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Abstract Motion paths of cable-driven hexapods must carefully be planned to en-

sure that the lengths and tensions of all cables remain within acceptable limits, for

a given wrench applied to the platform. The cables cannot go slack –to keep the

control of the platform– nor excessively tight –to prevent cable breakage– even in

the presence of bounded perturbations of the wrench. This paper proposes a path

planning method that accommodates such constraints simultaneously. Given two

configurations of the platform, the method attempts to connect them through a path

that, at any point, allows the cables to counteract any wrench lying inside a prede-

fined uncertainty region. The resulting C-space is placed in correspondence with a

smooth manifold, which allows defining a continuation strategy to search this space

systematically from one configuration, until the second configuration is found, or

path non-existence is proved by exhaustion of the search. The approach is illustrated

on the NIST Robocrane hexapod, but it remains applicable to general cable-driven

hexapods, either to navigate their full six-dimensional C-space, or any of its slices.

Key words: Cable-driven hexapod, tendon, wire, higher-dimensional continuation,

wrench-feasible C-space, Robocrane.

1 Introduction

In recent years, cable-driven parallel mechanisms have been increasingly studied

and applied to more and more relevant tasks, such as manipulation of heavy loads [7,

20], high-precision positioning [18], monitoring of aquatic environments [4, 13],

automated construction of civil structures [5], rescue systems [19], or motion sim-

ulators [27], among others. Their generally simple design, consisting of a moving

platform connected to a fixed base by means of cables that wind up on winches, re-
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sults in manipulators with low weight but high load capacity. These advantages, to-

gether with the fact that they can usually achieve larger workspaces than their coun-

terparts with rigid-limb legs, make cable-driven manipulators very energy-efficient

and appropriate to maneuver heavy loads. However, additional constraints apply:

their cables can pull but are unable to push the platform, which obliges to keep the

tensions in all cables positive during normal operation.

The workspace of a cable-driven manipulator is limited by a number of hyper-

surfaces where the control of the manipulator is compromised [28], corresponding

to configurations where the tension of some cable is either zero, for which the ca-

ble goes slack and control of one degree of freedom is lost, or goes to infinity,

which indicates that the mechanism is on a singular configuration and the cable

can brake. In practice, it is important to prevent both extreme situations, and ensure

that the cables work within a predefined range of admissible tensions for a given

wrench applied on the platform, subject to bounded perturbations in all directions.

Several authors have proposed strategies for the determination of wrench-feasible

workspaces [6, 12, 23, 26, 29, 28], but the problem of planning paths between two

configurations in such spaces has not been intensively studied. Some algorithms ex-

ist that try to avoid the singular configurations where forces tend to infinity, but they

are mainly tailored to classical Stewart platforms with UPS legs [2, 9, 25, 10], and

their application to cable-driven manipulators is not straightforward because they

do not account for the positivity constraint on the leg tensions. Moreover, these al-

gorithms measure the clearance of the path relative to the singularity locus using

the determinant or the condition number of the Jacobian matrix, which, as noted

in [30], lack physical significance. While some approaches indeed exist for cable-

driven manipulators [11, 15, 17], the path they compute is evaluated for feasibility

at discrete points only, and the fulfillment of all constraints along the whole path is

not guaranteed.

This paper provides a method for planning paths on the wrench-feasible C-space

of cable-driven hexapods, also called tendon-based Stewart platforms. This C-space

is defined following the spirit of [6], as the one that results from only allow-

ing wrench-feasible configurations; i.e., those on which the cable tensions remain

within the allowed limits, for any platform wrench belonging to a prescribed six-

dimensional region (Section 2). The method relies on defining a system of equations

whose solution manifold corresponds to the wrench-feasible C-space of the hexa-

pod, so that maneuvering through such manifold guarantees singularity avoidance

at all times, while maintaining cable tensions and lengths within their allowable

bounds (Section 3). This manifold, as well as any of its slices obtained by fixing

some of the pose parameters, can be proved to be smooth everywhere, which allows

defining a systematic higher-dimension continuation strategy to explore the mani-

fold from a start configuration, until a path to a goal configuration is found, or path

non-existence is proved (Section 4). The approach has been implemented and vali-

dated on several experiments (Section 5), and points for future attention have been

identified (Section 6).
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2 Problem statement

A cable-driven hexapod consists of a moving platform suspended from a fixed base

by means of six cables, winding around independent winches (Fig. 1). When all

cables are in tension, which can be achieved by the action of gravity, their lengths

determine a locally unique pose for the platform, so that it is possible to control the

six degrees of freedom of the platform by actuating the winches.

Let OXY Z and PX ′Y ′Z′ be fixed and moving reference frames respectively at-

tached to the base and the platform (Fig. 1). Any configuration of the platform can

be uniquely represented by a pair qqq = (ppp,RRR) ∈ SE(3), where ppp = [x,y,z]T is the po-

sition vector of point P in the fixed frame, and RRR is a 3×3 rotation matrix providing

the orientation of PX ′Y ′Z′ relative to OXY Z. However, the entries of RRR are not inde-

pendent, since they must define an orthogonal matrix of positive determinant. Such

a constraint can be defined in a variety of ways, e.g. by establishing appropriate dot-

and cross-product equations on the columns of RRR, but more intuitive representations

of the orientation are obtained when three-parameter expressions for RRR are adopted.

Due to its attractive properties, we will use here the parameterization provided by

tilt-and-torsion angles [16], τττ = {φ ,θ ,σ}, for which

RRR = RRRz(φ)RRRy(θ)RRRz(σ −φ), (1)

but any other parameterization could be used if desired.

P

O
Ai

Bi

ρi

XY

Z

X ′
Y ′Z′

Fig. 1 A cable-driven hexapod. The platform is maintained under a stable position due to the

action of gravity.
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In practice, not all configurations can be reached, because the cable lengths ρi are

constrained to lie within the range (ρi,ρi) of allowable values, with ρi > 0. Thus,

if aaai and bbbi denote the position vectors of the anchor points Ai and Bi of the ith leg

(Fig. 1), expressed in OXY Z and PX ′Y ′Z′ respectively, and uuui is the vector Bi −Ai

expressed in OXY Z, the configuration will only be valid if it satisfies

ppp+RRRbbbi −uuui −aaai = 0, (2)

uuuTi uuui −ρ2
i = 0, (3)

with

ρi ∈ (ρi,ρi).

for i = 1, . . . ,6.

Additionally, any configuration must be wrench-feasible, in the sense that it must

allow the platform to equilibrate any external wrench ŵww acting on it, subject to lie

inside a prescribed six-dimensional region W ⊂R
6. The significance of W depends

on the particular context of application but, typically, W is determined by the grav-

itational wrench ŵww0 acting on the platform, and by bounds on the perturbations

introduced by inertia forces or external agents like the wind, for instance. Specifi-

cally, the wrench-feasibility requirement on a given qqq implies that for each wrench

ŵww ∈ W there must be a vector

fff = [ f1, . . . , f6]
T ∈ D = ( f1, f1)× . . .× ( f6, f6)

of cable tensions satisfying

JJJ(qqq) · fff = ŵww,

where JJJ(qqq) is the 6× 6 screw Jacobian of the manipulator at qqq, and ( fi, fi) is the

range of cable tensions that can be resisted by the ith cable, with fi > 0. Here, ŵww, ŵww0,

and JJJ(qqq) will be assumed to be given in a frame PXY Z centered in P and parallel

to OXY Z, although any other frame could be assumed if desired, and W will be a

six-dimensional ellipsoid defined as

(ŵww− ŵww0)
TEEE (ŵww− ŵww0)≤ 1,

where EEE is a constant 6×6 positive-definite symmetric matrix.

Now, let us define the wrench-feasible C-space of the manipulator, C , as the set

of qqq∈ SE(3) for which the platform is able to counteract all ŵww∈W with ρi ∈ (ρi,ρi)
and fff ∈ D . Given two configurations in C , qqq1 and qqq2, the goal of this paper is to

provide an algorithm for computing a path on C connecting them, if one exists, or

to determine path non-existence otherwise. To this end, we next define a system of

equations that are suitable to compute such path using a continuation approach.
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3 Equations of the wrench-feasible C-space

Let fff 0 be the vector of cable tensions corresponding to a given ŵww0 ∈ W , i.e.,

JJJ(qqq) · fff 0 = ŵww0. (4)

By noting that JJJ(qqq)( fff − fff 0) = ŵww− ŵww0, it is easy to see that, for a given qqq, the set

F (qqq) of cable tensions fff corresponding to all ŵww ∈ W is the ellipsoid given by

( fff − fff 0)
TBBB ( fff − fff 0)≤ 1,

where BBB = JJJ(qqq)TEEE JJJ(qqq). This ellipsoid will be bounded in all directions or un-

bounded in some, depending on whether det(JJJ(qqq)) 6= 0 or not. However, it is not

difficult to see that that JJJ(qqq) is non-singular for all qqq ∈ C (Appendix A), so that

F (qqq) will always be a bounded ellipsoid in our case.

Now, for qqq to be wrench-feasible, we must have F (qqq) ⊆ D , which can be

checked as follows. For each i = 1, . . . ,6 let vvvi ∈ R
6 be a vector satisfying

vvvTi BBB vvvi = 1

BBBivvvi = 000

}

, (5)

where BBBi stands for the matrix BBB with its ith row removed. Observe that if JJJ(qqq)
is non-singular, then BBB and BBBi are full row rank, and if the ith component of vvvi,

vi,i, is chosen non-negative, then there is exactly one vector vvvi satisfying Eq. (5).

Using Lagrange multipliers, it can be shown that, for the solutions vvvi of Eq. (5) with

vi,i ≥ 0, fff 0−vvvi and fff 0+vvvi are the vectors in F (qqq) attaining the smallest and largest

value along the ith coordinate. Hence, when det(JJJ(qqq)) 6= 0, F (qqq)⊆ D if, and only

if,

f0,i − vi,i > fi,

and

f0,i + vi,i < fi,

for i = 1, . . . ,6. These two conditions are equivalent to imposing

( f0,i − vi,i − fi) · si = 1, (6)

( fi − f0,i − vi,i) · ti = 1, (7)

together with the inequalities si ≥ 0, and ti ≥ 0, where si and ti are newly-defined

auxiliary variables. Looking at the first equation, for instance, it is clear that neither

f0,i−vi,i− fi nor si can be zero, so that for any si ≥ 0, it will always be f0,i−vi,i > fi

as desired. In a similar way, the cable-length constraints ρi ∈ (ρi,ρi) are equivalent

to imposing

(ρi −ρi) · (ρi −ρi) ·gi = 1, (8)

in conjuntion with the inequality constraint gi ≥ 0 acting on the new variable gi.
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At this point, let us consider the system formed by Eqs. (1)-(8), which we will

write compactly as

FFF(xxx) = 000, (9)

where xxx refers to an nx-vector encompassing all of its variables, and let us distin-

guish between the solution set of Eq. (9),

M = {xxx : FFF(xxx) = 000},

and the set

M
+ = {xxx ∈ M : vi,i ≥ 0, si ≥ 0, ti ≥ 0, gi ≥ 0, for i = 1, . . . ,6}.

Note that every configuration qqq ∈ C has a corresponding point xxx ∈ M+ and, con-

versely, each point in M+ projects down to one qqq ∈ C . Moreover, any continuous

path in C will also be represented by a continuous path in M+ and viceversa, so

that the original problem of computing a wrench-feasible path in C from qqq1 to qqq2

can be reduced to that of computing a path in M+ connecting points xxx1 and xxx2

corresponding to qqq1 to qqq2.

Two properties can be exploited regarding the structure of M and M+ (Ap-

pendix A), which allow to apply a continuation strategy to connect xxx1 and xxx2 using

Eq. (9). It is easy to see, first, that vi,i, si, ti, and gi never vanish on M , so that there

does not exist any path traversing from M+ to its complement M \M+. Thus, if

xxx1 and xxx2 are chosen with positive values for vi,i, si, ti, and gi, then any continuous

path on M connecting xxx1 and xxx2 will entirely lie on M+, and it will correspond to

a path on C therefore. In other words, when trying to connect xxx1 and xxx2 by continu-

ation on M , the positivity constraints on vi,i, si, ti, and gi will be implicitly fulfilled,

and they can be safely neglected. Second, it can be shown that M , and in particular

M+, is a six-dimensional smooth manifold everywhere, so that every point xxx has a

well-defined tangent space TxxxM , which facilitates the application of the following

continuation strategy to connect xxx1 and xxx2, because no bifurcations, sharpnesses, or

dimension changes will be found when traversing M .

4 Exploring M for a connecting path

To determine a path on M connecting two points xxx1 and xxx2 we can gradually con-

struct an atlas of M , i.e., a collection of charts where each chart Ci defines a local

map from a domain Pi ⊂ R
6 to an open set of M around a point xxxi ∈ M , initially

xxx1. The atlas will be computed using the higher-dimensional continuation approach

proposed in [14], which defines the local map for chart Ci using ΨΨΨ i, an orthonormal

basis of Txxxi
M . The map is defined by first selecting a vector uuui

j ∈R
6 of parameters

(Fig. 2, left), which is used to generate a point xxxi
j ∈ R

nx in the neighborhood of xxxi,

using xxxi
j = xxxi+ΨΨΨ i uuu

i
j. Then, a point xxx j ∈M corresponding to the projection of xxxi

j on
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xxxi

xxxi
j

uuui
j

xxx jM

Txxxi
M

xxxi

xxx jM

Txxxi
M

Fig. 2 The higher-dimensional continuation method applied to a 2-dimensional manifold in R
3.

r
uuui

j
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BiBi

Bi
j

Ci
j

sss

Fig. 3 The process of chart construction.

M is computed, by solving the system formed by FFF(xxx j) = 000 and ΨΨΨT

i (xxx j − xxxi
j) = 000

using a Newton method initialized at xxxi
j.

Each point xxx j is the potential center of a new chart (Fig. 2, right), and a method

due to Henderson can be used to decide where to place the chart centers so as to

ensure a good coverage of the manifold [14]. In his approach, the domain Pi of

chart Ci is initialized as a 6-dimensional hypercube enclosing a ball Bi of radius r,

both defined in Txxxi
M , as illustrated in Fig. 3, left. A vertex of Pi exterior to Bi,

with position vector sss, is used to generate a point xxxi
j, with uuui

j = α · sss/‖sss‖, where

α is initialized to r. If the projection of xxxi
j to M does not converge, or if the new

chart C j at xxx j is too far or too different from Ci, the new chart is discarded and a

new attempt of chart generation is performed with a smaller α , allowing to adapt

the size of the area covered by each chart to the local curvature of the manifold.

When C j is valid, it is used to crop Pi from the intersection between Bi and Ci
j,

the projection on Txxxi
M of the part of the manifold covered by C j. This projection is

approximated by a ball Bi
j of radius r in Txxxi

M , centered at the point given by uuui
j, as

shown in Fig. 3, right. The intersection of Bi and Bi
j defines a new face for Pi that

eliminates some of its vertices (in particular the one given by sss) and generates new

ones. Symmetrically, the polytope P j associated with C j is cropped using Ci. When
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Ci is surrounded by other charts, Pi becomes a convex polytope included in Bi, and

Ci is considered to be closed, meaning that no further expansion of the atlas needs

to be attempted from that chart. In practice, as M+ is unbounded in the directions

si, ti, and gi, we impose an upper bound on these variables in order to ensure the

termination of the atlas expansion. The charts generated outside these bounds are

also considered to be closed. When all charts are closed, the connected component

of M containing the initial point xxx1 gets fully covered. If a path exists from xxx1 to

xxx2, xxx2 must be included in one of the charts of the atlas and, thus, a solution path

can be determined by searching on the graph implicitly defined by the chart centers

and their neighborhood relations. In practice, however, the expansion of the charts

is performed according to an A* search strategy using an admissible heuristic [24],

so that the path is returned as soon as it is found without computing the whole atlas,

and it is guaranteed to be the shortest possible on M . If xxx2 is not included in any of

the charts in the end, path non-existence is established at the considered value for r.

A detailed analysis of the cost of the algorithm can be found in [21].

5 Experiments

The method has been implemented in C, and run on a MacBook Pro equipped with a

2.66 GHz Intel Core i7 processor. To verify its performance on a realistic situation,

the geometric parameters of the NIST Robocane manipulator have been used [1]

(Fig. 4). This manipulator follows an octahedral design where both the base and

the platform are equilateral triangles of sides 2b and 2a, respectively. The fixed

reference frame OXY Z is defined with the Z axis pointing downwards, and a mo-

bile reference frame PX ′Y ′Z′ is attached to the platform. The coordinates of the

vertex points of the base, expressed in OXY Z, are A1 = (−b,−b
√

3/3,0), A2 =
(b,−b

√
3/3,0), and A3 = (0,2b

√
3/3,0), and those of the platform, expressed in

PX ′Y ′Z′, are B1 = (0,−2a
√

3/3,0), B2 = (a,a
√

3/3,0), and B3 = (−a,a
√

3/3,0).
In all experiments, the platform is required to withstand a weight of m New-

tons applied at a point Pm = ( a
5
, a

5
,0) in PX ′Y ′Z′. Since the weight always points

downwards, this corresponds to a wrench ŵww0 = [0,0,m,0,0,0]T that is constant in a

reference frame parallel to OXY Z translating with Pm. For simplicity, the small vari-

ations that may be introduced by inertia forces or external agents are represented by

the ellipsoid W centered in www0 defined by EEE = 104 · III6, which is a six-dimensional

sphere of radius 10−2, and the forces and lengths for all cables are set to remain

positive but lower than fi = m N and ρi = 5a, respectively.

To illustrate the complexity of the path planning problem, Fig. 5 shows several

slices of the wrench-feasible C-space C of the manipulator, computed in Matlab

using discretization with a = 1, b = 2, and m = 1. The configurations that cannot be

reached due to either cable lengths or forces out of range are represented by the red

and blue areas, respectively, while those corresponding to C are indicated in green.

The figure also shows the singularity curves where det(JJJ(qqq)) = 0, in red, computed

with the method in [3] under no constraints on the cable tensions or lengths. It can
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A1 A2
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B1

B2

B3

P

O

Fig. 4 CAD Model of the octahedral cable-driven hexapod under construction at Institut de

Robòtica i Informàtica Industrial (IRI), inspired in the NIST Robocrane manipulator [1] (cour-

tesy of P. Grosch).

be observed that the wrench-feasible C-space naturally avoids crossing singulari-

ties, although in some zones this point may not be clear due to the resolution of

the discretization, and to the small size of the figures. The top row of Fig. 5 corre-

sponds to slices where the point P and the torsion σ are held fixed. In the bottom

row, the whole orientation τττ of the platform and one of the coordinates of P are held

fixed. As it can be seen from the figures, the navigation between two configurations

of C is not a trivial task. In particular, evaluating the wrench-feasibility conditions

on discrete points along a path could result in erroneous paths that, for example,

could join points belonging to different connected components of C . The method

presented in this paper is able to solve such hard planning queries, even when per-

mitting the variation of all pose parameters. However, due to illustration limitations,

the performance of the method is demonstrated here by means of two experiments

where four and three pose parameters are held fixed.

In the first experiment, we compute two different paths on the top-center slice of

C shown in Fig. 5, where ppp = [0,0,2]T and σ = 35◦. Using the start qqq1 and goal

qqq2 configurations defined by τττ1 = {−0.5,0.9, 7
36

π} rad and τττ2 = {2,0.9, 7
36

π} rad,

respectively, the resulting path is computed in 20 seconds. Fig. 6, top, shows this

path in red together whith the atlas corresponding to the whole connected com-

ponent of C accessible from the start configuration (shown as a green mesh), and

the region explored by the algorithm (shaded in grey). In order to evaluate the per-
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π ππ

π

−π−π
−π−π φφφ

θ

ppp = [0,0,2]Tppp = [0,0,2]Tppp = [0,0,2]T σ = 35◦σ = 0◦ σ = 50◦

zz

x x y

y

00

2 2−2 −2
44 −1.5

−1.5
2.5

2.5
y = 0 z = 2 τττ = {0◦,20◦,0◦}τττ = {0◦,20◦,0◦} τττ = {0◦,20◦,0◦} x = 0.8

Fig. 5 Slices of the wrench-feasible C-space obtained by discretization. Blue, red and green zones

correspond to configurations where some force is out of range, configurations not attainable due to

cables length, and configurations belonging to the wrench-feasible C-space, respectively.

formance of the method on a more challenging situation, a second path is com-

puted between configurations qqq3 and qqq4 given by τττ3 = {0.8,−2.4, 7
36

π} rad and

τττ4 = {−2.4,2.4, 7
36

π} rad. In this case the path is computed in 280 seconds and

the region explored is shaded in green (Fig. 6, top). On both planning queries, note

that the interpolated path between the start and goal configurations would violate

some of the constraints of C , giving rise to uncontrollable motions of the platform,

or to breakage of some of the cables, but the computed paths correctly avoid these

situations. Indeed, an advantegous property of the continuation strategy employed,

which cannot be ensured by methods relying on discretization, is that the computed

path will not jump between distinct connected components of C , even when such

components are close to each other, thus ensuring that the forces on all cables keep

within the prescribed ranges along the whole path. As an example, these forces can

be seen in Fig. 6, bottom, for the path from qqq3 to qqq4. The evolution along this path

of the maximum and minimum tensions on each cable are plotted in green and blue,

respectively. Towards the end of the path, some cable may attain a near-zero tension,

but this can be easily avoided if desired, by simply setting a higher value of fi.

On the second experiment, only three pose variables are held fixed, namely

x = 0, y = 0, and σ = 35◦, giving rise to a three-dimensional slice of the wrench-

feasible C-space C . Here, the start and goal configurations, qqq5 and qqq6, are given by

ppp5 = [0,0,1.2]T, τττ5 = {0.8,−2.6, 7
36

π} rad and qqq6 = qqq4. The resulting path can be
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qqq1 qqq2

qqq3

qqq4

π

π
−π
−π φ

θ

1
2

m N

0 N

Fig. 6 Top: Two paths and the areas of C explored to compute them, on the slice of the wrench-

feasible C-space corresponding to ppp = [0,0,2]T and σ = 35◦. Bottom: evolution of the maximum

(green) and minimum (blue) possible tensions for each cable, along the path from qqq3 to qqq4.

seen in Fig. 7 in red, together with the atlas generated by the algorithm in green.

This case represents a hard planning query and, therefore, the computation time in-

creases significantly. However, once a partial atlas is computed, all planning queries

between configurations covered by such atlas can be solved in a few milliseconds.
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qqq5

qqq6

π

π

−π

−π

φ

θ

z
0

3

Fig. 7 A path on a three-dimensional slice of the wrench-feasible C-space with x = 0, y = 0 and

σ = 35◦. The green volume corresponds to the portion of C explored by the algorithm, which is

here visualized by projecting the chart polytopes Pi to the space of z, φ , and θ , and representing

their faces as semi-transparent walls, in order to visualize the computed path in the interior.

6 Conclusions and future work

This paper has presented a path planning method for computing wrench-feasible

paths on cable-driven hexapods, i.e., configuration paths that guarantee the resolv-

ability of a six-dimensional set of wrenches at any point on the path. As a by prod-

uct, the method implicitly ensures that the screw Jacobian of the manipulator will

be non-singular along the path, thus allowing a full control of the platform motions

at all times. The method has been tested succesfully on several cases of increasing

complexity, though only cases where three or four pose variables are held fixed have

been shown due to illustration limitations.

The presented approach allows extensions in several possible ways. For example,

some additional constraints could be considered, like enforcing a certain degree of

positioning accuracy of the platform, or the avoidance of platform collisions (cable-

platform or cable-cable collisions, or even those with the environment). While the

former constraints can in principle be incorporated using dual developments to those

herein presented, the latter require investigating the possibility of randomizing the

planner, in the spirit of [8] or [22].
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Appendix A: Properties of M

This appendix is devoted to the proof of two properties that are essential in or-

der to apply the continuation strategy described in Section 4. The first one is the

non-nullity of si, ti, gi and vi,i, and the second one is the smoothness of the six-

dimensional manifold M . A by-product of the second property is the fact that JJJ(qqq)
is non-singular for all qqq ∈ C .

From Eqs. (6), (7), and (8) it follows directly that si, ti and gi can never be zero

on M . The same property for vi,i can be proved by contradiction. Let us assume

that vi,i = 0 for some i. If we consider Eq. (5), then, by replacing BBBivvvi = 000 into

vvvTi BBB vvvi = 1, we obtain the dot product of two vectors: vvvTi , with vi,i = 0, and the

vector BBBvvvi, whose components are all zero except that in position i. The result of

this dot product is 0, which contradicts Eq. (5), as it should be 1. As a result, the set

M+ and its complement M \M+ are disconnected.

Let us now prove the smoothness of M . If we can verify that FFF(xxx) is a differ-

entiable function with full rank differential FFFxxx, then the smoothness of M will fol-

low from the implicit function theorem. By construction all functions intervening

in FFF(xxx) are differentiable all over M , and the differential matrix FFFxxx can be ex-

pressed in the following block-triangular form after re-organizing some equations

and variables

FFFxxx =





































ΦΦΦyyy

∗ JJJ(qqq)

*

2vvvT1 BBB

BBB1

. . .

2vvvT6 BBB

BBB6

∗ ∗ SSS

∗ ∗ TTT





































,

where empty blocks represent zero-matrices and asterisks indicate non-zero blocks.

Due to the triangular structure of FFFxxx it suffices to verify that the five blocks in the

diagonal are full-rank in order to prove the smoothness of M .
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The first block is

ΦΦΦyyy =









∗ III9

∗ ∗ −III18

∗ −2LLL

∗ GGG









,

which is the differential matrix of the system ΦΦΦ(yyy) = 000 formed by Eqs. (1)-(3)

and (8) with respect to yyy = (τττ, ppp,RRR,uuui,ρi,gi). Here LLL and GGG are 6 × 6 diagonal

matrices with diagonal elements ρi and (ρi −ρi) · (ρi −ρi), respectively. To see that

ΦΦΦyyy is full rank, observe that its last four block-columns comprise a non-singular

square submatrix of maximum size, as its diagonal elements do not vanish over M

by virtue of Eq. (8) and the fact that ρi > 0.

The remaining four diagonal blocks of FFFxxx are the differential matrices of

Eqs. (4)-(7) with respect to the variables fff 0, vvvi, si and ti, respectively, where

the blocks SSS and TTT are 6× 6 diagonal matrices with elements f0,i − vi,i − fi and

fi − f0,i − vi,i, respectively. The screw Jacobian JJJ(qqq) can be shown to be full rank

over M by contradiction. Indeed, if JJJ(qqqs) were rank deficient for some qqqs, then

so would be BBB, and therefore kerBBB would contain non-zero vectors. In such case,

for some i all solutions of BBBivvvi = 0 would satisfy vvvi ∈ kerBBB and, thus, it would be

vvvTi BBBvvvi = 0, which contradicts Eq. (5) and, hence, JJJ(qqq) cannot be rank deficient over

M . The 6×6 block matrices involving BBB and BBBi can only be rank deficient if vi,i = 0,

but this can never happen as we have already seen. All these blocks are therefore

full rank over M . Finally, it is clear that SSS and TTT are also full rank over M , since

their diagonal elements never vanish due to Eqs. (6) and (7), and this completes the

proof of the smoothness of M and, in particular, that of M+.

It is worth mentioning that not only M and M+ are smooth, but also any slice

taken as a combination of the angular and position parameters, τττ and ppp. Indeed,

taking any of these slices implies only the removal of some columns amongst the

first two blocks of ΦΦΦyyy, which does not change the global rank of the differential FFFxxx
corresponding to the considered slice.
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