
Redundant Inverse Kinematics: Experimental Comparative Review

and Two Enhancements

Adrià Colomé and Carme Torras

Abstract—Motivated by the need of a robust and practical
Inverse Kinematics (IK) algorithm for the WAM robot arm,
we reviewed the most used closed-loop methods for redundant
robots, analysing their main points of concern: convergence,
numerical error, singularity handling, joint limit avoidance,
and the capability of reaching secondary goals. As a result of
the experimental comparison, we propose two enhancements.
The first is to filter the singular values of the Jacobian
matrix before calculating its pseudoinverse in order to obtain
a more numerically robust result. The second is to combine
a continuous task priority strategy with selective damping to
generate smoother trajectories. Experimentation on the WAM
robot arm shows that these two enhancements yield an IK
algorithm that improves on the reviewed state-of-the-art ones,
in terms of the good compromise it achieves between time
step length, Jacobian conditioning, multiple task performance,
and computational time, thus constituting a very solid option
in practice. This proposal is general and applicable to other
redundant robots.

I. INTRODUCTION

Moving robot arms in task space requires efficient and

well-behaved Inverse Kinematics (IK) solutions. For several

decades, a lot of effort within the Robotics community has

been devoted to obtaining fast and robust IK algorithms.

Analytical methods have always been preferred to iterative

ones, because their solution is exact and usually faster to

compute. Nevertheless, with the rise of redundancies in

robots, analytical solutions become harder to obtain [1] [2]

and thus again alternatives need to be explored [3] in order

to benefit from the additional degrees of freedom.

In tuning the IK of the 7-dof WAM manipulator to the

particular requirements of some applications, we noticed that

the existing generic KDL algorithm [4] could sometimes fail

due to joint limit vulnerations. We tried other open-source

IK algorithms [5], but none performed to entire satisfaction,

thus we explored other possibilities for redundant IK.

Although there exist many alternatives for trying to solve

the IK problem, such as interval methods [6], distance based

methods [7], or even neural networks [8], probably the most

popular way is to use closed-loop algorithms. In these Closed

Loop Inverse Kinematics (CLIK) algorithms, a first-order

Jacobian matrix [9] [10] of the robot is computed, which

maps joint velocities into task space velocities, and inverted

to map the error into a joint state update which is likely to

This work is partially funded by the CogSys STREP IntellAct project
(FP7-ICT-269959), the CogSys STREP Project GARNICS (FP7-ICT-
247947) and the Catalan Research Commission through grant 2009SGR155.

The authors are with Institut de Robòtica i Informàtica Industrial
(CSIC-UPC), Llorens Artigas 4-6, 08028 Barcelona, Spain. E-mails:
[acolome,torras]@iri.upc.edu

reduce the task error. The updated joint state at step k + 1
is then θ

k+1 = θ
k +∆θ

k, for some computed ∆θ
k:

∆θ
k = αJ⋆(xd − f(θk)) = αJ⋆e, (1)

where α is a gain, J⋆ is an inverse matrix of the Jacobian,

f(·) is the forward kinematics function, xd the desired posi-

tion and e the positioning error. The first attempts to close

the IK loop used the Moore-Penrose pseudoinverse [11] of

the Jacobian matrix [12] to invert the differential kinematics

equation of the robot. In other works, the Jacobian transpose

was used [13], which is faster to compute. These methods

become unstable when the robot is close to a singularity:

the condition number of the Jacobian becomes very large,

thus amplifying the numerical error at each iteration, and

also requiring large variations in some joints in order to

reduce the error in a given direction. To solve these problems,

the Jacobian matrix can be damped or filtered [14] [15],

reducing this condition number, but not always reducing

large joints variations. Some attempts also use second-order

derivatives of motion, i.e.: calculating the Hessian matrix

of the forward kinematics [16], although this requires much

more computation time.

Using first-order derivative methods of the robot’s motion

also has the drawback that, depending on the goal position,

an algorithm can get stuck at an algorithmic singularity, a

point where the error e belongs to the kernel of the inverted

Jacobian, or in a multiple-task algorithm, a secondary task

joint variation may take the contrary value of the primary

task, thus the total computed joint variation being ∆θ ≃ 0.
In a continuous time assumption, the convergence of

closed-loop methods can be demonstrated in terms of Lya-

punov theory [17] [18]. Nevertheless, these computations

have a gain, and the smaller this gain is, the more iterations

needed to converge. Thus this gain is lower bounded by

the computation capability of a processor, and convergence

cannot always be assured by means of Lyapunov theory.

Although there exist discrete-time versions of it [19], their

application is not immediate, and some additional assump-

tions must be made.

There is also some literature about the convergence of

these methods which takes the discrete-time system as a se-

quence and proves its convergence. [20] finds an upper bound

of the gain α that guarantees convergence, but restricting

the operational space to a subset where the Jacobian is full-

rank with bounded singular values, so its application is not

general. Nevertheless, this work points out the relevance of

the initial error dependency for these methods to converge,

showing that they are more robust when used locally. In

general, a smaller gain improves convergence rate on one

hand, while slows the algorithm on the other.

The main advantadge of redundancy is to be able to

perform secondary tasks and/or to choose which solution

suits us best. To this purpose, an optimization criterion can

be set to find, within the set of IK solutions, the one that

performs best according to the criterion. The most common

procedure is to project a gradient of a secondary task into the

kernel of the Jacobian matrix, in order not to affect much the

position error. Other algorithms like the Augmented Jacobian

or the Extended Jacobian [21], in which rows are added to

the Jacobian, have been used. Among the existing criteria for

optimization, the manipulability measure [22] [23] is often

used. Other criteria such as collision avoidance [24] (by set-

ting a minimum distance to a certain object), minimum effort

kinematics [25] or structural stiffness are also used [26].

But respecting joint limits is often the main priority when

exploiting the redundancies of a robot.

This paper provides an overview of the different CLIK al-

gorithms found in literature, also concerning numerical error

propagation, which is sometimes forgotten when analysing

these algorithms. Focusing on solving the IK with feasible

joint values, two enhancements of the existing literature are

proposed. The first one is a way of filtering the Jacobian

matrix that ensures a given numerical conditioning, while the

second uses the advantages of the latest works on continuity

of inverse operators applied to robotics [27] with a controlled

step size [28] to smoothen the motion of the robot. All the

analysed algorithms, as well as the proposed enhancements,

have been implemented on a Barrett’s WAM arm and tested

both in simulation and in real experimentation.

II. PRELIMINARIES

Along this work, the notation in Table I will be used.

TABLE I

NOTATION

J Geometric Jacobian

J† Jacobian pseudoinverse
θ = [θ1, ..., θm], ∆θ Joint state and variation
x Cartesian robot position (n-dim)
xd Desired robot position (n-dim)
e = xd − x Position error of the robot
κ(·) Condition number of a matrix
f(·) Forward kinematics function
σ1, ..., σn Jacobian singular values
m Number of joints
n Task space dimension

For the positioning error representation as a n-dimentional

generalised coordinate vector, as it compares a position error

(distance) vs an orientation error (angular), it is often taken

the equivalence of 2rad = 1m (see [24], pp 137-140).

Nevertheless, different metrics can be used to improve the

performance of the algorithms [29].

Given a system of the type ∆θ = J⋆e, where ⋆ denotes

an inverse operator, it is very common to have numerical

or measurement errors on the robot’s task position, and

therefore δe on the position error e (difference between

target and current positions). Then, it is fundamental to avoid

amplifying this error when computing ∆θ. To this purpose,

the relative error δθ on ∆θ coming from the error δe on e

can be computed using the condition number of J⋆ [30] [31]:

‖δθ‖

‖∆θ‖
≤ κ(J⋆)

‖δe‖

‖e‖
,

where κ(J⋆) is the condition number of J⋆, computed as

the ratio of its maximum and minimum singular values:

κ(J⋆) =
σmax(J

⋆)

σmin(J⋆)

III. REVIEW OF CLIK ALGORITHMS

In a redundant manipulator, the Moore-Penrose pseudoin-

verse is often used in (1), as it is a generalised inverse which

is still well-defined when a matrix is rank-deficient. If J =

UΣV T =
n
∑

i=1

σiuiv
T
i is the Singular Value Decomposition

(SVD) of the Jacobian matrix, then its pseudoinverse is:

J† = UΣV T =

n
∑

i=1

1

σi
uiv

T
i , (2)

where ui, vi are the columns of U and V . In (2) we can see

there is a discontinuity on the pseudoinverse operator around

a singular configuration of a robot (a singular value becomes

zero). This discontinuity means the Jacobian Pseudoinverse

(JP) algorithm gives large ∆θ values with high conditioning.

Using the Jacobian Transpose (JT) we can avoid these

gains [32], but we do not avoid the conditioning issue. In

addition, JT can add chattering around the solution. In fact,

for the case of the JP and JT, the condition number is

κ(J⋆) = σ1

σn
(assuming σ1 > ... > σn ≥ 0) and tends to

infinity as σn → 0, thus loosing all the numerical precision

in the direction associated with σn.

To avoid large gains, reducing the global gain is not a

truly effective strategy, as we will be damping the gain in

the directions we would like the robot to move. For this

reason, and without loss of generality, we will omit the step

α from now on. In [28] it is proposed a Selective Damping

(SD) of the gain on the joints variations derived from each

task space error component, which effectively solves the gain

issues, but does not solve singularity issues as the loss of rank

and algorithmic singularities.

There are some ways of trying to avoid these discontinu-

ities on the singularities, such as Jacobian Damping (JD)

which consists of adding a small diagonal term λ when

computing the pseudoinverse matrix, or Filtering (JF) the

Jacobian matrix [14], in which this λ depends on how close

to a singularity the robot is. This modification removes the

mentioned discontinuity, but its effect on the condition num-

ber or gains may not be strong enough around a singularity.

The Error Damping (ED) [33] strategy is to use the norm

of the current error to damp the pseudoinverse. This reduces

large gains when away from the goal, but if, for instance,

the goal is close to a singularity, the error is not a good

damping factor. For this reason, the ED can be improved

by adding a term Ω = diag(ω1, ...ωn) [34]. But in the

mentioned case, this would be equivalent to a JD algorithm

in the neighbourhood of a singular goal position.

In fact, in the Appendix we show that adding this diagonal

term in damping algorithms is not completely robust in terms

of conditioning, and there is a tradeoff between the region

where the condition number is bounded and the upper bound

of the conditioning in this region.

IV. SINGULAR VALUE FILTERING (SVF)

We propose a new way of filtering the Jacobian matrix,

which consists in modifying the Jacobian matrix’ singular

values to obtain an alternative pseudoinverse that is always

full-rank and whose condition number is bounded. To this

purpose, if we take the SVD of J :

J = UΣV T =

n
∑

i=1

σiuiv
T
i ,

then we define

Ĵ =

n
∑

i=1

hν,σ0
(σi)uiv

T
i ,

where

hν,σ0
(σ) =

σ3 + νσ2 + 2σ + 2σ0

σ2 + νσ + 2
, (3)

is our proposed filtering rational function with:

σ0 the minimum value we want to impose to the singular

values of J .ν a shape factor.And then we can compute

(assuming σi > σi+1, ∀i)

Ĵ† =

n
∑

i=1

1

hν,σ0
(σi)

viu
T
i , (4)

to use it as the pseudoinverse. Then, it can be easily seen

that hν,σ0
(σ), verifies:

• hν,σ0
(σ) is continuous and differentiable on the positive

side of R, which is where the singular values are.

• limσ→0 hν,σ0
(σ) = σ0, ∀ν , so σ0 is the minimum value

we will allow for the singular values of the Jacobian

matrix.

• hν,σ0
(σ) has an asymptote with equation y = σ

for σ → ∞, as limσ→∞
hν,σ0

(σ)

σ = 1 and

limσ→∞ (hν,σ0
(σ)− σ) = 0, ∀ν and ∀σ0.

• hν,σ0
(σ) is monotonic if ν and σ0 are defined verifying

ν > σ0 and 2 > νσ0, which are not very restrictive

conditions. On the other hand, the greater ν is, the

smaller the value |hν,σ0
− ν|. This gives us hints on

which value to use for ν. In the experimentation, we

have taken ν = 10. Monotonicity guarantees that the

condition number of the pseudoinverse (4) is always:

κ(Ĵ†) =
(σ3

1 + νσ2
1 + 2σ1 + 2σ0)(σ

2
n + νσn + 2)

(σ2
1 + νσ1 + 2)(σ3

n + νσ2
n + 2σn + 2σ0)

so we have:

lim
σn→0

κ(Ĵ†) =
(σ3

1 + νσ2
1 + 2σ1 + 2σ0)

σ0(σ2
1 + νσ1 + 2)

=
A(σ1)

σ0
,

which is always bounded by the inverse of the minimum

value assigned to the singular values.

To sum up, we have that Ĵ has lower-bounded singular

values and tends to J when its singular values move away

from 0.

Moreover, with this filtering, the jacobian matrix never

looses rank as the singular values are strictly positive. In

Table II we can see the equations defining all the above-

mentioned algorithms.

Another advantage of this method can be seen in Fig. 1,

where we plot the condition number of different methods

in the case of a 4R planar manipulator moving towards a

singularity, for a damping factor of λ = 10−3, and allowing

a maximum damping factor on the filtering algorithm (vari-

able damping factor) of λmax = 5λ. As we have already

commented, the JP algorithm’s condition number tends to

infinity, and so does the JT. The JD and JF algorithms

perform better, with reduced conditioning, even bounded out

of a small interval. Nevertheless, the loss of precision is high.

On the other hand, the error-damped methods have very low

condition number, but it grows fast as the robot reaches the

goal. The proposed method, with σ0 = 0.005 and ν = 10,
keeps its condition number stable. Our proposal presents

the best bounded conditioning, although it can still have

considerable gains on their iterations. This can be solved

by combining it with the SD.

Note that, as the least singular value approaches very small

values compared with the damping factors, the condition

number exponentially grows towards infinity, as commented

in the Appendix.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

0

500

1000

1500

least singular value

C
o
n
d
it
io

n
 N

u
m

b
e
r

Condition Number for filtering methods

JP and JT

JD

JF

ED

IED

SVF

Fig. 1. Condition Number for different methods on a 4R planar robot
approaching a desired singular position.

V. MULTIPLE TASKS

Usually, when computing the IK of a robot, it is a

good idea not only to compute a solution of the inverse

TABLE II

REVIEWED IK METHODS

Name Abbreviation Equation (∆θ =) References

Jacobian Pseudoinverse JP J†e =
n
∑

i=1

1
σi

vi
(

uTi · e
)

[12]

Jacobian Transpose JT JT e =
n
∑

i=1
σivi

(

uTi · e
)

[13]

Selective Damping SD J†SD e =
n
∑

i=1
s(σi, i, J, γmax)vi

(

uTi · e
)

[28]

Damped Jacobian JD J†D e = JT (JJT + λ2I)−1e =
n
∑

i=1

σi

σ2

i
+λ2

vi
(

uTi · e
)

[15]

Filtered Jacobian JF J†F e = JT (JJT + λ2unu
T
n)−1e =

n−1
∑

i=1

1
σi

vi
(

uTi · e
)

+ σn

σ2
n+λ2

vn
(

uTn · e
)

[14]

Error Damping ED J†ED e = JT
(

JJT + EIn
)−1

e =
n
∑

j=1

σi

σ2

i
+E

vi
(

uTi · e
)

[33]

Improved Error Damping IED J†IED e = JT
(

JJT + EIn +Ω
)−1

e =
n
∑

j=1

σi

σ2

i
+E+ωi

vi
(

uTi · e
)

[34]

Singular Value Filtering SVF Ĵ†e =
n
∑

i=1

σ2+νσ+2
σ3+νσ2+2σ+2σ0

vi
(

uTi · e
)

proposed

kinematics, but also the solution which behaves best for a

certain criterion. Even more with redundant robots, where the

number of solutions may be infinite. Also, joints usually have

limits on their prismatic/rotational position, and a solution to

the IK with a joint value outside its limits is not a feasible

solution, so one of the most important properties of a good

IK solution is that it lies inside these limits. To this purpose,

the redundancies of a robot are often used to satisfy such

constraint goal.

A way to bias the solution given by the pseudoinverse

operator is to use a Jacobian Weighting (JW) algorithm, in

which a matrix W is used as a metric on the joint space

to give more importance to the joints we want to move.

A typical use of it is to increase the weight of a joint

when it approaches its limit [35], or even to block joints

when surpassing their limits, which is called Joint Clamping

(JC) [36].

A redundant robot can also have its Jacobian aug-

mented up to a square matrix using Task Augmentation

(TA) [37] [38], where gradients of secondary objectives are

added as rows to yield a square and invertible matrix, JV .
Note that special care must be taken in order to avoid linear

dependency of the Jacobian with its added rows.

Another method to use redundancies for a secondary

task is Gradient Projection (GP) [39], which consists on

projecting the gradient of a potential function, F , onto the

kernel of the main task with the kernel projection operator

P = I−J†J . This is effective at biasing solutions according

to a certain criterion, but does not work, for instance, using a

push-to-center value to avoid joint limits. In fact, considering

joint limits on the kernel of the main task is not enough to

ensure those are avoided. GP can be generalised using what

is called Task Priority (TP) [40], in which a list of tasks is

performed in a hierarchical order projecting each one onto

the kernel of the previous tasks.

Among these methods, if we want to avoid joint limits,

neither JW, TA or GP have success at it. This is due to the

secondarity of such a task. And JC may result in permanently

blocking degrees of freedom. Then, the best solution is to

use a task priority scheme, with its main priority being a

push-to-center value of the joints, activated by a (commonly

diagonal) matrix H = diag(h1, ..., hm), being hi > 0 if θi
is close to its limits, up to 1 if those are reached, and 0
otherwise, with a gain µ:

∆θ = −H(µθ) +
[

J(Im −H†H)
]†
(e+ JH(µθ)) (5)

An additional problem that may arise when using this

algorithm is that, even with an activation matrix continuous

wrt. joint activation as in [36], the pseudoinverse operator

is not continuous with respect to this activation matrix.

Theorem 4.2 in [41] states that the effect of any nonzero

diagonal element of an activation matrix H is equivalent

when using it in a JC or TP algorithm. In fact, it can

also be seen that damping the pseudoinverse does not solve

the problem, out of a very small interval [42]. Due to

these issues, in that work it is presented a continuous (wrt.

activation matrix) pseudoinverse operator, defined as:

For task-activation matrices G = diag(g1, .., gn):

J⊕G =
∑

P∈℘(N)

(

∏

i∈P

gi

)(

∏

i/∈P

(1− gi)

)

J†
P

℘(N) being the power set of N = {1, .., n}, and JP = G0J ,
where G0i = 1 if i ∈ P and 0 otherwise

And for joint-activation matrices H = diag(h1, .., hm):

JH⊕ =
∑

Q∈℘(M)





∏

i∈Q

hi









∏

i/∈Q

(1− hi)



 J†
Q

℘(M) being now the power set of M = {1, ..,m}, JQ =
H0J , where H0i = 1 if i ∈ P and 0 otherwise. With this

pseudoinverse operator, (5) becomes (from Eq. (20) in [27]):

∆θ = −H(µθ) + J (Im−H)⊕(e+ JH(µθ)) (6)

Which we will call Continuous Task Priority (CTP). In

Table III we can see the commented algorithms for secondary

tasks, which have been applied to avoid joint limits.

VI. SMOOTHING ENHANCEMENT

The TP scheme may present large steps and gains, result-

ing in an almost-chaotic behaviour. To solve these uncon-

trolled gains, it would be necessary to avoid large steps and

condition numbers. Paying attention to (5), we can reorder

the terms and separate the position error-dependent terms (e)

from those that don’t depend on it):

∆θ =
(

I − J (Im−H)⊕J
)

H(−λjlθ) + J (Im−H)⊕e. (7)

We intend to apply the ideas underlying the SD [28], so as

to damp selectively each one of the task space eigenvectors

of the Jacobian matrix J , or its filtered version with SVF,

taking care of the dependency of the position variation J∆θ

with respect to the position error e.

To do so, we have to find a bound for J∆θ, i.e., the

position variation after each step, which can be written,

using (7) and separate the position error-depending part (e)

from the rest as follows:

J∆θ = J
(

I − J (I−H)⊕J
)

H(−λθ) + JJ (I−H)⊕e.

Now, after calculating J (I−H)⊕, we can use its SVD,

keeping in mind that the result of this decomposition has

to be expressed knowing J (I−H)⊕ is an inverse of J , thus

J (I−H)⊕ = V̂ Σ̂−1ÛT =

n
∑

i=1

σ̂−1viu
T
i .

And knowing that (uTk ·e) = (uTk ·
n
∑

s=1
(uTs ·e)us) =

n
∑

s=1
(uTs ·

uk)(u
T
s · e) in the expression

J (I−H)⊕e =
r
∑

i=1

σ̂−1
i viu

T
i e,

we can take, by analogy to the SD algorithm, for e = us,

the joints variation ∆θ
s used by SD as:

J (I−H)⊕us = σ̂−1
s vs ⇒ ∆θ

s = σ̂−1
s Jvs

which has an effect on the jth joint of:

∆θsj = σ̂−1
s Jjvj,s,

where vj,s is the jth position on the sth column of matrix

V , and Jj is the jth column of matrix J .
Therefore, adding the norms for all joints we get the bound

Ms as defined in [28]:

m
∑

j=1

|∆θsj | ≤ σ̂−1
s

m
∑

j=1

|vj,s|‖J
j‖ = Ms,

This Ms is a bound on the position change gain in the task

space generated by the error-dependent part of the algorithm,

for each component of the error, and thus with it we can set,

for each s = 1..n, the maximum joints change γmax:

γs = min(1, 1/Ms)γmax (8)

To then proceed exactly as in the SD:

We will first compute the joints change for each error

component (m-dimensional vector):

ws = σ̂−1
s vs

(

uTs · e
)

,

and we will bound this variation with the γs obtained at (8):

∆qs =







1 if ‖ws‖ < γs
ws

‖ws‖γs if ‖ws‖ ≥ γs

Now, differing from SD algorithm, we have to add the

non error-dependent part of the algorithm to the sum of each

component :

∆θ̂ = (I − J (I−H)⊕J)H(−λθ) +
∑

s

∆qs,

to finally bound the total joint variation by γmax:

∆θ =











1 if ‖∆θ̂‖ < γmax

∆θ̂

‖∆θ̂‖
γmax if ‖∆θ̂‖ ≥ γmax

In this way, we ensure that ∆θ is bounded, respects joint

limits, and it is sufficiently well-conditioned.

VII. EXPERIMENTATION

All the methods described have been implemented in

Matlab and C++ (using a ROS library) in a 7-dof redundant

WAM robot arm (with the Denavit-Hartenberg parameters

as shown in Table IV) and their performance has been

tested as global IK solvers. To do so, 1000 random feasible

initial and target positions have been generated, using a

uniform probability distribution between each joint’s limits,

and mapped into a cartesian position with the forward

kinematics function.

TABLE IV

DENAVITT-HARTENBERG STANDARD PARAMETERS FOR WAM ROBOT

ARM, WHERE d3 = 0.55, d5 = 0.3 AND d7 = 0.06.

link ai αi di θi θmin
i θmax

i

1 0 −π/2 0 θ1 -2.6 2.6
2 0 π/2 0 θ2 -2.0 2.0
3 a −π/2 d3 θ3 -2.8 2.8
4 -a π/2 0 θ4 -0.9 3.1
5 0 −π/2 d5 θ5 -4.8 1.3
6 0 π/2 0 θ6 -1.6 1.6
7 0 0 d7 θ7 -2.2 2.2

The results of a Matlab simulation can be seen in

Table V, where the columns represent (in order) the

percentage of solutions found, the percentage of solutions

found respecting joint limits, the average computation

time for all tests, for those where a solution was found

TABLE III

METHODS USED TO AVOID JOINT LIMITS

Name Abbreviation Equation References

Jacobian Weighting JW ∆θ = W−1JT (JW−1JT)−1e [35]

Gradient Projection GP ∆θ = J†e+ µP∇F [39]

Joint Clamping JC ∆θ = H(JH)†e [36]

Task Augmentation TA ∆θ = J†
ve [38]

Task Priority TP ∆θ = −H(µθ) +
[

J(Im −H†H)
]†

(e+ JH(µθ)) [40]

Continuous Task Priority CTP ∆θ = H(−µθ) + J(Im−H)⊕(e− JH(−µθ)) [27]

TABLE V

BEHAVIOUR OF THE STUDIED METHODS FOR A SAMPLE OF 1000 RANDOM INITIAL AND END POSITIONS FOR THE WAM ROBOT ARM. NOTATION AS

IN TABLES II AND III.

Method % sol. % sol.
resp. limits

t(ms) tsol (ms) tJL (ms) enosol it itsol

JP 100.0 6.8 42.6 42.6 19.4 - 12.2 12.2
JT 40.70 12.70 710.6 504.8 527 0.302 209.4 148.7
SD - γmax = 0.5 98.4 33.9 165.2 154.3 140.6 0.042 46.9 43.5
JD - λ = 0.005 100.0 6.9 39.4 39.4 18.9 - 11.6 11.6
JF - λmax = 4λ 100.0 7.4 38.6 38.6 19.9 - 11.2 11.2
ED 100.0 32.3 36.9 36.9 32.2 - 10.6 10.6
IED - Ω = 0.01Im 100.0 32.4 38.7 38.7 33.3 - 11.1 11.1
SVF - nu = 10, σ0 = 0.01 100.0 8.7 37.1 37.1 22.1 - 10.7 10.7
SVF+ED 100.0 32.3 35.8 35.8 30.9 - 10.3 10.3
SVF+SD 99.7 34.4 147.4 145.2 133.7 0.041 41.9 41.1

JW - as in [35] 100.0 7.0 45.7 45.7 20.5 - 13.0 13.0
GP - µ = 0.2 100.0 2.0 55.8 55.8 18.7 - 15.9 15.9
TA - as in [38] 99.2 24.5 21.3 17.5 16.3 0.135 43.6 35.9
JC - H as in [27] 52.6 20.0 476.3 115.7 93.8 0.601 136.4 33.0
TP - H as in [27] 0.5 0.5 934.8 22.3 22.3 1.163 249.8 6.0
CTP - H as in [27] 34.6 34.6 7007.0 2242.0 2242.0 0.440 184.6 59.2
CTP+SVF 34.6 34.6 7042.6 2267.0 2267.0 0.395 184.8 59.7
CTP+SD 48.2 48.2 6876.9 2027.3 2027.3 0.286 151.7 45.1
CTP+SD+SVF 48.5 48.5 6830.5 1867.9 1867.9 0.276 149.2 41.1

and for those respecting joint limits, the average error

using the position-orientation metric in Section II when

the solution has not been found, and the average number

of iterations and such average when solutions were found.

The performance of the reviewed state-of-the-art methods is

compared with our proposals, which are highlighted in bold

face in the table. Besides the filtering enhancement SVF in

different combinations, we have used the CTP algorithm as

in (6), together with the SD proposed in Section VI, and

we have also combined them with SVF to compare results.

Additional experiments with videos can be downloaded at

http://www.iri.upc.edu/groups/perception/IK/IKacolome.zip.

With these data, we can draw the following conclusions:

• Low convergence ratio of JT. This is due to chattering

when activating/deactivating joints, as commented . The

remaining algorithms not considering joint limits always

converge, except for SD, due to the limited number of

iterations.

• JW, TA and GP methods do not respect joint limits.

This is due to the fact that avoiding limits is not treated

as a priority, thus zero-error positioning prevails.

• The TP algorithm does not converge most of the times.

This is due to the discontinuity commented before,

causing large gains which then block the joints.

• Using SVF improves the speed of the JP and, combined

with ED, performs much faster than the rest of meth-

ods. Nevertheless, we also recommend using SD+SVF

because this guarantees the steps will always be smooth,

even in the case of a singular goal position.

• CTP algorithms do not always converge, but when they

do, the solution respects joint limits. This shows that

using these limits as a primary task a is successful

strategy. Adding SD improves the convergence ratio,

and it also reduces their computation time. Overall, the

CTP computation times are very large. This may be

in part because of Matlab not being optimal for such

computations, but it should be reduced by finding an

approximate value of the continuous pseudoinverse.

The low convergence ratio of CTP algorithms is due to

algorithmic singularities. These happen when, close to a joint

limit, the push-to-center value of the joint limit avoidance

task compensates the position tracking error. This is like

the algorithm walks into a dead end in the joint space. The

algorithms not fully respecting joint limits can cross regions

with unfeasible joint values to reach the goal, while CTP

algorithms can’t. To avoid this convergence problem, some

literature works try to find a better initial point through a

biased random sampling over other possible starting configu-

rations. or it is also possible to use a path planning algorithm

in order not to get stuck. Actually, as mentioned, we have

tested these methods as global IK solvers to highlight their

differences, but of course they should be used in a more local

way, leaving trajectory connectivity issues to a global path

planner.

VIII. CONCLUSIONS

Along this work, the most relevant CLIK algorithms for

redundant robots have been compared. Special attention has

been paid to three issues:

• Large gains in some iterations. JP may have very large

gains along certain directions, and reducing the global

gain is not the best solution. In fact, having such large

gains is assimilable to a random positioning in the joint

space, whose topology is equivalent to an m-Torus,

mapped into the workspace, and its high convergence

ratio in Table V is due to the fact that large steps

are taken until the end-effector reaches a position from

which the goal is achievable. The JT algorithm does not

have such problem, but in some cases presents so much

chattering that makes its computational cost grow. Since

SD efficiently solves this problem, so it is recommended

to use such damping in most algorithms.

• Matrix conditioning, We have compared the capability

of the different algorithms to avoid amplifying the

numerical error on robot positioning. The outcome

has been that most of the existing methods do not

perform well near a singularity. Filtering or damping

the Jacobian matrix improves this conditioning, but with

no numerical guarantees. On the other hand, using the

current error as a damping factor reduces the condition

number, but when close to the goal, the ED algorithm

(or its improved version, IED) behaves similarly to the

filtering or damping. Therefore, we proposed a new

filtering method based on a continuous modification of

the singular values of the Jacobian, which we named

SVF. We proved theoretically and in practice that our

proposal improves the existing methods to numerically

filter or damp the Jacobian pseudoinverse of a matrix.

We have also seen that this does not mean a significant

growth in the computational cost. With this filtering,

the Jacobian matrix can be assumed to be always full

rank, without generating much additional error on the

algorithms, thus the pseudoinverse operator would not

have discontinuities due to a rank change in the Jacobian

matrix. This can be used in all control-based methods

to improve their performance.

• Secondary tasks and joint limits. We have presented

some first-order approaches to achieve secondary tasks.

In particular, we have tried to devise an algorithm that

efficiently avoids joint limits. Through experimentation,

we have seen that the only way to ensure avoiding such

limits is to treat them as the main priority task by adding

an activation matrix on this main task. This then results

in discontinuities of the pseudoinverse operator when

activating or deactivating a joint push-to-center value to

avoid a joint limit. However, this shortcoming is solved

with the continuous pseudoinverse (CTP) which, when

combined with SD and our proposed filtering (SVF),

ensures controlled steps and a full-rank behaviour of

the Jacobian.

As it is well-known, and it showed up in our testing with a

redundant robot such as Barrett’s WAM arm, CLIK methods

used as global IK solvers do not always reach the goal. This

is because of algorithmic singularities, i.e., when the main

task and the secondary task compensate one another and the

computed joint variation becomes zero. To solve this issue,

it is recommended to add a path planner to the algorithm

or a randomized initial value to iterate, to prevent the robot

getting stuck in such a situation.

APPENDIX

The JD algorithms and those similar, such as the JF, ED

and IED, avoid discontinuities on the Jacobian with respect

to its singular values. Nevertheless, if we pay attention to

the resulting condition number, we will see that it provides

no guarantee of keeping the numerical error within an

acceptable range.

Let g(σ) = σ
σ2+λ2 be the function used instead of a trivial

inversion 1/σ for the singular values when computing the

pseudoinverse of the Jacobian.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

50

100

150

200

250

300

350

400

450

500

Inverse of a singular value for JD (λ=10
−3

)

g
(σ

)

σ

Fig. 2.

This function g, as we see in Fig. 2, has a maximum at

σ = λ with a value of g(λ) = 1
2λ .

Now, we can distinguish different cases depending on the

least singular value of the Jacobian:

• σn > λ, or λ2

σi
< σn < λ, ∀i 6= n. Then g(σn) > g(σi),

∀i 6= n and the condition number is:

κ(J†D) =
σn(σ

2
1 + λ2)

σ1(σ2
n + λ2)

σn→λ
−→

λ2 + σ2
1

2σ1λ
∈ O

(

1

λ

)

• ∃i, j so that λ2

σi
< σn < λ2

σj
. Then we have g(σi) <

g(σn) < g(σj) and, as the condition number will not

depend on σn, it will be bounded.

• σn < λ2

σi
, ∀i 6= n. Then g(σn) < g(σi) and we now

have (for some k):

κ(J†D) =
σk(σ

2
n + λ2)

σn(σ2
k + λ2)

σn→0
−→ ∞

This means that, on the one hand, λ should have a high

value to avoid this maximum of the condition number at

σn = λ, but on the other hand, λ must also have a very

small value to avoid entering the last case, in which the

conditioning tends to infinity.

When using the JF algorithm, the function g becomes

gF (σ) = σ
ασ2+λ2 , with α = 1 − (1/ǫ2), so the order of

magnitude does not change. And using error damping means

having a very large damping factor, thus if the goal is a

singular position (for example, reaching the furthest point

with an arm), the results are equivalent to the behaviour of

the JD algorithm.

REFERENCES

[1] M. Shimizu, H. Kakuya, W.-K. Yoon, K. Kitagaki, and K. Kosuge.
”Analytical inverse kinematic computation for 7-dof redundant manip-
ulators with joint limits and its application to redundancy resolution.”
IEEE Trans. on Robotics, pp 1131-1142, 2008.

[2] G. K. Singh, J. Claassens, ”An analytical Solution for the Inverse
Kinematics of a Redundant 7-dof Manipulator with Link Offsets.”
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp
2976-2982, 2010.

[3] S. Chiaverini, G. Oriolo, I.D. Walker, ”Kinematically Redundant
Manipulators.” Springer Handbook of Robotics part B, chapter 11.

[4] Inverse Kinematics with KDL. url:
http://www.orocos.org/forum/orocos/orocos-users/inverse-kinematics-
kdl.

[5] ROS package repository with Barrett WAM/Hand interface.
url:http://code.google.com/p/lis-ros-pkg/wiki/README

[6] R. S. Rao, A. Asaithambi, and S. K. Agrawal. ”Inverse kinematic so-
lution of robot manipulators using interval analysis.” J. of Mechanical

Design, 120(1): pp 147-150, 1998.

[7] J. M. Porta, Ll. Ros, and F. Thomas. ”Inverse kinematic by distance
matrix completion.” 12th Int. Workshop on Computational Kinematics,
2005.

[8] S.F.M. Assal, K. Watanabe, K. Izumi. ”Neural Network-Based Kine-
matic Inversion of Industrial Redundant Robots Using Cooperative
Fuzzy Hint for the Joint Limits Avoidance.” IEEE/ASME Trans. on

Mechatronics vol 11, no 5, pp 593-603, 2006.

[9] O. Khatib. ”A unified approach for motion and force control of robot
manipulators.” Int. Conf. on Robotics and Automation (ICRA) vol. RA-
3, no 1, pp 43-53, 1987.

[10] D.E. Orin and W.W. Schrader. ”Efficient computation of the jacobian
for robot manipulators.” Int. J. Robot Res., vol 3, no 4, pp. 66-75,
1984.

[11] A. Ben-Israel, T. Greville. Generalized Inverses. Springer-Verlag 2003.
ISBN 0-387-00293-6.

[12] D. E. Whitney. ”Resolved motion rate control of manipulators and
human prostheses.” IEEE Trans. on Man-Machine Systems, vol 10, pp
47-53, 1969.

[13] W. A. Wolovich and H. Elliott. ”A computational technique for inverse
kinematics.” 23rd IEEE Conf. In Decision and Control, vol 23, pp
1359-1363, 1984.

[14] S. Chiaverini, O. Egeland, and R.K. Kanestrom. ”Achieving user-
defined accuracy with damped least-squares inverse kinematics.” Fifth

Int. Conf. on Advanced Robotics ’Robots in Unstructured Environ-

ments’, 91 ICAR., vol 1, pp 672-677, 1991.

[15] S. Chiaverini, B. Siciliano, and O. Egeland. ”Review of the damped
least-squares inverse kinematics with experiments on an industrial
robot manipulator.” IEEE Trans. on Control Systems Technology, pp
123-134, 1994.

[16] B. Siciliano. ”A Closed-Loop Inverse Kinematic Scheme for On-line
Joint-based Robot Control.” Robotica, vol 8, pp 231-243, 1990.

[17] H. Das, J.E. Slotine, T.B. Sheridan. ”Inverse kinematic algorithms
for redundant systems.” IEEE Int. Conf. on Robotics and Automation

(ICRA), vol 1, pp 43-48, 1988.

[18] G. Antonelli. ”Stability Analysis for Prioritized Closed-Loop Inverse
Kinematic Algorithms for Redundant Robotic Systems”IEEE Trans.

on Robotics vol 25, no 5, pp 5892-5897, 2009.
[19] Z Jiang. ”A converse lyapunov theorem for discrete-time systems with

disturbances.” Systems & Control Letters, vol 45, pp 49-58, 2002.
[20] P. Falco and C. Natale. ”On the stability of closed-loop inverse

kinematics algorithms for redundant robots.” IEEE Trans. on Robotics,
vol 99, pp 1-5, 2011.

[21] J. Baillieul. ”Kinematic programming alternatives for redundant ma-
nipulators.” IEEE Int. Conf. on Robotics and Automation (ICRA), vol
2, pp 722-728, 1985.

[22] T. Yoshikawa. ”Dynamic manipulability of robot manipulators.” IEEE
Int. Conf. on Robotics and Automation (ICRA), vol 2, pp 1033-1038,
1985.

[23] T. Yoshikawa. ”Analysis and Control of Robot Manipulators with
Redundancy.” First Int. Symposium Robotics Research, pp 735-748,
1984.

[24] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. ”Modelling,
Planning and Control.” Advanced Textbooks in Control and Signal
Processing. Springer, 1st edition, 2009.

[25] A. S. Deo and I.A. Walker. ”Minimum Effort Inverse Kinematics for
Redundant Manipulators.” IEEE Trans. on Robotics and Automation,
vol 13, no 5, pp 767-775, 1997.

[26] Yoshihiko Nakamura, ”Advanced Robotics: Redundancy and Opti-
mization”, Addison-Wesley Pub. Co., 1991.

[27] N. Mansard, O. Khatib, A. Kheddar, ”A unified Approach to Integrate
Unilateral Constraints in the Stack of Tasks.” IEEE Trans. on Robotics,
vol 25, no 3, pp 670-685, 2009.

[28] S. R. Buss, J.-S. Kim. ”Selectively Damped Least-Squares for Inverse
Kinematics.” J. of Graphics Tools, vol 10, pp 37-49, 2004.

[29] F. Ranjbaran, J. Angeles, A. Kecskemethy. ”On the Kinematic Con-
ditioning of Robotic Manipulators” IEEE Int. Conf. on Robotics and

Automation (ICRA) vol 4, pp 3167-3172, 1996.
[30] C.A. Klein, B.E. Blaho, ”Dexterity Measures for the Design and

Control of Kinematically Redundant Manipulators.” Int. Journal of

Robotics Research, vol 6, no 2, pp 72-83, 1987.
[31] A.K. Cline, C.B. Moler, G.W.Steward and J.H. Wilkinson. ”An Esti-

mate for the Condition Number of a Matrix.” SIAM J. on Numerical

Analysis, vol 16, no 2, pp 368-375, 1979.
[32] S. R. Buss. ”Introduction to Inverse Kinematics with Jacobian Trans-

pose, Pseudoinverse and Damped Least Squares methods.” Unpub-

lished, http://math.ucsd.edu/˜sbuss/ResearchWeb, 2004.
[33] Stephen K. Chan and Peter D. Lawrence. “General Inverse Kinematics

with the Error Damped Pseudoinverse.“ IEEE Int. Conf. on Robotics

and Automation (ICRA), vol.2, pp 834-839, 1988.
[34] T. Sugihara, ”Solvability-Unconcerned Inverse Kinematics by the

Levenberg-Marquardt Method.” IEEE Trans. on Robotics, vol 27, no
5, pp 984-991, oct 2011.

[35] T. Fung Chan, R. V. Dubey. ”A Weighted Least-Norm Solution Based
Scheme for Avoiding Joint Limits for Redundant Joint Manipulators.”
IEEE Trans. on Robotics and Automation vol 11, no2, pp 286 - 292,
1995.

[36] D. Raunhardt, R. Boulic. ”Progressive Clamping.” IEEE Int. Conf. on

Robotics and Automation (ICRA), pp 4414-4419, 2007.
[37] L. Sciavicco, B. Siciliano. ”A solution to the inverse kinematic prob-

lem for redundant manipulators.” IEEE J. of Robotics and Automation

vol 4, pp 403-410, 1988.
[38] J. Xiang, C. Zhong, Wei Wei. ”General Weighted Least-Norm Control

for Redundant Manipulators.” IEEE Trans. on Robotics, vol 26, no 4,
pp 660-669, 2010.

[39] H. Zghal, R.V. Dubey, J.A. Euler, ”Efficient gradient projection
optimization for manipulators with multiple degrees of redundancy.”
Proc. IEEE Int. Conf. on Robotics and Automation (ICRA) vol 2, pp
1006-1011, 1990.

[40] Y. Nakamura, H. Hanafusa, T. Yoshikawa, ”Task-priority based re-
dundancy control of robot manipulators.” Int. Journal of Robotics

Research, vol 6, no 2, pp 3-15, 1987.
[41] N. Mansard, A. Remazeilles, and F. Chaumette, ”Continuity of

varying-feature-set control laws.” IRISA Technical report, 2007. url:
ftp://ftp.irisa.fr/techreports/2007/PI-1864.pdf

[42] N. Mansard, A. Remazeilles, F. Chaumette, ”Continuity of Varying-
Feature-Set Control Laws.” IEEE Trans. on Automatic Control, vol
54, no 11, pp 2493-2505, 2009.

