two-arm System for
Dexterous Manipulation. In IEEE-RAS International
Conference on Humanoid Robots, pages 276–283, 2006.

[24] A. Perez, S. Karaman, A. Shkolnik, E. Frazzoli, S. Teller,
and M. R. Walter. Asymptotically-optimal path plan-
ning for manipulation using incremental sampling-based
algorithms. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4307–4313, 2011.

[25] A. Pressley. Elementary Differential Geometry. Springer
Verlag, 2001.

[26] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa.
CHOMP: Gradient optimization techniques for efficient
motion planning. In IEEE International Conference on
Robotics and Automation, pages 489–494, 2009.

[27] W. C. Rheinboldt. MANPACK: A Set of Algorithms
of Computations on Implicitly Defined Manifolds. Com-
puters and Mathematics with Applications, 32(12):15–28,
1996.

[28] Schunk GmbH & Co. KG. Schunk Anthropomorphic
Hand. http://www.schunk.com, 2006.

[29] M. Stilman. Global Manipulation Planning in Robot
Joint Space With Task Constraints. IEEE Transactions
on Robotics, 26(3):576–584, 2010.

[30] W. J. Wedemeyer and H. Scheraga. Exact Analytical
Loop Closure in Proteins Using Polynomial Equations.
Journal of Computational Chemistry, 20(8):819–844,
1999.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6095077&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6095077&tag=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5980286
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5980286
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5980286
http://ijr.sagepub.com/content/30/12/1435
http://ijr.sagepub.com/content/30/12/1435
http://ijr.sagepub.com/content/30/12/1435
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=4749
http://www.cis.jhu.edu/~rizwanch/papers/ChaudhryECCV10.pdf
http://www.cis.jhu.edu/~rizwanch/papers/ChaudhryECCV10.pdf
http://www.cis.jhu.edu/~rizwanch/papers/ChaudhryECCV10.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=678449
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=678449
http://www.cs.cmu.edu/~lihan/Research/Papers/wafr00.pdf
http://www.cs.cmu.edu/~lihan/Research/Papers/wafr00.pdf
http://ijr.sagepub.com/content/27/11-12/1189.abstract
http://ijr.sagepub.com/content/27/11-12/1189.abstract
http://ijr.sagepub.com/content/27/11-12/1189.abstract
http://www.worldscinet.com/ijbc/12/1203/S0218127402004498.html
http://www.worldscinet.com/ijbc/12/1203/S0218127402004498.html
http://www.springer.com/engineering/robotics/book/978-3-642-17451-3
http://www.springer.com/engineering/robotics/book/978-3-642-17451-3
http://www.isrr-2011.org/ISRR-2011//Program_files/Papers/Jaillet-ISRR-2011.pdf
http://www.isrr-2011.org/ISRR-2011//Program_files/Papers/Jaillet-ISRR-2011.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5477164
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5477164
http://ijr.sagepub.com/content/30/7/846.abstract
http://ijr.sagepub.com/content/30/7/846.abstract
http://www.roboticsproceedings.org/rss06/p34.pdf
http://www.roboticsproceedings.org/rss06/p34.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5980479
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=508439
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=508439
http://www.pnas.org/content/95/15/8431.full.pdf
http://www.pnas.org/content/95/15/8431.full.pdf
http://www.iri.upc.edu/people/porta/Soft/CuikSuite2-Doc/html
http://www.iri.upc.edu/people/porta/Soft/CuikSuite2-Doc/html
http://www.iri.upc.edu/people/porta/Soft/CuikSuite2-Doc/html
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01.pdf
http://www.isrr-2011.org/ISRR-2011/Program_files/Papers/Marble-ISRR-2011.pdf
http://www.isrr-2011.org/ISRR-2011/Program_files/Papers/Marble-ISRR-2011.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5509725
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5509725
http://www.sciencedirect.com/science/article/pii/S0021999101969104
http://www.sciencedirect.com/science/article/pii/S0021999101969104
http://www.sciencedirect.com/science/article/pii/S0021999101969104
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4115614
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4115614
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6094994
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6094994
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6094994
http://www.springer.com/mathematics/geometry/book/978-1-84882-890-2
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5152817
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5152817
http://www.sciencedirect.com/science/article/pii/S0898122196002040
http://www.sciencedirect.com/science/article/pii/S0898122196002040
http://www.schunk.com
http://www.schunk.com
http://www.schunk.com
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5467152
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5467152
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1096-987X(199906)20:8%3C819::AID-JCC8%3E3.0.CO;2-Y/abstract
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1096-987X(199906)20:8%3C819::AID-JCC8%3E3.0.CO;2-Y/abstract

	Introduction
	Challenges of Asymptotically-optimal  Path Planning on Manifolds
	Exploiting the Local Parametrization of Manifolds
	Local Parametrization of a Manifold
	Defining a RRT on a Manifold
	Defining a RRT* on a Manifold

	AtlasRRT* Algorithm
	Experiments and Results
	Conclusions

