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1. INTRODUCTION

The diagnosis task is often made difficult due to insuf-
ficient, incomplete or useless process observations. The
problem on how to obtain the required process obser-
vations is known as the sensor placement problem. Sev-
eral works have tackled this problem, where most of
them presents a graph-based approach (Bagajewicz, 2000;
Travé-Massuyès et al., 2006; Commault et al., 2008;
Krysander and Frisk, 2008; Rosich et al., 2009). Graph-
based model representations are suitable for the sensor
placement problem since they allow to rid of the analytical
expressions which are not always available at a first stage
of the design. Also, graph-based tools are free of numerical
problems and have in general better computational effi-
ciency. However, only best-case results can be computed
from graph-based methods. A graph model representa-
tion widely used in the area of model-based diagnosis is
the structural model representation (Blanke et al., 2006),
which will be used in this paper.

This paper specifically focuses on analysing which sen-
sors should be installed in a process in order to achieve
predefined fault detectability and isolability properties.
The method presented here is rather close to Krysander
and Frisk (2008), since the same diagnosis framework is
used and exactly the same problem is solved. Furthermore,
the sensor placement problem is also approached by first
adding sensors for detectability and then, in a second
step for isolability. Nevertheless, the strategy adopted here
differs from Krysander and Frisk (2008) work in the sense
that now the contribution of each sensor to the diagnos-
ability and isolability of the system is sought.
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13744), and by the European Commission through contract i-Sense
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A Matlab implementation of all algorithm presented
here can be downloaded from http://www.iri.upc.edu/
people/arosich/Software.html.

2. STRUCTURAL ANALYSIS REVIEW

An analytical model of a process typically consist of a
set of equations describing the interaction among process
variables. Then, a structural model is an abstraction of
the model where the analytical expressions are neglected
and only the structure of the model is preserved. More
formally, given an analytical model, the corresponding
structural model is represented by a bipartite graph with
two vertex sets: the set M of model equations and the set
X of unknown variables. An edge (e, x), for e ∈ M and
x ∈ X , stands for variable x is involved in equation e.
It should be noted that known process variables are not
included in the structural model since they will not be used
throughout the paper. Furthermore, var(M) is introduced
to denote the subset of unknown variables adjacent to the
equations in M , that is var(M) are the unknown variables
involved in M .

Structural models have been widely studied in the fault
diagnosis field. As a result of this, several model decompo-
sitions have been developed in order to exploit model prop-
erties. Next, Dulmage-Mendelsohn decomposition (Dul-
mage and Mendelsohn, 1958) is reviewed. A thorough
description of this decomposition and its properties can
be found in Murota (2000).

Given a structural model M , the following function, called
surplus function (Lovász and Plummer, 1986), is defined
as

po(E) = |var(E)| − |E| (1)

for any E ⊆ M and | · | denoting the cardinality of the
set. It is worth noting that the surplus function p0 is a
sub-modular function. Therefore, it holds that

p0(E1 ∪E2) + p0(E1 ∩ E2) ≤ p0(E1) + p0(E2) (2)

for any two sets of equations E1 and E2.



From p0 function, the family of all minimizers with mini-
mal surplus can be defined as

Lmin = {E ⊂ M | p0(E) ≤ p0(E
′), ∀E′ ⊆ M}. (3)

This family of minimizers defines a lattice in Lmin. Hence,
it can be stated that Ei ∪Ej ∈ Lmin and Ei ∩Ej ∈ Lmin,
for any Ei, Ej ∈ Lmin.

Let E0 ⊂ E1 ⊂ · · · ⊂ Eb−1 ⊂ Eb be any maximal
ascending chain of Lmin. Then, the partitions of the
Dulmage-Mendelsohn decomposition on the equation set is
thereby computed from the sets in the maximal ascending
chain according to

M0 = E0,

Mk = Ek \ Ek−1, (k = 1, . . . , b),

M∞ = M \ Eb.

In the diagnosis field, a coarse partition in three main parts
is usually defined from the above partition as

• the overdetermined part M+ = M0.
• the just-determined part M0 = ∪b

k=1Mk.
• the under-determined part M− = M∞.

From the diagnosis point of view, a key property in the
over-determined part is that there are more equations than
unknown variables, i.e., |M+| > |var(M+|, and hence the
existence of redundancy in M+. Indeed, the M+ part of
the model is the only useful part to perform diagnosis, see
Blanke et al. (2006).

3. FAULT DIAGNOSIS FRAMEWORK FOR SENSOR
PLACEMENT

The fault diagnosis framework on which this paper is
based is presented in this section. First, some theoretical
background and standard definitions will be reviewed.
Then, sensor characterisation in the framework, as well
as the sensor placement problem formalization, will be
introduced.

3.1 Fault detectability and isolability analysis

Usually, to perform fault diagnosis based on structural
models, it is assumed that different subsets of model
equations describe the expected behaviour of process com-
ponents. Then, when the component equations become
inconsistent with the process observations, it may be sus-
pected that the corresponding component is not working
properly, i.e., the component is faulty. Here, it will be
assumed that a fault can only cause inconsistency in one
model equation. Thus, let F be the set of faults, then there
exists a fault equation ef ∈ M for each fault f ∈ F .

The consistency of a fault equation, together with other
model equations, can be checked if there are more equa-
tions than unknown variables. This fact motivates the fol-
lowing fault detectability definition (Krysander and Frisk,
2008).

Definition 1. (Fault detectability). A fault f ∈ F is de-
tectable in a model M as long as ef ∈ M+. 3

A fault fi ∈ F can be isolated from another fault fj ∈
F when the inconsistent set of equations involves the
equation of the fault fi but not the equation of the fault

fj. Next, formal fault isolability definition (Krysander and
Frisk, 2008) is introduced.

Definition 2. (Fault isolability) A fault fi ∈ F is isolable
from fault fj in a model M as long as efi ∈ (M \ {efj})

+.
3

Given a structural model M and a set of predefined
faults F , diagnosability analysis can be performed from
Definitions 1 and 2. The class of detectable faults is
therefore computed as

D = {f ∈ F | ef ∈ M+}. (4)

Fault isolability can be characterised by means of pairs
of isolable faults. Here, it is assumed that all faults in
the isolability analysis are detectable, which implies that
the isolability relation is symmetric (Krysander and Frisk,
2008), i.e., if fi is isolable from fj then fj is isolable from
fi. Let D be the ordered set of detectable faults, then fault
isolability is characterised as

I = {(fi, fj) ∈ D×D | efi ∈ (M\{efj})
+, for i < j}. (5)

For convenience, it is introduced the diagnosability analy-
sis as a procedure (D, I) = Diagnosability(M,F ) which,
given a structural model M and a set of faults F , returns
the set of detectable faults D and the set of all isolable
faults pairs I, computed according to (4) and (5), respec-
tively.

3.2 Sensor placement problem formulation

Sensors are regarded as system components that may be
installed or not. Thus, installing sensors implies extending
the model by adding those equations describing the sensor
behaviour. Here, for the sake of simplicity, it is assumed
that a sensor can be modelled by means of a single sensor
equation of the form y = x, where x ∈ X is the measured
process variable and y represents the reading of the sensor,
i.e., a known variables or observation. Therefore, the set of
candidate sensors is characterised as a subset of unknown
variables S ⊆ X .

It is worth noting that installing sensors increases the
number of model equations whereas the number of un-
known variables remains unaltered. This means that, in
general, the more sensors are installed the better diagnosis
performance can be expected. Indeed, maximum diagnosis
performance can be determined by performing diagnos-
ability analysis with all possible sensors installed in the
system. Let MS be the sensor equations of all candidate
sensors in S, the maximum fault detectability and isola-
bility attainable by placing sensors is determined as

(Dmax, Imax) = Diagnosability(M ∪MS, F ).

This fact establishes an upper bound on the required
fault detectability and isolability specifications in the sen-
sor placement problem. However, diagnosis specifications
other than the maximum ones may be desired. The di-
agnosis specifications, D and I, are feasible as long as
D ⊆ Dmax and I ⊆ Imax.

Now, the sensor placement problem to be solved in this
paper can be formulated as follows (Krysander and Frisk,
2008).

Problem 3. (Sensor placement problem). Given a struc-
tural model M of the process, a set of candidate sensors



S to be installed in the process and the required diagnosis
specifications, D and I, defined from the set of process
faults F , find all minimal sensors configurations S′ ⊆ S
such that diagnosis specifications are fulfilled within the
model M ∪MS′ . 3

Diagnosis specifications are fulfilled as long as D ⊆ D′

and I ⊆ I ′, where D′ and I ′ represent detectability and
isolability derived from a sensor configuration S′ ⊆ S,
i.e., (D′, I ′) = Diagnosability(M ∪ MS′ , F ). Moreover,
note that all minimal sensor configurations characterise all
possible solutions since any combination of these minimal
configurations is also a solution for the sensor placement
problem.

4. SENSOR PLACEMENT FOR FAULT DIAGNOSIS

First, the theoretical concepts, on which the present ap-
proach is based, will be introduced. This will provide
the basis to solve the sensor placement problem for fault
detectability and isolability.

The sensor placement problem is then solved in two main
steps. First step deals with those sensors that solve the
problem only for fault detectability, while in the second
step the sensors solving the fault isolability problem are
computed. The detectability and the isolability problem are
presented separately. Then, they are combined to finally
solve the problem for both detectability and isolability.

4.1 Preliminary concepts

The basic idea of this approach is to study the detectabil-
ity and isolability achieved by installing every candidate
sensor individually. Then, the complete solution is derived
from the result obtained when each individual sensor is
considered. In order to do so, it is assumed that the model
has no under-determined part, i.e., M− = ∅. Lemma 4
shows that the overdetermined equations remain in the
overdetermined part when new equations are taken into
account.

Lemma 4. Let M1 and M2 be two arbitrary sets of equa-
tions such that M1 ⊆ M2, then it holds that

M+

1 ⊆ M+

2 . (6)

Proof. See Lemma 7 in Krysander et al. (2008). 2

Theorem 5 shows that the overdetermined part of the
model with a sensor set S placed in it can be deduced
from the overdetermined parts of the model obtained by
placing single sensor s ∈ S one at a time. Thus, from
the diagnosability analysis of every single sensor, it can be
straightforwardly obtained the diagnosability properties of
the process for any combination of sensors.

Theorem 5. Let M be a structural model with no under-
determined part and S a set of sensors. Then, it holds
that

⋃

s∈S

(M ∪ {es})
+ = (M ∪MS)

+, (7)

where Ms is the sensor equation set of S and es is the
equation of the sensor s ∈ S.

Proof. Let α be the minimal surplus of all subsets of M ,
then p0(M

′) ≥ α for any M ′ ⊆ M . Since var(MS) ⊆

var(M), it holds that p0(M
′∪MS) ≥ α−n for anyM ′ ⊆ M

where n is the number of equations in MS. This implies
that any subset in M ∪MS with minimal surplus contains
the equation set MS . Hence, the set (M ∪ MS)

+ can be
rewritten as E ∪ MS where E ⊆ M . Then (M ∪ MS)

+

is the minimal set with minimum surplus only if E is the
minimal set in M with p0(E) = α and var(MS) ⊆ var(E).

Since MS is an arbitrary set of sensor equations, the above
reasoning also holds for single sensor equations. Therefore,
it follows for any es ∈ MS that

(M ∪ {es})
+ = K ∪ {es}, (8)

where K ⊆ M is the minimal set in M with p0(K) = α
and var({es}) ⊆ var(K).

Now, let K be the family of K sets obtained for every
es ∈ MS , i.e.,

K = {K ⊆ M | K ∪ {es} = (M ∪ {es})
+, es ∈ MS}, (9)

and also let Lα be the family of the surplus minimizers,
i.e.,

Lα = {U ⊆ M | p0(U) = α}. (10)

Then, it holds that the set E and all the set K ∈ K are
contained in Lα. Recall that the set of minimizers in Lα

define a lattice, which means that ∪K∈KK ∈ Lα. Note
also that var(MS) ⊆ var(∪K∈KK). Hence, since E is the
minimal set in Lα containing all the equations in MS , it
follows that ∪K∈KK ⊇ E. From this, it can be deduced
that

⋃

s∈S

(M ∪ {es})
+ = (

⋃

K∈K

K) ∪ (
⋃

s∈S

{es}) =

= (
⋃

K∈K

K) ∪MS ⊇ E ∪MS = (M ∪MS)
+. (11)

Finally, from Lemma 4 it directly holds that (M∪{es})+ ⊆
(M ∪ MS)

+ since es ∈ MS . Then, it can be straightfor-
wardly stated that

⋃

s∈S

(M ∪ {es})
+ ⊆ (M ∪MS)

+. (12)

Thus, the proof is concluded from (11) and (12). 2

From Theorem 5 and taken detectability and isolability
definitions into account, it can be intuitively seen how
detectability and isolability properties of the process when
a sensor configuration is installed can be deduced by gath-
ering the detectability and isolability properties achieved
by installing individual sensor one by one.

4.2 Sensor placement for detectability

In this subsection, the sensor placement sub-problem for
fault detectability is first addressed. Recall that, M− = ∅
by assumption and also that, according to Definition 1,
any fault is detectable as long as its corresponding fault
equation is in M+. Therefore, it is only needed to focus
on the fault equations in the just-determined part of the
model in order to fulfill detectability.

Now, let FD(s) be the class of detectable faults when
sensor s is chosen for installation, i.e.,

FD(s) = {f ∈ D | ef ∈ (M ∪ {es})
+}. (13)



Based on Theorem 5, it can be stated that a sensor
configuration S′ ⊆ S is a solution for the detectability
problem as long as

⋃

s∈S′

FD(s) = D. (14)

Hence, the set of FD(s) classes that covers D charac-
terises a possible solution. Therefore, given the set FD =
{FD(s1), FD(s2), · · · , FD(sn)} (for n = |S|) of all de-
tectability fault classes, the sensor placement problem for
fault detectability is solved if all minimal subsets C ⊆ FD

that cover D are found.

Algorithm 1 is proposed for solving Problem 3 when
only detectability specification is sought. First, the de-
tectability fault classes FD(s) are generated. Then, all
minimal covers are computed by means of the proce-
dure MinimalSetCovers. In Section 5, this procedure
is introduced. Finally, in last step, the minimal sensor
sets SD = {S1, S2, · · · , Sm} that solve the problem are
obtained from the family of all minimal covers Γ =
{{C1}, {C2}, · · · , {Cm}}.

Algorithm 1 SD = SPforDetectability(M,S,D)

FD = ∅
for all s ∈ S do
FD(s) = {f ∈ D | ef ∈ (M ∪ {es})+}
FD = FD ∪ {FD(s)}

end for
Γ = MinimalSetCovers(FD, D)
SD = {Si ⊆ S | ∀s ∈ Si ⇒ FD(s) ∈ Ci, Ci ∈ Γ}

4.3 Sensor placement for isolability

This subsection explains how to place sensors for fault
isolability. Theorem 5 can be easily extended to the isola-
bility case by replacing M with M \ {e} in (7). Then,
isolability performance achieved by installing a set of sen-
sors can be determined by studying the isolability achieved
with each individual sensor. Similarly to the detectability
case, a class of isolable fault pairs FI(s) for each sensor
s ∈ S is defined,

FI(s) = {(fi, fj) ∈ I | efi ∈ ((M \ {efj}) ∪ {es})
+}. (15)

Therefore, a sensor configuration S′ ⊆ S is a solution for
the isolability problem if its corresponding isolability fault
classes FI(s) cover all the pairs in I, i.e.,

⋃

s∈S′

FI(s) = I. (16)

This means that the same approach for the detectability
case in Subsection 4.2 can be developed here. Let FI =
{FI(s1), FI(s2), · · · , FI(sn)} be the set of all isolability
fault classes, then all minimal subsets C ⊆ FI that cover I
characterise the solution of the sensor placement problem
for fault isolability. Note, however, that now the elements
to be covered are pair of faults instead of single faults.
Algorithm 2 summarizes the sensor placement approach
for the fault isolability case.

4.4 Sensor placement for fault detectability and isolability

As mentioned, the problem of placing sensors for fault
detectability and isolability is directly solved in two steps.

Algorithm 2 SI = SPforIsolability(M,S, I)

FI = ∅
for all s ∈ S do
FI(s) = {(fi, fj) ∈ I | efi ∈ ((M \ {efj}) ∪ {es})+}
FI = FI ∪ {FI(s)}

end for
Γ = MinimalSetCovers(FI , I)
SI = {Si ⊆ S | ∀s ∈ Si ⇒ FI(s) ∈ Ci, Ci ∈ Γ}

First, the detectability problem is solved. And then, based
on the obtained results, the isolability problem is solved.
Before solving the isolability problem, the sensor subset
S′ ⊆ S computed in the detectability problem is added to
the model by means of its corresponding sensor equations
set, i.e., M ∪MS′ , whereas the sensors in S′ are removed
from the candidate sensor set, i.e., S \ S′. This procedure
is performed for each sensor set S′ ∈ SD.

Algorithm 3 is introduced to solve the sensor placement
problem for fault detection and isolation. All minimal
sensor subsets of S solving Problem 3 are computed.

Algorithm 3 S = SPforFDI(M,S,D, I)

S = ∅
SD = SPforDetectability(M,S,D)
for all S′ ∈ SD do
Construct MS′

Mi = M ∪MS′

Si = S \ S′

SI = SPforIsolability(Mi, Si, I)
S = S ∪ {S′ ∪ Sj | Sj ∈ SI}

end for
return S

Sensor faults As mentioned before, sensors are system
components and thus can be faulty. However, fault in
sensors are not taken into account in Algorithm 3. In order
to handle these faults, here the sensor equation es will be
used to represent the corresponding sensor fault.

The presence of a sensor fault in the analysis depends on
whether the sensor is regarded installed, which hinders
the characterization of the diagnosis specifications. Nev-
ertheless, this characterization is relaxed by the following
statements (Krysander and Frisk, 2008):

(a) A fault of a sensor placed for solving the detectability
problem is always detectable.

(b) Faults of two sensors placed for solving the detectabil-
ity problem are always isolable between them.

(c) A fault of a sensor placed for solving the isolability
problem is always isolable from any other fault.

Therefore, according to these statements, only isolability
between fault of sensors placed for the detectability prob-
lem needs to be specified in order to handle sensor faults.
Let Sf = {s1, s2, · · · , sm} ⊆ S be a subset of sensors,
FSf

= {fs1 , fs2 , · · · , fsm} be the set of its corresponding
sensor faults that need to be isolable from any other fault,
and S′ ∈ SD be a solution of the detectability problem,
then the isolability specification when sensor faults are
regarded is defined as

ISf
= {(fi, fsj ) ∈ D×FSf

| fi ∈ D, sj ∈ (S′∩Sf )}. (17)



These new isolalbility specifications should be computed
for each sensor set S′ ∈ SD and inserted into the I set
before the SPforIsolability call in Algorithm 3.

Repeated sensors There may exist the possibility of
installing the same sensor more than once. From Theo-
rem 5, it follows that repeated sensors are only useful
to improve sensor fault isolability. Furthermore, let s′

denote the repeated sensor of s ∈ S, then it holds that
({es, es′})+ = {es, es′}, which implies that the fault of s
becomes completely isolable from any other fault if the
repeated sensor s′ is installed in the process. This means
that installing more that one repeated sensor per variable
does not improve any diagnosis specification.

Based on this discussion and statement (c), it can be
conclude that only the sensors placed to solve the de-
tectability problem need to be repeated at most once. Let
Sr ⊆ S the subset of sensors that can be repeated and
S′ ∈ SD a solution of the detectability problem, then the
set of candidate sensors to solve the isolability problem is
(S \ S′) ∪ (Sr ∩ S′).

Algorithm 3 is modified in order to handle both sensor
faults and repeated sensors. The resulting procedure is
summarized in Algorithm 4 where now the set Sf of faulty
sensors and the set Sr of repeated sensors are specified.

Algorithm 4 S = SPforFDI(M,S,D, I, Sf , Sr)

S = ∅
SD = SPforDetectability(M,S,D)
for all S′ ∈ SD do
Construct MS′

ISf
= {(fi, fsj ) | fi ∈ D, sj ∈ (S′ ∩ Sf )}

Mi = M ∪MS′

Si = (S \ S′) ∪ (Sr ∩ S′)
Ii = I ∪ ISf

SI = SPforIsolability(Mi, Si, Ii)
S = S ∪ {S′ ⊎ Sj | Sj ∈ SI}

end for
return S

Note that, now, the operator ⊎ is used as the joint
operation in the union of S′ ∈ SD and Sj ∈ Si to indicate
that multiple occurrences of the same element are allowed
in the solution.

5. MINIMAL SET COVERS ALGORITHM

There exists a duality between the hitting set problem
and the set cover problem. Hence, algorithms used to
solve hitting set problems can be used to solve set cover
problems and vice versa.

Let A be a set of elements and B be a family of subsets
of A. A subset H ⊆ A is a hitting set if it has non-empty
intersection with any set B ∈ B, i.e., it is said that H
hits each and every one set in B. On the other hand, a
subfamily of subsets C ⊆ B is a cover if the union of its
sets is A, then it is said that the sets in C cover A. The
duality of both problems can be seen by representing both
sets in a bipartite graph G(A,B;E) where the set of edges
is defined as: (a,B) ∈ E if the element-node a ∈ A is
contained in the set-node B ∈ B. Then, a hitting set is
any subset of nodes in A such that their adjacent nodes

are all nodes in B. Analogously, a cover is any subset of
nodes in B such that their adjacent nodes are all nodes in
A.

In this paper, finding all minimal covers is of interest to
solve the sensor placement problem. A cover C ⊆ B is
minimal if there is no subfamily C′ ⊂ C that is a cover.
The algorithm presented in De Kleer and Williams (1987)
to compute the minimal hitting sets is here used to find
now all minimal covers. This is done by first determining
the set of nodes in B adjacent to each node in A and then
solving the minimal hitting set problem.

Algorithm 5 Γ = MiniamlSetCovers(B, A)

E = ∅
for all a ∈ A do
E = E ∪ {B ∈ B | a ∈ B} {Find the adjacent nodes}

end for
Use iteratively the De Kleer and Williams (1987) algo-
rithm for each set in E
Store the minimal hitting sets in Γ
return Γ

Algorithm 5 returns by means of Γ all minimal sets
in B that each of them covers A. It is important to
point out that this algorithm is non-polynomial and hence
computational issues may be expected for large number of
sets in B.

6. EXAMPLE

In this section, an illustrative example is shown in order
to clarify the procedure steps of Algorithm 4. The same
example introduced in Krysander and Frisk (2008) is used
here. The analytical model consists of five equations, M =
{e1, e2, e3, e4, e5}, of the following form:

e1 : ẋ1 = −x1 + x2 + x5

e2 : ẋ2 = −2x2 + x3 + x4

e3 : ẋ3 = −3x3 + x5 + f1

e4 : ẋ4 = −x4 + x5 + f2

e5 : ẋ5 = −5x5 + u+ f3

where xi (for i = 1, · · · , 5) are the unknown process
variables. Three faults F = {f1, f2, f3} are defined, which
corresponds to inconsistencies in equations e3, e4 and e5,
respectively (i.e., ef1 = e3, ef2 = e4 and ef3 = e5).
Moreover, all unknown variables can be measured by intro-
ducing the set of candidate sensors S = {s1, s2, s3, s4, s5},
where sensor si measures variable xi.

The required diagnosis specifications are maximum fault
detectability and isolability. Therefore, after performing
the diagnosability analysis with all sensors installed, the
following detectability and isolability sets are defined:

D = Dmax = {f1, f2, f3},

I = Imax = {(f1, f2), (f1, f3), (f2, f3)}.

Furthermore, sensor faults and repeated sensors for all s ∈
S will be taken into account, i.e., Sf = {s1, s2, s3, s4, s5}
and Sr = {s1, s2, s3, s4, s5}.

First, sensors for fault detectability are computed, i.e.,
SD = SPforDetectability(M,S,D). Algorithm 1 gener-
ates the following fault detectability classes for each sensor:



FD(s1) = {f1, f2, f3}

FD(s2) = {f1, f2, f3}

FD(s3) = {f1, f3}

FD(s4) = {f2, f3}

FD(s5) = {f3}

Then, the minimal sets that cover D are

Γ =
{

{FD(s1)}, {FD(s2)}, {FD(s3), FD(s4)}
}

,

which characterizes the solution

SD =
{

{s1}, {s2}, {s3, s4}
}

.

After solving the detectability problem, the isolability
problem is solved for each set in SD. First, S′ = {s1}
is chosen with

Mi = M ∪ {es1}, for es1 : x1 = y1,

Si = S,

Ii = I ∪ {(f1, fs1), (f2, fs1), (f3, fs1)}.

Algorithm 2 produces for each sensor in Si, the following
classes of isolable fault pairs:

FI(s1) = {(f1, fs1), (f2, fs1), (f3, fs1)}

FI(s2) = {(f1, f3), (f2, f3), (f1, fs1), (f2, fs1), (f3, fs1)}

FI(s3) = {(f1, f2), (f1, f3), (f2, f3), (f1, fs1), (f3, fs1)}

FI(s4) = {(f1, f2), (f1, f3), (f2, f3), (f2, fs1), (f3, fs1)}

FI(s5) = {(f1, f3), (f2, f3), (f3, fs1)}

The minimal covers of Ii are

Γ =
{

{FI(s1), FI(s4)}, {FI(s2), FI(s4)}, {FI(s1), FI(s3)},

{FI(s2), FI(s3)}, {FI(s3), FI(s4)}
}

.

These covers, together with the already installed sensors
in S′, characterize the following partial solution

S =
{

{s1, s1, s4}, {s1, s2, s4}, {s1, s1, s3},

{s1, s2, s3}, {s1, s3, s4}
}

.

The same procedure is repeated for S′ = {s2} and S′ =
{s3, s4}. The new computed minimal sensor sets are added
to the solution, which finally is

S =
{

{s1, s1, s4}, {s1, s2, s4}, {s1, s1, s3},

{s1, s2, s3}, {s1, s3, s4}, {s2, s2, s4},

{s2, s2, s3}, {s2, s3, s4}, {s3, s3, s4, s4}
}

.

Any of these sensor configurations is suitable to achieve
the specified fault detectability D and isolability I, as well
as detectability and isolability of all sensor faults according
to the chosen sensor configuration.

7. CONCLUSIONS

A novel approach for the sensor placement problem has
been addressed in this paper. The computed solution
characterises all possible sensor configurations that meet
the required diagnosis specifications. Typically, maximum
fault detectability and isolability are the most relevant
specifications. However, since required specifications are
explicitly expressed, Algorithm 4 can handle any different
detectability and isolability specifications. Furthermore,
faults in the extra sensors as well as repeated sensors are
also taken into consideration.

A key step to characterise all possible solutions is to
formalize the problem as a minimal set cover problem

where all the minimal covers need to be found. However, it
should be noted that solving the minimal set cover problem
may entail computational problems for large number of
classes.

The method presented in this paper has some similarities
with the method present in Krysander and Frisk (2008).
Both methods solve first the detectability problem and
then, based on the obtained results, the isolabilty problem
is solved in order to finally compute all possible solutions.
The main difference is the classes used to compute the
solution. Here a class of faults induced by each sensor is
used, whereas in Krysander and Frisk (2008) a class of
sensors induced by each fault is required. This entails that
the procedure to compute the solution for the detectabil-
ity problem (and thereby also the isolability problem) is
different in both works. However, the classes used in one
paper can be easy derived from the classed used in the
other paper which makes that, in terms of computational
complexity, both works can be implemented with equiva-
lent efficiency.

Finally, the main contribution of this paper is Theorem
5 which allows to verify that what can be done in terms
of detectability and isolability with a set of sensors can
be determined by the union of what can be done by each
of them. This result can be useful in more sophisticated
search algorithms devoted to the sensor placement prob-
lem for fault detection and isolation.
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