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Abstract— The success of any diagnosis strategy critically
depends on the sensors measuring process variables. This
paper presents a strategy based on diagnosability maximization
for optimally locating sensors in distribution networks. The
goal is to characterize and determine the set of sensors that
guarantee a maximum degree of diagnosability taking into
account a given sensor configuration cardinality constraint.
The strategy is based on the structural model of the system
under consideration. Structural analysis is a powerful tool for
determining diagnosis possibilities and evaluating whether the
number and the location of sensors are adequate in order to
meet some diagnosis specifications. The proposed approach is
successfully applied to leakage detection in a Drinking Water
Distribution Network.

I. I NTRODUCTION

Fault diagnosis is of great importance for distribution
network systems. It represents an important factor for quality
service (related with fast maintenance response to fault situ-
ations), in water and electrical distribution networks. Inthese
systems, it is obvious that only a limited number of sensors
can be installed due to budget constraints. Since improper
selections may seriously hamper diagnosis performance, the
development of a sensor placement strategy has become an
important research issue in recent years. Ideally, a sensor
network should be configured to facilitate fault detection and
maximize diagnosis performance under a given sensor cost
limit.

Some works devoted to sensor placement for diagnosis
using graph tools can be found in [1], [2], [3], [4], [5] and [6].
All these works use a structural model-based approach and
define different diagnosis specifications to solve the sensor
placement problem. A structural model is a coarse model
description, based on a bi-partite graph, that can be obtained
early in the development process, without major engineering
efforts. This kind of model is suitable to handle large scale
systems since efficient graph-based tools can be used and
does not have numerical problems. Structural analysis is
a powerful tool for early determination of fault diagnosis
performances [7].
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This paper presents a new sensor placement algorithm
based on an extension of the work done in [8] that takes
into account maximum diagnosability specifications. The
sensor placement methodology is applied to a real District
Metered Area (DMA) network located in Barcelona. The
goal consists in finding the best diagnosis performance that
can be achieved by installing a specific number of sensors.
The strategy is based on the structural model of the water
distribution network. In particular, the present paper proposes
the study of which pressure sensors need to be installed in
order to improve and maximize the capability of detecting
and isolating leaks in the DMA. Water loss in distribution
networks is an issue of great concern for water utilities,
strongly linked with operational costs and water resource
savings.

Usually a leakage detection method in a DMA starts
analyzing input flow data, such as minimum night flows
and consumer metering data. Once the water distribution
district is identified to have a leakage, techniques are used
to locate the leakage for pipe replacement or repairing. The
whole process could take weeks or months with an important
volume of wasted water.

Techniques based on locating leaks from pressure moni-
toring devices allow a more effective and less costly search
in situ. In [9] a leakage localization method based on the
pressure measurements and sensitivity analysis of nodes ina
network has been proposed. In order to maximize the isola-
bility with a reasonable number of sensors an optimal sensor
placement methodology based on genetic algorithms is also
proposed. The optimization goal consisted in minimizing the
size of the larger set of non-isolable leaks.

The paper is organized as follows: In Section II, the sensor
placement problem tackled in this paper is presented. Section
III formally introduces the diagnosis framework based on
structural models. Section IV describes the algorithm usedto
solve the aforementioned problem. In Section V, the sensor
placement methodology is applied to a real DMA network.
Finally, some conclusions and remarks are given in Section
VI.

II. PROBLEM FORMULATION

Usually, the sensor placement problem is presented as an
optimization problem where the best sensor configuration
fulfilling some given diagnosis specifications is sought, see
e.g. [10] and [11]. Nevertheless, in our case, the water supply
company is not interested in the best sensor configuration but
in the best diagnosis performance that can be achieved by
installing a specific number of sensors. Therefore, this paper



introduces a slightly different problem formulation motivated
by practical reasons.

Let S be the candidate sensor set andm the number
of sensors that will be installed in the system. Then, the
problem can be roughly stated as the choice of a combination
of m sensors inS such that the diagnosis performance is
maximised.

In model-based diagnosis, fault detectability and fault
isolability are the main objectives. Fault detectability is the
ability of monitoring a fault occurrence in a system, whereas
fault isolability concerns the capacity of distinguishingbe-
tween two possible fault occurrences. Thus, the diagnosis
performance will be stated based on fault detectability and
isolability properties. In this work, the single fault assump-
tion will hold (i.e., multiple faults will not be covered) and
no candidate sensor fault will be considered. Moreover, in
this case, faults will represent leaks in the water distribution
network.

Let F be the set of faults that must be monitored, then
FD(S) ⊆ F denotes the detectable fault set assuming that a
sensor configurationS ⊆ S is installed in the system. Fault
isolability can be characterised in a similar way by means of
fault pairs. For the sake of simplicity, it is assumed that all
isolable faults are detectable; this implies that the symmetry
property [2] holds for any pair of isolable faults (i.e., iffi is
isolable fromfj thenfj is isolable fromfi). Let F : F×F

be all fault pairs fromF, thenFI(S) ⊆ F denotes the set
of isolable fault pairs when the sensor configurationS ⊆ S

is chosen for installation (i.e.,(fi, fj) ∈ FI(S) means that
fault fi is isolable fromfj when the sensor setS is installed
in the system). Note that due to the symmetry property, only
combinations of two faults need to be considered, instead of
permutations of two faults.

Based onFI(S), the isolability indexI(S) is defined as
the number of isolable fault pairs when the sensor configu-
rationS is installed, i.e.,

I(S) = |FI(S)| (1)

where| · | denotes the cardinality of the set.
To solve the sensor placement problem proposed in this

paper, a system descriptionM is also required. Such descrip-
tion will allow the computation of the detectable faults and
the isolability index for a given sensor configuration. Hence,
the sensor placement for fault diagnosis can be formally
stated as follows:

GIVEN a candidate sensor setS, a system descriptionM,
a fault setF, and the numberm of sensors to be
installed.

FIND them-sensor configurationS ⊂ S such that:
1) all faults in F are detectable,FD(S) = F,

and
2) the number of isolable fault pairs is max-

imised, i.e.I(S) ≥ I(S′) for any S′ ⊆ S

such that|S′| = m.
By solving this problem for the water distribution network,

all leaks are guaranteed to be detectable, and no other sensor

configuration involvingm sensors has better isolability capa-
bilities. These properties make the solution of this problem
very attractive from the water supply company perspective.
It is worth noting that other diagnosis performance indexes,
also designed for sensor placement, could be used here, see
for example [9] and [5]. However, these indexes may fail at
representing maximum fault isolability.

The objective of this paper is to derive an algorithm
that computes a solution for the aforementioned problem.
This algorithm will perform a search over different sensor
configurations until a solution is found.

III. FAULT DIAGNOSIS BASED ON STRUCTURAL MODELS

A structural model approach will be used to solve the
sensor placement problem stated in the previous section. The
analysis of the model structure has been widely used in the
area of model-based fault diagnosis [7]. Therefore, consistent
tools exist in order to perform diagnosability analysis and
consequently compute the set of detectable and isolable
faults.

The structural model is often defined as a bipartite graph
G(M,X,A), whereM is a set of model equations,X a
set of unknown variables andA a set of edges, such that
(ei, xj) ∈ A as long as equationei ∈ M depends on variable
xj ∈ X . A structural model is a graph representation of the
analytical model structure since only the relation between
variables and equations is taken into account, neglecting the
mathematical expression of this relation.

Structural modelling is suitable for an early stage of the
system design, when the precise model parameters are not
known yet, but it is possible to determine which variables are
related to each equation. Furthermore, the diagnosis analysis
based on structural models is performed by means of graph-
based methods which have no numerical problems and are
more efficient, in general, than analytical methods. However,
due to its simple description, it cannot be ensured that the
diagnosis performance obtained from structural models will
hold for the real system. Thus, only best case results can be
computed.

It is well-known that the over-determined part of the
model is the only useful part for system monitoring [7].
The Dulmage-Mendelsohn (DM) decomposition [12] is a
bipartite graph decomposition that defines a partition on the
set of model equationsM . It turns out that one of these parts
is the over-determined part of the model and is represented
asM+.

The system fault diagnosis analysis is next performed
based on the structural model properties. Specifically, fault
detectability and isolability are defined as properties of the
over-determined part of the model [2]. First, it is assumed
that a single faultf ∈ F can only violate one equation
(known asfault equation), denoted byef ∈ M .

Definition 1: A fault f ∈ F is (structurally) detectable in
a model described by the set of equationsM if

ef ∈ M+ (2)



Definition 2: A fault fi is (structurally) isolable fromfj
in a model described by the set of equationsM if

efi ∈
(

M \ {efj}
)+

(3)
Without loss of generality, it is assumed that a sensor

si ∈ S can only measure one single unknown variable
xi ∈ X . In the structural framework, such sensor will be
represented by one single equation denoted ases (known as
sensor equation). Given a set of sensorsS, the set of sensor
equations is denoted asMS. Thus, given a candidate sensor
configurationS and a modelM , the updated system model
corresponds toM ∪MS.

From Definition 1,FD(S) can be computed as

FD(S) = {f ∈ F | ef ∈ (MS ∪M)+} (4)

and from Definition 2,FI(S) can be computed as

FI(S) = {(fi, fj) ∈ F | efi ∈ (MS ∪ (M \ {efj}))
+} (5)

It is worth noting that testing different sensor configurations
involves different sensor equation sets,MS, in (4) and (5)
while the other sets remain unchanged.

Remark that the isolability index,I(S) can be computed
straight away as the number of elements inFI(S), according
to (1).

IV. OPTIMAL SENSOR PLACEMENT ALGORITHM

The sensor placement problem stated in Section II involves
finding anm-sensor configuration among|S| candidate sen-
sors. One trivial approach to solve this problem would be
to check all these

(

|S|
m

)

sensor configurations. However, such
search would be highly inefficient.

Alternatively, the optimal sensor placement problem will
be solved by Algorithm 1, which is based on a depth-first
branch and bound search. This search is expected to perform
better than the trivial approach. Later, in Section V, some
performance issues will be discussed.

Algorithm 1 S∗ = searchOpm(node, S∗)

childNode.R := node.R

for m− (|S| − |R|) + 1 iterationsdo
Takes ∈ childNode.R at random
childNode.S := node.S \ {s}
childNode.R := childNode.R \ {s}
if I(childNode.S) > I(S∗) and
FD(childNode.S) = F then

if |childNode.S| > m then
S∗ := searchOpm(childNode, S∗)

else
S∗ := childNode.S % update best solution
if I(node.S) = I(S∗) then

return S∗

end if
end if

end if
end for
return S∗

Every node in the search tree consists of two sensor sets:
• node.S, the sensor configuration that the node repre-

sents.
• node.R, the set of sensors that are allowed to be

removed in its child nodes.
Throughout the search, the best solution is updated inS∗

whenever a feasiblem-sensor configuration with a higher
fault isolability index than the current best one is found.
A branch operation is initiated whenever a feasible sensor
configuration with a higher fault isolability index is found,
as long as the sensor configuration involves more thanm

sensors. Initiating a branch operation involves a recursive
call to searchOpm.

A branch operation is aborted at some child node when-
ever any of the following three conditions holds:

C1A: The fault isolability index corresponding to the
node does not improve the current best one.

C2A: The node does not correspond to a feasible sen-
sor configuration. A feasible configuration means
a sensor configuration such that allf ∈ F are
detectable.

C3A: The node corresponds to a feasiblem-sensor con-
figuration that improves the current best fault isola-
bility index.

A branch operation always involves removing a sensor
from a sensor configuration, so if condition C1A holds
then no sub-node can improve the best isolability index
either. Moreover, if condition C2A holds then no sub-node
corresponds to a feasible sensor configuration either. Lastly,
condition C3A implies that this node corresponds to a local
solution. Hence, no sub-node will correspond to a local
solution, since it would involve less thatm sensors.

A branch operation involves visiting the child nodes of a
parent node. Aborting a branch operation at a parent node
means that a call tosearchOpm returns. A branch operation
is aborted at a parent node when any of the following two
conditions hold:

C1B: All child nodes that are ancestors of somem-sensor
configurations have been already visited.

C2B: A local solution has been found with the same fault
isolability index than that of the parent node.

Condition C1B holds when the firstm− (|S| − |R|) + 1
child nodes have been visited. So, visiting the rest of the
child nodes is not worth it. On the other hand, if condition
C2B holds, no other child node is expected to improve the
current best isolability index.

Remark that, on a branch operation child nodes are visited
at random order. Apparently, following a decreasing child
node isolability index order would be more efficient. How-
ever, this strategy would entail the need of computing the
isolability index of all the child nodes of a given node at
every branch operation, which would result in an efficiency
penalty.

Algorithm 1 is initialised as follows:
1) The root node of the search tree corresponds to the

candidate sensor set:node.S := node.R. = S.



2) The current best sensor configuration corresponds to
the empty set:S∗ := ∅.

V. A PPLICATION TO A WATER DISTRIBUTION NETWORK

This section shows how to solve the aforementioned
problem for the case of a specific water distribution network.
First, the DMA network is introduced where the most
relevant features from the diagnosis perspective are given.
Then, the structural model representation of this network
is presented. And, finally the sensor placement problem is
solved, obtaining encouraging results.

A leakage detection method involves dividing the distri-
bution system into well-defined DMAs. Leakage level in a
DMA is determined based on the minimum night flow mi-
nus the legitimate night demand and estimated unavoidable
background leakage. DMAs help identifying areas of the pipe
network that suffer from excessive leakage.

A. Water network description

The sensor placement methodology is applied to a DMA
located in Barcelona area (see Figure 1). It has 881 nodes
and 927 pipes. The network consists of 311 nodes with
demand (RM type), 60 terminal nodes with no demand
(EC type), 48 nodes hydrants without demand (HI type),
14 dummy valve nodes without demand (VT type) and 448
dummy nodes without demand (XX type). The set of dummy
nodes represents the defects causing leaks in the network.The
network has two inflow inputs modeled as reservoir nodes.

Fig. 1. Case study network map

Leakage detection is based on the premise that damage
(leakage) in one or more locations of the piping network
involves local liquid outflow at the leakage location, which
will change the flow characteristics (pressure heads, flow
rates, acoustics signals, etc.) at the monitoring locations of
the piping network.

Leaks might appear anywhere in the water network. How-
ever, due to simulation limitations, leaks are representedin
the nodes where the flow balances take place. Therefore, a
node with a leak can be modeled for simulation as

∑

qin −
∑

qout = qf (6)

where qin are the input flows,qout are the output flows
and qf is the outflow caused by the leak. In this caseqf
is considered as an unknown input of the system.

Only dummy nodes can have leaks. Thus, since there are
448 dummy nodes (XX type) in the network, there are 448
potential leaks to be detected and isolated.

Hydraulic sensors may monitor pressure or flow rate. This
work focuses on the placement of pressure monitoring points
as they are more frequently used than flow rate sensors.
Collecting pressure data is cheaper and easier, and the pres-
sure transducers give instantaneous readings whereas most
flow meters do not react instantaneously to flow changes
[13]. Flow rates are usually measured at all entry points
to the network; on main pipes at the entrance into sub-
networks; and/or at the outlet of elevated tanks and pumping
stations. Thus, the selection of flow rate measurement points
is straightforward and is limited to specific locations.

Therefore, only pressure sensors will be considered in the
sensor placement problem. In order to reduce the problem
complexity, just a subset of pressures is chosen as candidate
variables to be measured. Identifying the optimal locations
of these sensors is important from an economic perspective.

B. Structural model extraction

As it was shown in Section III, the fault diagnosis frame-
work is based on structural models. Next, it will be explained
how the corresponding structural model of the DMA water
network is systematically obtained from the network graph.

The DMA network is originally represented as a directed
graphG = (N,E) where pipe junctions are nodes,N , and
pipes are edges,E. Each node represents, at the same time,
a pressure variable and a flow balance equation. Similarly,
each edge represents a flow variable and a pipe equation.
Therefore, given a noden ∈ N , the following flow balance
equation can be derived,

∑

qi∈Qn

qi = dn (7)

whereQn represents all the flows of the edges incident to
noden, anddn is the known flow demand associated to node
n. Furthermore, given an edgee ∈ E, the corresponding pipe
equation can be deduced as

qe = sgn(pi − pj) · c(|pi − pj|)
γ (8)

whereqe is the flow of edgee, pi andpj are the pressures
of the nodes adjacent to edgee = (ni, nj), andc andγ are
parameters modelling physical properties of the pipe, such
as length, inside diameter, minor losses, and roughness.

Now, the structural model of the water network can be
defined as a bipartite graph involving the equation node set
M and the unknown variable node setX . LetsMN be the
set of flow balance equations andME be the set of pipe
equations, thenM = MN ∪ ME . Note that there are as
many equation inMN as nodes inG and as many equations
in MN as edges inG. This amounts to 1810 equations
for the Barcelona DMA network used here. On the other
hand, letQ be the set of flow variables andP be the set of
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Fig. 2. Structural model of the DMA network

pressure variables, then it holds thatX = Q∪P . The number
of unknown variables is therefore 1810. The edges of the
structural model are defined from the graphG, according
to (7) and (8). In Figure 2, the resulting structural model is
depicted in matrix form where the equation set corresponds
to rows and the variable set corresponds to columns. A dot in
the (i, j) element indicates that there exists an edge incident
to equationei ∈ M and variablexj ∈ X , i.e., (ei, xj) ∈ A.
Note that the structural model of the DMA network is a
just-determined model where all unknown variables can be
computed, i.e. the model can be used for system simulation.

C. Sensor placement for leakage detection and isolation

It is important to see that when a leak is present in a
dummy node (type XX), then the corresponding equation
of the form in (7) does no longer hold. Indeed, a termqf
should be added to the equation so that the model becomes
consistent with the faulty water network. However, since
detecting inconsistencies in the equation is the objectiveof
model-based diagnosis, the termqf is omitted and the set of
faults, or leaks, is now represented as the subset of structural
model equations inMN related to dummy nodes. Therefore,
the following set of fault equations is defined

MF = {e ∈ MN | e comes from a node XX} (9)

Up to 31 pressure variables fromP have been chosen as
the candidate sensor setS. When a sensor measuring pressure
pi is placed, the equationpi = p̂i is added to the structural
model, wherêpi is the measurement obtained from the sensor
reading.

If all candidate sensors were installed, the maximum
diagnosis performance would be achieved. Recall that, in this
application, the fault setF has a cardinality of 448 elements
(i.e., the number of type XX nodes). So, the maximum
isolability index would ideally be

(

448

2

)

= 100128. However,

TABLE I

OPTIMAL SENSOR PLACEMENT SOLUTION

Sensor Sensor ID Sensor Sensor ID
S1 RM00091308 S5 RM00097476
S2 RM00091309 S6 RM00097508
S3 RM00091329 S7 RM00211544
S4 RM00097475 S8 RM00215963
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Fig. 3. DMA network with the optimal sensor location (black◦ symbol)
and the remaining candidate sensors (red∗ symbol)

when installing all candidate sensors, all leaks can be de-
tected but the isolability index is just 100099. Achieving the
ideal isolability index would require installing more sensors
those designated in the candidate sensor set. Therefore, there
is a trade-off between the diagnosis performance and the
number of sensors required, which in the end results in a
cost penalty.

Assume that the water distribution company has estab-
lished a maximum budget for investment on instrumentation
that makes it possible to install up to 8 sensors. Hence, the
water distribution company wants to install 8 sensors such
that the maximum diagnosis performance can be achieved.
Algorithm 1 is applied to solve this problem withm :=
8. After 256 seconds, the algorithm returns the 8-sensor
configuration shown in Table I. With these 8 sensors all leaks
can be detected and the isolability index amounts to 100092.

The optimal sensor configuration is depicted in Figure 3
where nodes corresponding to the optimal measurements as
well as those corresponding to the candidate sensor set are
highlighted.

In order to illustrate the trade-off between the best achiev-
able isolability index andm, Algorithm 1 has been run with
different values form. Figure 4 shows these results. Remark
that all optimal sensor configurations with more than 12
sensors achieve the same maximum isolability index than the
31 candidate sensor configuration. Any sensor configuration
with less than 13 sensors involves decreasing the isolability
index. On the other hand, a sensor configuration with less
than 2 sensors does not satisfy the full fault detectability
specification, so it is no included in the figure.

Regarding the search strategy performance issues when
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m := 8, the trivial approach introduced at the beginning of
Section IV would involve computing the isolability index of
about 8 million sensor configurations (i.e.,

(

31

8

)

). However,
applying Algorithm 1 the isolability index is just computed
17286 times, which definitively saves a lot of time.

VI. CONCLUSIONS

The sensor placement problem in water distribution net-
works has been addressed in this paper. However, the method
could also be applied to other distribution networks such as
those related to gas, electricity, etc. A distribution network
usually describes a mesh topology involving hundreds of
interconnected nodes whose behaviour follows non-linear
physical laws. Such complexity requires the development
of tools applicable to non-linear large-scale systems. The
approach provided in this paper addresses it applying a
structural analysis framework.

A key contribution of this work is the definition of the
isolability index as a measurement of the fault diagnosis
performance achievable in a given system. This measurement
allows to set up a sensor placement problem based on a fault
diagnosis performance maximization criterium. This is an
original contribution since, in the literature, most approaches
to optimal sensor placement try to solve a different problem:
search the minimum cost sensor configuration that satisfies
a given set of fault diagnosis specifications.

The new formulation presented in this paper becomes ap-
propriate in distribution networks, where the budget assigned
to instrumentation is limited and all sensors usually measure
the same kind of variable. A possible extension would
involve considering various types of sensors with different
costs. This would lead to a more challenging problem: fault
diagnosis performance maximization under the constraint of
a given maximum sensor configuration cost.

In model-based fault diagnosis, diagnosis is basically
performed based on the response of residual generators,
which are derived from the model equations. When the
model includes nonlinearities, deriving a residual generator
can become a difficult or even a practically infeasible task.

In this paper, this issue has been ignored. However, functions
FD(S) andI(S) could be adapted to take into account this
constraint in the sensor placement analysis phase, by follow-
ing the causality framework introduced in [14]. Then, the
solution obtained from the sensor placement analysis would
guarantee a set of easily computable residual generators.
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