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Abstract: The problem of optimal sensor placement for FDI consistseiteidnining the set of sensors
that minimizes a pre-defined cost function satisfying at ¢hme time a pre-established set of FDI
specifications for a given set of faults. This paper recélied model-based optimal sensor location
approaches: an Incremental search, a Heuristic searchBind®y Integer Linear Programming (BILP)
formulation. The main contribution of this paper is a congige study that addresses efficiency,
flexibility and other issues. The performance of the appneads demonstrated by an application to
a fuel cell stack system.
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1. INTRODUCTION that minimizes the total cost of the network is selected such
that the resulting ARRs satisfy that a pre-established &et o
The performance of an industrial process is strongly depeind faults can be detected and isolated. However, the assdciate
on available sensor measurements. Inaccurate measusemegatputational complexity is exponential with the number of
resulting from insufficient measurements or improper senseandidate sensors. In Rosich et al. (2007) this searctegyrat
placement can significantly deteriorate fault observigbilnd is modified by starting with no sensors and iteratively agdin
process control. sensors while thilinimal Structurally Overdeterming@SO)
) sets are incrementally generated. In Sarrate et al. (2@07),
The problem of sensor placement for Fault Detection and Isgptimaj sensor placement for model-based FDI requiresrfindi
lation (FDI) consists in determining the optimal set of ISt e set of all possible MSO sets, considering that all caateid
ments such that a predefined set of faults are detected and ig@nsors are installed. The optimization problem is cassed a
lated. The usual objective to minimize in the sensor pIaa:HmeBinary Integer Programmingroblem (Wosley, 1998), where

problem is the sensor cost. The sensor placement problem Gga ptimization vector states whether a sensor is ingtalte
then be viewed as a combinatorial problem that consistsdh fin, ot and the EDI specifications are translated into congsai

ing a sensor combination that fulfils diagnosis specific&io  \ever, the non-linear nature of such constraints lead to a

Solving the sensor placement for diagnosis can be treated fr high computational complexity of the resulting optimizeti
many different points of view. Indeed, such a problem depend@roblem. An alternative approach, which involves the folanu

on the kind of system description, the required diagnosis-sp tion of a non-linear objective function, is proposed in Rjjand
ifications, as well as the technique used to implement thg-diaVatan (2006). In Rosich et al. (2009) and Nejjari et al. (2010
nosis system. Because of this, developing a sensor platem#l¢ approach in Sarrate et al. (2007) is enhanced by formglat
method, that works for all possible fault diagnosis systeims @ Binary Integer Linear ProgrammingBILP) problem. The
unattainable. In this paper, fault diagnosis systems asecban FDI speuﬂcaﬂons are formula‘ged as linear constraintstard
consistency checking by means of structural models. The r@bjective cost function is also linear, so that the BILP fteat
quired diagnosis specifications to be fulfilled are fauledion ~ can be efficiently solved by an LP-based branch-and-bound
and isolation for a predefined set of faults. algorithm.

In the last decade, a lot of works have been devoted to analy@® the other hand, generating the complete set of MSO sets
diagnosability and sensor placement in the context of modéequires a high computation time. To deal with this problem,
based diagnosis. In Travé-Massuyes et al. (2006), optiere Some WorI§s have appeared recently without the requirement
sor placement for model-based FDI requires to find the sdt of & computing any MSO set. These methods ensure that the
possible analytical redundancy relations (ARRs), comsige MSO sets with the corresponding diagnosis capabilities can
that all candidate sensors are installed. Then, a set obsensPe generated after solving the sensor placement problem. In
— S . (Krysander and Frisk, 2008), an efficient method to find all
This work has been funded by the Spanish Ministry of SciemzeBech-  the minimal sensors sktfor maximum fault detectability and

nology through the CICYT project WATMAN (ref. DPI2009-13%3 by the  jgq|apilty from a structural model is proposed. On the other
Spanish Ministry of Economy and Competitiveness throughGQhCYT project

SHERECS (ref. DPI2011-26243), and by the European Comemighrough
contract i-Sense (ref. FP7-ICT-2009- 6-270428). 1 minimal setmeans that no proper subset is a solution.




hand, in (Yassine et al., 2008) an alternative structuradeho Fp ={f € F| fisdetectablg Q)
decomposition, based on gathering equations that can not be _ o o i i
isolable is proposed. From this decomposition, it is pdesibwhereas the fault isolability specification will be definesl a

to determine the set of detectable faults and the set ofigola Fr = {..-, Fz(f:),...} Vfi € Fp, with:
faults. Then, the optimal search on the candidate sensds set

performed. Finally, in (Rosich et al., 2012), a method thkes Fr(f;) = {f; € Fp | f; is isolable fromf;}. 2)
into account the causal computability of the unknown vdeiab ! !
in the residual generation is developed. In this paper, a structural model will be used to solve the

sensor placement problem. A structural model is formalized

This paper presents a comparative study of three models 5 pinartite grapi(M, X, A), whereM is a set of model
based optimal sensor placement approaches: a heur'smhse%quations)( a set of unknown variables antia set of edges

(Rosich et al., 2010), an incremental algorithm (Rosichlet ag - thate. . 2 c Aaslon ;
‘ . : . i g as equationy € M depends on
2007) and a Binary Integer Linear Programming formulatiog, o variatk()lez:j je) X. In the following,M will denote the set of

ap_proa_ch (Rosich et al., 2009) . The <_efficier_10y _Of these ferm‘équations describing the fault-free behaviour of the syste
lations is shown and compared by their application to a fakl c

system. A fuel cell system benchmark is used and some faufséructural modelling is suitable for an early stage of thetem

are defined to be diagnosed. design, when the precise model expressions are not known
yet, but it is possible to determine which variables areteela

to each equation. Furthermore, the diagnosis analysisdbase
on structural models are performed by means of graph-based
fethods which have no numerical problems and are more
eof;icient, in general, than analytical methods.

Fuel cell systems are receiving much attention in the laside
as good candidates for clean electricity generation. Tekcki!
model involves a wide range of non-linear equations: looku
tables, piecewise functions, saturations, non-linearadyio
equations, etc. One way to analyze such a complex class
models in a general framework is considering its model strud he optimal sensor placement for fault diagnosis can be for-
ture. A structural model is a coarse model description, dhasenally stated as follows:

on a bi-partite graph, that can be obtained early in the mCeS

h : . . IVEN A set of candidate senso® a sensor cost function
development, without major engineering efforts.

C(), a set of model equation3/, a fault detectability
In Section 2, the sensor placement problem is formulated. Th specificationF’p, and a fault isolability specificatiofi;,
three approaches to solve the sensor placement problem &&ID the minimum cost sensor configuratiéti C S, such
briefly described in Sections 3-5. Section 6 describes tieé Fu that the fault diagnosis specifications are fulfilled.

Cell Stack (FCS) system and presents the results obtained w
solving the optimal sensor placement problem. In Sectidne7,
performance of the three approaches is discussed. Figaitye
conclusions and remarks are given in Section 8.

hI'his problem involves solving the following two issues: a
search strategy for a candidate solution to the optimalagens
placement problem, and the verification of the fault diaggos
specifications fulfilment of this candidate solution. Theided

2 PROBLEM FORMULATION fault diagnosi_s specifications vv_iII be required to be satsfi
when all candidate sensors are installed in the system.

The aim of the sensor placement for fault diagnosis can bghere are two possible approaches to the verification of the
roughly stated as the choice of a sensor configuration sugiyit diagnosis specifications for a given structural mottes
that a fault diagnosis specification is fulfilled. Usuallgveral verification based on the set of redundant sub-models and the

sensor configurations that satisfy the required fault ddagn verification based on structural model properties.
specification will exist. Giving a cost to every sensor comig

ration makes it possible to define an optimal sensor placemédgedundant sub-models are of central importance in diagnosi
problem, where the best sensor configuration is sought. Several structural approaches to find redundant sub-models

_ are suggested in the literature. The name given to redundant
LetSbe thg set of (_:and_|date sensors. Any semsers can be sub-models depends on the approach, amlytical redun-
chosen for |nst§1IIat|(_)n, involving a cost denotedd®s). S.uch dancy relationsARR (Trave-Massuyés et al., 200@)jnimal
cost can comprise different concepts such as the purchiaee prstrycturally overdetermined se¥1SO (Krysander et al., 2008),
the maintenance price, the sensor reliability or the messeant  testable sub-systemSS (Ploix et al., 2008) anginimal eval-
precision, for instance. Given a sensor configuraion S, its  yation chain MEC (Pulido and Gonzalez, 2004). All these
cost will be defined a§(S) £ > ses C(s). approaches have in common the fact that each redundant sub-
Srigodel has a complete matching in the unknown variables plus
S extra equation, the redundant equation, used for chgckin
consistency. In this paper, the MSO approach will be folldwe

Let F be the set of faults that must be monitored. The diagno
specifications will be stated based on two properties: fa
detectability and fault isolability. In this work, the silegfault
assumption will hold (i.e., multiple faults will not be caegl) For a given sensor configuratia#y the full set of MSO sets
and no candidate sensor fault will be considered. Qg can be determined using AlgorithMSO in (Krysander

t al., 2008). Then, fault detectability and fault isoléhitan

e verified based on the so-callédult Signature MatrixV'.
Let n be the number of MSO sets s and! be the number
rPf faults in F. The binary matrix\” of sizen x [ stores the
sensitivity of an MSO set to the set of faults: if an MSO set
w; € Qg is sensitive to faulyj thenv;; = 1, otherwisev;; = 0.
Then, a faultf; € F is detectable if there exists at least one
MSO setw; € Qg such that;; = 1. And a faultf;, is isolable

A fault f € F is detectable if its occurrence can be observe
whereas a faulf; is isolable from a faultf; if the occurrence
of f; can be observed independently of the occurrencg; of
A formal definition of these two properties can be found i
Krysander (2006). The fault detectability specificatio \é
defined as:



from a fault f;, if there exists at least one MSO set € Qg Condition 1: The expected lowest reachable cost by exploring
such thab;;, =1 Awv;;, =0. sub-nodes of the current node is not lower than the cost of
the current best solution.

On the other hand, it is possible to verify the fault diagBosic ;. jitjon 2: The node is not a feasible solution for the sensor
specifications by applying the DM decomposition (Dulmage placement problem

and Mendelsohn, 1958). The DM decomposition defines a par-
tition on the set of equations and the set of unknown varln Algorithm 1, the boolean functioisFeasiblepy, verifies the
ables of the structural model. Three main partsidfcan be fault diagnosis specifications for a given sensor configomat
identified in the partition, namely, the under-determinadtp This function is implemented based on the DM decomposition
the just-determined part and the over-determined parthén tapproach recalled in Section 2.

over-determined part, there are more equations than unkno : C . .
variables, which implies that there exists some degree -of rglgonthm 1is initialised with the candidate sensor setles t

dndancy.and 1 i the part of the model tat o el 201945 O e Seach Lee, e candane sernor et o e
monitoring the process. In the following, the notatibf™ will 9 ’ P

represent the over-determined part of a given set of mod%j‘d‘l?:jdi:ti(S)ggsgrzbitzsaft?;lfs'free system model and theedesi
equations\/. 9 P '

Now, the structural characterisation of the fault diaga@sop- 4. BILP APPROACH (Rosich et al., 2009)
erties of a system can be stated based on the set of model

equationsM (Krysander and Frisk, 2008). Without loss ofA standard optimization problem using BILP can be formuate

generality, it is assumed that a single fajilte F can only a5 a linear objective function and constrained by lineagirad-
violate one equation, denoted by € M. Afault f € F'is ity constraints:

detectable in a modéll if e; € M. And a faultf; is isolable

subject to: 3

from f; in amodelM if ey, € (M\{efj})+_ min  ¢’x i 3
i i Ax <b 4

The next three sections of the paper recall three diffeesnich X< (4)

x is binary (5)

strategies for a candidate solution for the optimal senkurep
ment problem. In the first one, the verification of the faultdfi 1o main constraint is that any element of the optimization

nosis specifications will be based on the DM decomposition %ectorx must be binary, i.&/z € x : « € {0, 1}. Furthermore
the structural model, whereas in the other two approactess i,y A and vectorb form the linear inequality constraints.

Fault Signature Matrbwill be used. Finally, ¢ is a cost vector of the linear objective function.

3. HEURISTIC APPROACH (Rosich et al., 2010) The sensor placement problem_ can be formulated as a BILP
problem where the set of candidate sensors to be installed is

Algorithm 1 solves the search strategy. It is based on a depfifPrésented by an optimization variable veajoThis means
Iaat if entryq; € q equals 1, the corresponding senspkE S

first search by choosing first the nodes with lowest costs al st be installed. whereasf equals 0, the sensor does not
back-tracking to other not already explored nodes when nrgeed 0 be installéd a9 eq '

branch exploration is aborted.
The main advantage of using this approach is that, once the

Algorithm 1 5* = searchOnode, S*,C(-), M, Fp,Fr) constraints are formulated, standard branch and boundtsear
for all s € node.R ordered in decreasing cad strategies available in commercial optimization enviremts
childNode.S := node.S \ {s} can be used.

node.R := node.R \ {s}

childNode.R := node.R

if C(childNode.S \ childNode.R) < C(S*) and
isFeasiblgm (childNode.S, M, Fp,F;) then

This approach requires to formulate all constraints asaline
inequalities. Thus, fault detectability and fault isolépispec-
ifications must be expressed as in (4).

if C(childNode.S) < C(S*) then The method requires the computation of the complete set of
S* := childNode.S % update the best solution MSO sets since the fault diagnosis specifications will benfor
end if lated on theFault Signature Matrix/. The complete set means
S* .= searchOfrhildNode, S*,C(-), M, Fp,F;) assuming that all candidate sensors are installedie.
end if

In a sensor placement problem, it is important to remark that
the set of MSO sets depends on the sensor configuration. Let
k be the number of sensors $ Then, a binary matri¥}y’ of
sizen x k, which describes this correspondence, is defined: if
an MSO setv; depends on sensey thenw;; = 1, otherwise

e node.S, the sensor configuration that the node represents; = 0.

(i.e., acarr:didate soluﬂon to te?lt). diob din rhe tight correspondence between an MSO set and a sensor
* node.R, the sensors that are allowed to be removed in its, iguration leads to the definition of tHmear MSO set

end for
return S*

Every node in the tree consists of two sensor sets:

sub-nodes. selector\. Constraint (6) states that if an MSO setis not
Throughout the search, the best solution is updated*in valid for a given sensor configuration thén= 0:
whenever a feasible solution with lower cost than the cdrren k
best one is found. A branch exploration is terminated at some Z [wijq; + (1 —w;;)] — kX >0 (6)

node when any of the following two conditions is fulfilled: =



The fault detectability and isolability specifications cke where S C S satisfiesMg = w N Mg for any MSO set
formulated using thdinear MSO set selectpbased on the w € [w]g. Thus,jw]s represents the set of MSO sets that depend
definitions given in Section 2. A faulf; € F is detectable if on the same set of sensdf's

constraint (7) is saﬂsﬂei. Given a sensor configuratid# Qg can be partitioned into the
Z following quotient sef2s/~ = {[w]s | w € Qs}. Thus,Qg

— can be computed as:
1=

A fault f; is isolable from a faultf;, if constraint (8) is Oc — O /r 12
satisfied. s U [wls, V[w]s, € Qs/ (12)

n S;CS

Z; viy (1= vig, )Ai = 1 ®) s particularly interesting to compufeg as follows:
Once detectability and isolability constraints have bedrot _
duced, the optimal sensor placement for FDI can be formally Qs = [wls U U [w]sr (13)
stated as s1es

. T a . . Therefore, forcing a sensor placement search strategy-in in
[quuiT] [e" O1xn] {)\} subject to: ©) creasing sensor configuration cost, implies that when atialy

Qg, all [w]s ¥S" C S will have been computed in a previous
iteration since”'(S”) < C(S).

q . . .
A [)\] <b Algorithm 2 incrementally solves the optimal sensor plaeatn

roblem.
@’ AT]is binary P

where matrix4 and vectorh depend oriV andV, according Algorithm 2 $* = IncrementalSRM., S, C'(,), p, i)
to constraints (6), (7) and (8). Remark that the optimizatio 1: for all S € 25 ordered in increasing codb
vector has been extended to includelthear MSO set selector 2:  Generatéw|s

. This implies that the cost vector is also extended. However3:  Storefw]s

since the purpose of the optimisation is to find the set ofopti  4: Qg := U [w]s: % Build Qg

sensors, the cost related to thds set to zero. By doing this, scs
the selected valid MSO sets in the optimisation problem have;:  jf isFeasbeez(Qs, Fp,F;) then
no effect in the solution cost. Henck|s regarded asdummy . return S % The optimal solution is found
vector. 7 endif
8: end for

5. INCREMENTAL APPROACH (Rosich et al., 2007)
In Step 2 of Algorithm 2,w]s can be computed applying a

Given a sensor configuratio$y, one approach to compufes  modified version of AlgorithnmFindMSO in Krysander et al.
is using AlgorithmMSO in Krysander et al. (2008). However, (2008). The boolean functioisFeasibleq verifies the fault
the time complexity of this algorithm is exponential witheth diagnosis specifications for a given sensor configuratitms T
cardinality of S. A more efficient alternative approach, whichfunction is implemented based on tRault Signature Matrix
involves the incremental computation @, is recalled in this approach recalled in Section 2.
section.

Performing the sensor placement analysis involves thdiaddi 6. APPLICATION TO A FUEL CELL STACK SYSTEM

of new measurements to the system model. In the structural o
framework, a sensor will be represented by one single egquati6.1 Fuel-cell system description
denoted asensor equatior. Without loss of generality, it
is assumed that this equation involves one single unknowh PEM (Polymer Electrolyte Membrane) Fuel Cell System
variablez; € X. Given a set of sensoiS, the following set model is used to compare the three optimal sensor placement
is definedMs = {es; | s € S}. Thus, Mg is the set of all approaches. A model for a PEM Fuel Cell was proposed in
candidate sensor equations. Pukrushpan et al. (2004). This model is widely accepted nowa
days in the control community as a good representation of the
¥ehavior of an actual fuel cell for control purposes. Thermai
components considered in the system (see Figure 1) are the
air compressor, the air manifold, the fuel cell stack, thedsn
manifold and the return manifold. In the model, it is assumed
that the temperature is known and constant, since its dyaadmi
wr~w iwnN Mg =w N Mg (10) behdavliour is much more slower than those of the rest of the
model.

An MSO setw is a subset of model equations that is structurall
over-determined, and no proper subseta$ over-determined
(Krysander et al., 2008). Given two MSO setsw’ € Qg the
following equivalence relation is defined:

Based on this equivalence relation, an equivalence ¢dss

can be defined as Relations between model equations and system unknown vari-

ables are summarized below. Note that no analytic exprmessio
nor parameter are detailed since only the structure of thiemo
wls ={w €Qs |w~uw'} (11) is of interest. These relations are derived from the noealin



Table 1. Sensor cost for each measurable variable
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fied that these specifications would be satisfied if all casgid
sensors were installed.

Humidifier

e 6.2 Optimal Sensor Placement Solution

Return manifold

Solving the optimal sensor placement problem requires & cos
to be associated to each candidate sensor. Consider sensor
costc in Table 1. Costs are dimensionless and have been
assigned according to the ease of installation and the pfice
their corresponding sensors. The three approaches compute
equations in Pukrushpan et al. (2004) and they are classifigft same optimal solution, as expected. The optimal sensor
according to the system component that they describe: configuration isS* = {peq, Pan } With a costC'(S*) = 2.

Fig. 1. Fuel Cell Stack System

e Air Supply Compressor:

e1 : f1(wep, Tems Tep) =0

€2 fQ(Tcmyvcm,ch) =0

e3 : f3(Teps Wep, Psms Wep, fpam) =0

€4 : f4(Wcz77psm,UJcp7fpsm) =0

Air Supply Manifold:

es : f5 (Wsm,outvpsmypcaystm,out) =0

€6 - fG(ch7 Wsm,outa fpswfwsm,wt) =0

Fuel Cell Stack:

€7t f7(Wca,out, Wv,inj7 Ist, Wsm,out, stm,out s flst s fn) =0
€g ! fS(W(ln,in7ISt7f15t7fn) =0

€9 ! f9(Wsm,out7pca7 Wv,inj7 Ist,pan, Vst, stm,out 5 flst) =0
Anode Manifold:

€10 : flO(Wan,inypan) =0

Return Manifold:

€11 : fll(Wca,outy Wim,out, fWTm,out,) =0

€12 fl2(pca7 Wca,ouh Wrm,ouh fWrm,out) =0

Model variables are classified into the following categsrie

e Control variables: variables required for control purmosEnese vari-

ables are already measured.

Vem': Compressor voltage

Wep: Air flow through the compressor

Is¢: Stack current

Vs¢: Stack voltage

Unmeasurable variables: variables for which sensors dravadable.
Tem: COmpressor motor torque

Tep: Load torque

W, ing - Humidifier injector flow

Measurable variables: define all possible sensor locations
wep: COMpressor angular speed

Psm: Supply manifold pressure

Wsm,out: Supply manifold exit flow

pea: Cathode pressure

Wea,out: Cathode output flow

Ppan: Anode pressure

Wan,in: Anode input flow

Wim,out: Return manifold exit flow

e System Faults.

fpsm - Compressor fault

IWeam 0w SUPPly manifold fault
fn: Cell fault

fr1, - Fuel Cell Stack fault
Wi 0w - REIUN manifold fault

7. COMPARATIVE STUDY

The three approaches to optimal sensor placement are com-
pared in this section. The comparison is based on the results
obtained in Section 6, when applied to the Fuel Cell Stack
System. Remark that the performance of the three search al-
gorithms depends on different issues such as the number of
candidate sensors, their cost, the number of model eqation
and the number of faults.

7.1 Performance Issues

The performance of the three approaches is evaluated in this
section. All algorithms have been run on a dual core 2.4
GHz laptop computer running Windows 7, 32 bit version. All
simulation running times are mean values.

Regarding the heuristic approach, Algorithm 1 has been im-
plemented in MTLAB. Given a set of 8 candidate sensors,
the sensor placement algorithm must search a solution among
28 = 256 potential sensor configurations. However, Algorithm

1 just needs to traverse 36 sensor configurations. Of thase, t
fault diagnosis specifications are only verified againstekser
configurations. After all this procedure the solution isridun

0.12 seconds.

The BILP approach requires the previous computation of the
complete set of MSO sef3s. Algorithm MSO in (Krysander

et al., 2008) has been implemented imMAB . It takes 94.90
seconds to compute up to 9039 MSO sets. Ongds com-
puted, matrice¥” andW can be easily obtained.

The BILP formulation (9) involves up to 9064 constraints
and has been solved using ILOG CPLEX Optimization Stu-
dio (IBM, 2010). The solution is found in 12.43 seconds,

g =1(0001010 O]T. This corresponds to the sensors
measuring variables., andp,,, as expected. Moreover, the
solution includes a set of selected MSO sets through vegtor
that depends on those sensors and guarantee fault deligctabi
and isolability.

Each measurable variable has an associated sensor whichNaTLAB is another environment that could solve the BILP
gether constitute the set of candidate sensors. The faghdi  formulation (9). However, MTLAB can not be applied in this
sis specifications to be fulfilled in this application aretthlh  case since it does not support the large size of matrcasdd
system faults must be detectable and isolable. It has been vén (4).
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