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Abstract: The problem of optimal sensor placement for FDI consists in determining the set of sensors
that minimizes a pre-defined cost function satisfying at thesame time a pre-established set of FDI
specifications for a given set of faults. This paper recalls three model-based optimal sensor location
approaches: an Incremental search, a Heuristic search and aBinary Integer Linear Programming (BILP)
formulation. The main contribution of this paper is a comparative study that addresses efficiency,
flexibility and other issues. The performance of the approaches is demonstrated by an application to
a fuel cell stack system.
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1. INTRODUCTION

The performance of an industrial process is strongly dependent
on available sensor measurements. Inaccurate measurements
resulting from insufficient measurements or improper sensor
placement can significantly deteriorate fault observability and
process control.

The problem of sensor placement for Fault Detection and Iso-
lation (FDI) consists in determining the optimal set of instru-
ments such that a predefined set of faults are detected and iso-
lated. The usual objective to minimize in the sensor placement
problem is the sensor cost. The sensor placement problem can
then be viewed as a combinatorial problem that consists in find-
ing a sensor combination that fulfils diagnosis specifications.

Solving the sensor placement for diagnosis can be treated from
many different points of view. Indeed, such a problem depends
on the kind of system description, the required diagnosis spec-
ifications, as well as the technique used to implement the diag-
nosis system. Because of this, developing a sensor placement
method, that works for all possible fault diagnosis systems, is
unattainable. In this paper, fault diagnosis systems are based on
consistency checking by means of structural models. The re-
quired diagnosis specifications to be fulfilled are fault detection
and isolation for a predefined set of faults.

In the last decade, a lot of works have been devoted to analyze
diagnosability and sensor placement in the context of model-
based diagnosis. In Travé-Massuyès et al. (2006), optimal sen-
sor placement for model-based FDI requires to find the set of all
possible analytical redundancy relations (ARRs), considering
that all candidate sensors are installed. Then, a set of sensors
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that minimizes the total cost of the network is selected such
that the resulting ARRs satisfy that a pre-established set of
faults can be detected and isolated. However, the associated
computational complexity is exponential with the number of
candidate sensors. In Rosich et al. (2007) this search strategy
is modified by starting with no sensors and iteratively adding
sensors while theMinimal Structurally Overdetermined(MSO)
sets are incrementally generated. In Sarrate et al. (2007),an
optimal sensor placement for model-based FDI requires finding
the set of all possible MSO sets, considering that all candidate
sensors are installed. The optimization problem is casted as a
Binary Integer Programmingproblem (Wosley, 1998), where
the optimization vector states whether a sensor is installed or
not, and the FDI specifications are translated into constraints.
However, the non-linear nature of such constraints lead to a
high computational complexity of the resulting optimization
problem. An alternative approach, which involves the formula-
tion of a non-linear objective function, is proposed in Fijany and
Vatan (2006). In Rosich et al. (2009) and Nejjari et al. (2010),
the approach in Sarrate et al. (2007) is enhanced by formulating
a Binary Integer Linear Programming(BILP) problem. The
FDI specifications are formulated as linear constraints andthe
objective cost function is also linear, so that the BILP problem
can be efficiently solved by an LP-based branch-and-bound
algorithm.

On the other hand, generating the complete set of MSO sets
requires a high computation time. To deal with this problem,
some works have appeared recently without the requirement
of computing any MSO set. These methods ensure that the
MSO sets with the corresponding diagnosis capabilities can
be generated after solving the sensor placement problem. In
(Krysander and Frisk, 2008), an efficient method to find all
the minimal sensors set1 for maximum fault detectability and
isolabilty from a structural model is proposed. On the other

1 minimal setmeans that no proper subset is a solution.



hand, in (Yassine et al., 2008) an alternative structural model
decomposition, based on gathering equations that can not be
isolable is proposed. From this decomposition, it is possible
to determine the set of detectable faults and the set of isolable
faults. Then, the optimal search on the candidate sensor setis
performed. Finally, in (Rosich et al., 2012), a method that takes
into account the causal computability of the unknown variables
in the residual generation is developed.

This paper presents a comparative study of three model-
based optimal sensor placement approaches: a heuristic search
(Rosich et al., 2010), an incremental algorithm (Rosich et al.,
2007) and a Binary Integer Linear Programming formulation
approach (Rosich et al., 2009) . The efficiency of these formu-
lations is shown and compared by their application to a fuel cell
system. A fuel cell system benchmark is used and some faults
are defined to be diagnosed.

Fuel cell systems are receiving much attention in the last decade
as good candidates for clean electricity generation. The fuel cell
model involves a wide range of non-linear equations: lookup
tables, piecewise functions, saturations, non-linear dynamic
equations, etc. One way to analyze such a complex class of
models in a general framework is considering its model struc-
ture. A structural model is a coarse model description, based
on a bi-partite graph, that can be obtained early in the process
development, without major engineering efforts.

In Section 2, the sensor placement problem is formulated. The
three approaches to solve the sensor placement problem are
briefly described in Sections 3-5. Section 6 describes the Fuel
Cell Stack (FCS) system and presents the results obtained when
solving the optimal sensor placement problem. In Section 7,the
performance of the three approaches is discussed. Finally,some
conclusions and remarks are given in Section 8.

2. PROBLEM FORMULATION

The aim of the sensor placement for fault diagnosis can be
roughly stated as the choice of a sensor configuration such
that a fault diagnosis specification is fulfilled. Usually, several
sensor configurations that satisfy the required fault diagnosis
specification will exist. Giving a cost to every sensor configu-
ration makes it possible to define an optimal sensor placement
problem, where the best sensor configuration is sought.

Let S be the set of candidate sensors. Any sensors ∈ S can be
chosen for installation, involving a cost denoted byC(s). Such
cost can comprise different concepts such as the purchase price,
the maintenance price, the sensor reliability or the measurement
precision, for instance. Given a sensor configurationS ⊆ S, its
cost will be defined asC(S) ,

∑

s∈S C(s).

Let F be the set of faults that must be monitored. The diagnosis
specifications will be stated based on two properties: fault
detectability and fault isolability. In this work, the single fault
assumption will hold (i.e., multiple faults will not be covered)
and no candidate sensor fault will be considered.

A fault f ∈ F is detectable if its occurrence can be observed,
whereas a faultfi is isolable from a faultfj if the occurrence
of fi can be observed independently of the occurrence offj .
A formal definition of these two properties can be found in
Krysander (2006). The fault detectability specification will be
defined as:

FD = {f ∈ F | f is detectable} (1)

whereas the fault isolability specification will be defined as
FI = {. . . , FI(fi), . . . } ∀fi ∈ FD, with:

FI(fi) = {fj ∈ FD | fi is isolable fromfj}. (2)

In this paper, a structural model will be used to solve the
sensor placement problem. A structural model is formalized
as a bipartite graphG(M,X,A), whereM is a set of model
equations,X a set of unknown variables andA a set of edges
such that(ei, xj) ∈ A as long as equationei ∈ M depends on
the variablexj ∈ X . In the following,M will denote the set of
equations describing the fault-free behaviour of the system.

Structural modelling is suitable for an early stage of the system
design, when the precise model expressions are not known
yet, but it is possible to determine which variables are related
to each equation. Furthermore, the diagnosis analysis based
on structural models are performed by means of graph-based
methods which have no numerical problems and are more
efficient, in general, than analytical methods.

The optimal sensor placement for fault diagnosis can be for-
mally stated as follows:

GIVEN A set of candidate sensorsS, a sensor cost function
C(·), a set of model equationsM , a fault detectability
specificationFD and a fault isolability specificationFI ,

FIND the minimum cost sensor configurationS∗ ⊆ S, such
that the fault diagnosis specifications are fulfilled.

This problem involves solving the following two issues: a
search strategy for a candidate solution to the optimal sensor
placement problem, and the verification of the fault diagnosis
specifications fulfilment of this candidate solution. The desired
fault diagnosis specifications will be required to be satisfied
when all candidate sensors are installed in the system.

There are two possible approaches to the verification of the
fault diagnosis specifications for a given structural model: the
verification based on the set of redundant sub-models and the
verification based on structural model properties.

Redundant sub-models are of central importance in diagnosis.
Several structural approaches to find redundant sub-models
are suggested in the literature. The name given to redundant
sub-models depends on the approach, e.g.analytical redun-
dancy relations, ARR (Travé-Massuyès et al., 2006),minimal
structurally overdetermined set, MSO (Krysander et al., 2008),
testable sub-system, TSS (Ploix et al., 2008) andminimal eval-
uation chain, MEC (Pulido and Gonzalez, 2004). All these
approaches have in common the fact that each redundant sub-
model has a complete matching in the unknown variables plus
an extra equation, the redundant equation, used for checking
consistency. In this paper, the MSO approach will be followed.

For a given sensor configurationS, the full set of MSO sets
ΩS can be determined using AlgorithmMSO in (Krysander
et al., 2008). Then, fault detectability and fault isolability can
be verified based on the so-calledFault Signature MatrixV .
Let n be the number of MSO sets inΩS andl be the number
of faults in F. The binary matrixV of sizen × l stores the
sensitivity of an MSO set to the set of faults: if an MSO set
ωi ∈ ΩS is sensitive to faultj thenvij = 1, otherwisevij = 0.
Then, a faultfj ∈ F is detectable if there exists at least one
MSO setωi ∈ ΩS such thatvij = 1. And a faultfj1 is isolable



from a faultfj2 if there exists at least one MSO setωi ∈ ΩS

such thatvij1 = 1 ∧ vij2 = 0.

On the other hand, it is possible to verify the fault diagnosis
specifications by applying the DM decomposition (Dulmage
and Mendelsohn, 1958). The DM decomposition defines a par-
tition on the set of equations and the set of unknown vari-
ables of the structural model. Three main parts ofM can be
identified in the partition, namely, the under-determined part,
the just-determined part and the over-determined part. In the
over-determined part, there are more equations than unknown
variables, which implies that there exists some degree of re-
dundancy, and this is the part of the model that is useful for
monitoring the process. In the following, the notationM+ will
represent the over-determined part of a given set of model
equationsM .

Now, the structural characterisation of the fault diagnosis prop-
erties of a system can be stated based on the set of model
equationsM (Krysander and Frisk, 2008). Without loss of
generality, it is assumed that a single faultf ∈ F can only
violate one equation, denoted byef ∈ M . A fault f ∈ F is
detectable in a modelM if ef ∈ M+. And a faultfi is isolable

from fj in a modelM if efi ∈
(

M \ {efj}
)+

.

The next three sections of the paper recall three different search
strategies for a candidate solution for the optimal sensor place-
ment problem. In the first one, the verification of the fault diag-
nosis specifications will be based on the DM decomposition of
the structural model, whereas in the other two approaches the
Fault Signature Matrixwill be used.

3. HEURISTIC APPROACH (Rosich et al., 2010)

Algorithm 1 solves the search strategy. It is based on a depth-
first search by choosing first the nodes with lowest costs and
back-tracking to other not already explored nodes when a
branch exploration is aborted.

Algorithm 1 S∗ = searchOp(node, S∗, C(·),M, FD ,FI)

for all s ∈ node.R ordered in decreasing costdo
childNode.S := node.S \ {s}
node.R := node.R \ {s}
childNode.R := node.R
if C(childNode.S \ childNode.R) < C(S∗) and
isFeasibleDM(childNode.S,M, FD,FI) then

if C(childNode.S) < C(S∗) then
S∗ := childNode.S % update the best solution

end if
S∗ := searchOp(childNode, S∗, C(·),M, FD ,FI)

end if
end for
return S∗

Every node in the tree consists of two sensor sets:

• node.S, the sensor configuration that the node represents
(i.e., a candidate solution to test).

• node.R, the sensors that are allowed to be removed in its
sub-nodes.

Throughout the search, the best solution is updated inS∗,
whenever a feasible solution with lower cost than the current
best one is found. A branch exploration is terminated at some
node when any of the following two conditions is fulfilled:

Condition 1: The expected lowest reachable cost by exploring
sub-nodes of the current node is not lower than the cost of
the current best solution.

Condition 2: The node is not a feasible solution for the sensor
placement problem.

In Algorithm 1, the boolean functionisFeasibleDM verifies the
fault diagnosis specifications for a given sensor configuration.
This function is implemented based on the DM decomposition
approach recalled in Section 2.

Algorithm 1 is initialised with the candidate sensor set as the
root node of the search tree, the candidate sensor set as the
current best sensor configuration, the cost corresponding to the
candidate sensors, the fault-free system model and the desired
fault diagnosis specifications.

4. BILP APPROACH (Rosich et al., 2009)

A standard optimization problem using BILP can be formulated
as a linear objective function and constrained by linear inequal-
ity constraints:

min
x

cTx subject to: (3)

Ax ≤ b (4)
x is binary (5)

The main constraint is that any element of the optimization
vectorx must be binary, i.e.∀x ∈ x : x ∈ {0, 1}. Furthermore,
matrix A and vectorb form the linear inequality constraints.
Finally,c is a cost vector of the linear objective function.

The sensor placement problem can be formulated as a BILP
problem where the set of candidate sensors to be installed is
represented by an optimization variable vectorq. This means
that if entryqi ∈ q equals 1, the corresponding sensorsi ∈ S
must be installed, whereas ifqi equals 0, the sensor does not
need to be installed.

The main advantage of using this approach is that, once the
constraints are formulated, standard branch and bound search
strategies available in commercial optimization environments
can be used.

This approach requires to formulate all constraints as linear
inequalities. Thus, fault detectability and fault isolability spec-
ifications must be expressed as in (4).

The method requires the computation of the complete set of
MSO sets since the fault diagnosis specifications will be formu-
lated on theFault Signature MatrixV . The complete set means
assuming that all candidate sensors are installed, i.e.ΩS.

In a sensor placement problem, it is important to remark that
the set of MSO sets depends on the sensor configuration. Let
k be the number of sensors inS. Then, a binary matrixW of
sizen × k, which describes this correspondence, is defined: if
an MSO setωi depends on sensorsj thenwij = 1, otherwise
wij = 0.

The tight correspondence between an MSO set and a sensor
configuration leads to the definition of thelinear MSO set
selectorλ. Constraint (6) states that if an MSO setωi is not
valid for a given sensor configuration thenλi = 0:

k
∑

j=1

[wijqj + (1− wij)]− kλi ≥ 0 (6)



The fault detectability and isolability specifications canbe
formulated using thelinear MSO set selector, based on the
definitions given in Section 2. A faultfj ∈ F is detectable if
constraint (7) is satisfied.

n
∑

i=1

vijλi ≥ 1 (7)

A fault fj1 is isolable from a faultfj2 if constraint (8) is
satisfied.

n
∑

i=1

vij1(1 − vij2)λi ≥ 1 (8)

Once detectability and isolability constraints have been intro-
duced, the optimal sensor placement for FDI can be formally
stated as

min
[qT λT ]

[cT 01×n]

[

q
λ

]

subject to: (9)

A

[

q
λ

]

≤ b

[qT
λ
T ] is binary

where matrixA and vectorb depend onW andV , according
to constraints (6), (7) and (8). Remark that the optimization
vector has been extended to include thelinear MSO set selector
λ. This implies that the cost vector is also extended. However,
since the purpose of the optimisation is to find the set of optimal
sensors, the cost related to theλ is set to zero. By doing this,
the selected valid MSO sets in the optimisation problem have
no effect in the solution cost. Hence,λ is regarded as adummy
vector.

5. INCREMENTAL APPROACH (Rosich et al., 2007)

Given a sensor configurationS, one approach to computeΩS

is using AlgorithmMSO in Krysander et al. (2008). However,
the time complexity of this algorithm is exponential with the
cardinality ofS. A more efficient alternative approach, which
involves the incremental computation ofΩS , is recalled in this
section.

Performing the sensor placement analysis involves the addition
of new measurements to the system model. In the structural
framework, a sensor will be represented by one single equation
denoted assensor equationes. Without loss of generality, it
is assumed that this equation involves one single unknown
variablexi ∈ X . Given a set of sensorsS, the following set
is definedMS = {es | s ∈ S}. Thus,MS is the set of all
candidate sensor equations.

An MSO setω is a subset of model equations that is structurally
over-determined, and no proper subset ofω is over-determined
(Krysander et al., 2008). Given two MSO setsω, ω′ ∈ ΩS the
following equivalence relation is defined:

ω ∼ ω′ : ω ∩MS = ω′ ∩MS (10)

Based on this equivalence relation, an equivalence class[ω]S
can be defined as

[ω]S = {ω′ ∈ ΩS | ω ∼ ω′} (11)

whereS ⊆ S satisfiesMS = ω ∩ MS for any MSO set
ω ∈ [ω]S . Thus,[ω]S represents the set of MSO sets that depend
on the same set of sensorsS.

Given a sensor configurationS, ΩS can be partitioned into the
following quotient setΩS/∼ = {[ω]S | ω ∈ ΩS}. Thus,ΩS

can be computed as:

ΩS =
⋃

Si⊆S

[ω]Si
∀[ω]Si

∈ ΩS/∼ (12)

It is particularly interesting to computeΩS as follows:

ΩS = [ω]S ∪
⋃

S′⊂S

[ω]S′ (13)

Therefore, forcing a sensor placement search strategy in in-
creasing sensor configuration cost, implies that when evaluating
ΩS , all [ω]S′ ∀S′ ⊂ S will have been computed in a previous
iteration sinceC(S′) < C(S).

Algorithm 2 incrementally solves the optimal sensor placement
problem.

Algorithm 2 S∗ = IncrementalSP(M,S, C(·), FD ,FI)

1: for all S ∈ 2S ordered in increasing costdo
2: Generate[ω]S
3: Store[ω]S
4: ΩS :=

⋃

S′⊆S

[ω]S′ % Build ΩS

5: if isFeasibleΩ(ΩS , FD,FI) then
6: return S % The optimal solution is found
7: end if
8: end for

In Step 2 of Algorithm 2,[ω]S can be computed applying a
modified version of AlgorithmFindMSO in Krysander et al.
(2008). The boolean functionisFeasibleΩ verifies the fault
diagnosis specifications for a given sensor configuration. This
function is implemented based on theFault Signature Matrix
approach recalled in Section 2.

6. APPLICATION TO A FUEL CELL STACK SYSTEM

6.1 Fuel-cell system description

A PEM (Polymer Electrolyte Membrane) Fuel Cell System
model is used to compare the three optimal sensor placement
approaches. A model for a PEM Fuel Cell was proposed in
Pukrushpan et al. (2004). This model is widely accepted nowa-
days in the control community as a good representation of the
behavior of an actual fuel cell for control purposes. The main
components considered in the system (see Figure 1) are the
air compressor, the air manifold, the fuel cell stack, the anode
manifold and the return manifold. In the model, it is assumed
that the temperature is known and constant, since its dynamical
behaviour is much more slower than those of the rest of the
model.

Relations between model equations and system unknown vari-
ables are summarized below. Note that no analytic expression
nor parameter are detailed since only the structure of the model
is of interest. These relations are derived from the non-linear



Fig. 1. Fuel Cell Stack System

equations in Pukrushpan et al. (2004) and they are classified
according to the system component that they describe:

• Air Supply Compressor:
e1 : f1(ωcp, τcm, τcp) = 0
e2 : f2(τcm, Vcm, ωcp) = 0
e3 : f3(τcp, ωcp, psm,Wcp, fpsm) = 0
e4 : f4(Wcp, psm, ωcp, fpsm) = 0

• Air Supply Manifold:
e5 : f5(Wsm,out, psm, pca, fWsm,out

) = 0
e6 : f6(Wcp,Wsm,out, fpsm , fWsm,out

) = 0
• Fuel Cell Stack:

e7 : f7(Wca,out,Wv,inj , Ist,Wsm,out, fWsm,out
, fIst , fn) = 0

e8 : f8(Wan,in, Ist, fIst , fn) = 0
e9 : f9(Wsm,out, pca,Wv,inj , Ist, pan, Vst, fWsm,out

, fIst ) = 0
• Anode Manifold:

e10 : f10(Wan,in, pan) = 0
• Return Manifold:

e11 : f11(Wca,out,Wrm,out, fWrm,out
) = 0

e12 : f12(pca,Wca,out,Wrm,out, fWrm,out
) = 0

Model variables are classified into the following categories:

• Control variables: variables required for control purposes. These vari-
ables are already measured.
Vcm: Compressor voltage
Wcp: Air flow through the compressor
Ist: Stack current
Vst: Stack voltage

• Unmeasurable variables: variables for which sensors are not available.
τcm: Compressor motor torque
τcp: Load torque
Wv,inj : Humidifier injector flow

• Measurable variables: define all possible sensor locations.
ωcp: compressor angular speed
psm: Supply manifold pressure
Wsm,out: Supply manifold exit flow
pca: Cathode pressure
Wca,out: Cathode output flow
pan: Anode pressure
Wan,in: Anode input flow
Wrm,out: Return manifold exit flow

• System Faults.
fpsm : Compressor fault
fWsm,out

: Supply manifold fault
fn: Cell fault
fIst : Fuel Cell Stack fault
fWrm,out

: Return manifold fault

Each measurable variable has an associated sensor which to-
gether constitute the set of candidate sensors. The fault diagno-
sis specifications to be fulfilled in this application are that all
system faults must be detectable and isolable. It has been veri-

Table 1. Sensor cost for each measurable variable
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fied that these specifications would be satisfied if all candidate
sensors were installed.

6.2 Optimal Sensor Placement Solution

Solving the optimal sensor placement problem requires a cost
to be associated to each candidate sensor. Consider sensor
cost c in Table 1. Costs are dimensionless and have been
assigned according to the ease of installation and the priceof
their corresponding sensors. The three approaches compute,
the same optimal solution, as expected. The optimal sensor
configuration isS∗ = {pca, pan} with a costC(S∗) = 2.

7. COMPARATIVE STUDY

The three approaches to optimal sensor placement are com-
pared in this section. The comparison is based on the results
obtained in Section 6, when applied to the Fuel Cell Stack
System. Remark that the performance of the three search al-
gorithms depends on different issues such as the number of
candidate sensors, their cost, the number of model equations
and the number of faults.

7.1 Performance Issues

The performance of the three approaches is evaluated in this
section. All algorithms have been run on a dual core 2.4
GHz laptop computer running Windows 7, 32 bit version. All
simulation running times are mean values.

Regarding the heuristic approach, Algorithm 1 has been im-
plemented in MATLAB . Given a set of 8 candidate sensors,
the sensor placement algorithm must search a solution among
28 = 256 potential sensor configurations. However, Algorithm
1 just needs to traverse 36 sensor configurations. Of these, the
fault diagnosis specifications are only verified against 10 sensor
configurations. After all this procedure the solution is found in
0.12 seconds.

The BILP approach requires the previous computation of the
complete set of MSO setsΩS. Algorithm MSO in (Krysander
et al., 2008) has been implemented in MATLAB . It takes 94.90
seconds to compute up to 9039 MSO sets. OnceΩS is com-
puted, matricesV andW can be easily obtained.

The BILP formulation (9) involves up to 9064 constraints
and has been solved using ILOG CPLEX Optimization Stu-
dio (IBM, 2010). The solution is found in 12.43 seconds,
q∗ = [ 0 0 0 1 0 1 0 0 ]

T . This corresponds to the sensors
measuring variablespca andpan, as expected. Moreover, the
solution includes a set of selected MSO sets through vectorλ,
that depends on those sensors and guarantee fault detectability
and isolability.

MATLAB is another environment that could solve the BILP
formulation (9). However, MATLAB can not be applied in this
case since it does not support the large size of matricesA andb
in (4).



Regarding the incremental approach, Algorithm 2 has also been
implemented in MATLAB . It just needs to check 7 out of 256
potential sensor configurations, and the total amount of MSO
sets computed to check all of them is 50 out of 9039. In the end,
the full set of MSO sets corresponding to the optimal sensor
configuration contains 32 MSO sets (i.e.,|ΩS∗ | = 32). After
all this procedure the solution is found in 0.32 seconds.

7.2 Discussion

From the point of view of efficiency, the most time demanding
task is the computation ofΩS. Thus, this is a severe draw-
back for the BILP approach. In this case, even the optimal
sensor configuration search alone takes much more time than
the other two approaches, although CPLEX optimization tools
are applied. The incremental approach performance is good.
However, since the search is monotonically increasing on the
sensor configuration cost, as a solution involves a sensor con-
figuration with a higher cost, the computation time is expected
to increase significantly. Finally, the heuristic approachis the
most efficient. Above all, this is due to the fact that it does not
require the computation of MSO sets. Also, in this approach the
optimal search is expected to perform better in average thanin
the incremental approach.

In this paper, fault detectability and isolability have been con-
sidered as fault diagnosis specifications. If other specifications
were to be satisfied, the applicability of one approach or another
would depend on whether they were stated on the set of MSO
sets or on the model equations (heuristic approach). In the case
of being stated on the set of MSO sets, the incremental approach
offers more flexibility, since the BILP approach requires the
formulation of the specifications as a set of linear inequalities.

Recall from Section 2 that candidate sensor faults are not con-
sidered. Extensions that consider candidate sensor faultsexist
for the incremental approach (Rosich et al., 2007) as well as
for the BILP approach (Rosich et al., 2009). Up to now this
problem has not been solved for the heuristic approach. There-
fore, in this case, the incremental approach would presumably
be preferable over the BILP approach.

8. CONCLUSIONS

In this paper, three approaches to optimal sensor placement
have been briefly recalled. The main contribution of this work
is a comparative study on the performance of these approaches
when applied to a fuel cell stack system. The overall conclusion
is that each approach offers benefits but also drawbacks depend-
ing on the criterium being evaluated. Choosing one approachor
another will depend on the stated application specifications.

In model-based fault diagnosis, diagnosis is basically per-
formed based on the response of residual generators, which are
derived from the model equations. When the model includes
nonlinearities, deriving a residual generator can become adif-
ficult or even a practically infeasible task. In this paper, this
issue has been ignored. However, any of the three approaches
could be adapted to take into account this issue in the sensor
placement analysis phase, by following the causality frame-
work introduced in Rosich et al. (2012). Then, the solution
obtained from the sensor placement analysis would guarantee
a set of particularly easy computable residual generators.
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Travé-Massuyès, L., Escobet, T., and Olive, X. (2006). Diag-
nosability analysis based on component supported analytical
redundancy relations.IEEE Trans. Syst., Man, Cybern. A,
36(6), 1146–1160.

Wosley, L.A. (1998). Integer Programming. John Wiley &
Sons, New York, USA.

Yassine, A.A., Ploix, S., and Flaus, J.M. (2008). A method for
sensor placement taking into account diagnosability criteria.
Int. J. Appl. Math. Comput. Sci., 18(4), 497–512.


