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Robust Fault Diagnosis of Non-linear Systems
using Interval Constraint Satisfaction
and Analytical Redundancy Relations

Sebastian Tornil-Sin, Carlos Ocampo-Martinez, Vicenç Puig and Teresa Escobet

Abstract—In this paper, the robust fault diagnosis pro-
blem for non-linear systems considering both bounded
parametric modelling errors and noises is addressed using
parity equation based Analytical Redundancy Relations
and Interval Constraint Satisfaction techniques. Fault
detection, isolation and estimation tasks are considered.
Moreover, the paper addresses the problem of determining
the uncertainty in the parameters of the used uncertain
ARRs. To illustrate the usefulness of the proposed ap-
proach, a case study based on the well known wind turbine
benchmark is used.

Index Terms—Fault detection, robustness, intervals, set-
membership estimation, constraint satisfaction.

I. INTRODUCTION

MODEL-BASED fault detection and isolation
(FDI) of dynamic systems relies on the use of

the analytic redundancy provided by the model. Model-
based FDI systems check the consistency between known
variables, inputs and measured outputs, according to the
relations provided by a normal operation model of the
system. The consistency is normally expressed in terms
of residuals, computable expressions that evaluate to
zero in absence of faults. One residual is enough for
fault detection, several residuals allow fault isolation.

When building a model of a dynamic system to
monitor its behaviour, there is always some mismatch
between the modelled and the real behaviour, e.g., some
effects are neglected, some non-linearities are linearised
in order to simplify the model, some parameters have
tolerance when are compared between several units of
the same component, some errors in parameters or in
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the structure of the model are introduced in the model
calibration process, among others. These modelling er-
rors introduce some uncertainty in the model. Accorging
to the FDI literature (see [1] and [2], among others), the
goal of a robust fault detection method is to discriminate
between fault and uncertainty effects. In practice, a
robust fault detection system has to simultaneously ma-
ximize sensitivity to faults while minimizing sensitivity
to uncertainties. According to [1], two types of robust
approaches have been proposed: active and passive.
Active robust approaches face modelling errors as if
they were disturbances, using a disturbance decoupling
principle and trying to obtain residuals sensitive to faults
but not to these errors. Techniques such as unknown
input observers [3], eigenstructure assignment [1] or
structured parity equations [2], among others, can be
found in the literature. On the other hand, process and
measurement noises are usually stochastically modelled
(the typical assumption is a zero-mean white noise) and
their effect is considered by using statistical decision
methods [4] to evaluate the residuals.

However, such approaches show several drawbacks.
Regarding modelling errors, the first problem con-
sists in the difficulty of representing them as distur-
bances and solving the associated decoupling problem
(the distribution matrix is normally unknown and time
varying). Moreover, the number of decoupled distur-
bances/modelling errors is limited by the degree of
freedom in the residual generation procedure [2]. Finally,
if the fault detection system is insensitive to modelling
errors then it will be also insensitive to parametric faults.
As an alternative strategy, disturbances/modelling errors
may be assumed to be bounded and their effects propa-
gated to the residual using, for example, interval methods
[5]. Regarding measurement noises, in some practical
situations it is not realistic to assume the availability of
a known statistical distribution law. For instance, when
the volume of collected data is small or when the mea-
surement uncertainty is corrupted by some deterministic
systematic errors, due to not considered model errors
and/or disturbances. If noise bounds are available, several



types of mathematical tools can be applied, e.g. uniform
distributions, Monte Carlo methods or interval analysis.
Hence, the so called set-membership approach [6] can be
used in the context of fault detection as suggested by [7].
The advantage of the bounded description of uncertainty
is that it does not require restrictive assumptions (e.g.,
a small number of unknown disturbances/parameters,
known statistical distribution law). However, a limitation
is that faults that produce a residual deviation smaller
than the residual uncertainty due to model uncertainty
will remain undetected (missed detection).

In this paper, the robust fault diagnosis problem for
non-linear systems considering both bounded parametric
modelling errors and noises is formulated using the
mathematical framework of Interval Constraint Satisfac-
tion Problems (ICSPs). A constraint satisfaction problem
is defined by a set of constraints imposing relations to
be satisfied by the related variables and by predefined
domains for these variables. This general setup is here
applied to the formulation of the fault detection, isolation
and estimation tasks in presence of bounded uncertainty,
being this the main contribution of the paper. The pro-
posed fault detection procedure checks the consistency
between the observed and the normal system behaviour
using a set of Analytical Redundancy Relations (ARRs),
which relates the values for measured variables accord-
ing to a model of normal operation (fault-free) for the
monitored system. When some inconsistency is detected,
the fault isolation mechanism is activated in order to
identify the possible fault. The fault isolation is based
on identifying the inconsistent ARRs and identifying the
fault that corresponds with such signature. Finally, a fault
estimation procedure also formulated as a CSP is used
to estimate the fault magnitude.

The use of interval constraint satisfaction for fault
detection in presence of uncertainty has been already
proposed by [8] and [9] using observers and state es-
timators, respectively. These methods improve the ap-
proach for uncertain systems proposed by [10], which
only considers system trajectories obtained from the
uncertain parameter interval vertices assuming that the
monotonicity property holds. On the other hand, this
paper proposes to address the fault detection problem by
using constraint satisfaction and ARRs in parity equation
form. The advantage of using parity equations instead of
state estimation/observers is that the state of the system
is not required to be estimated since only measured
inputs/outputs are used. This paper can be considered
an adaptation of the non-linear ARR approach proposed
in [11] in the case that noise and model parameters are
modelled in the set-membership context and included in
the ARRs. In case of linear systems, [12] has suggested

the evaluation of uncertain ARRs generated using the
parity space approach using set computations. However,
to the best of the authors’ knowledge, the fault detection
problem in presence of bounded uncertainty has not been
considered before by using parity equations and ICSPs
within the non-linear context. The problem of how to
derive the ARRs is not considered in the paper. It is
assumed that ARRs have been already been obtained
from the model equations using any of the available
ARR generation algorithms [13], [14]. Compared to
previous works (see [8] and [9]), other contributions of
this paper are highlighted as follows. First, not only the
fault detection problem but also the fault isolation and
fault estimation problems are considered (by using the
same ICSP framework). Second, a method to quantify
the uncertainty in the model (uncertain parameter esti-
mation) using data collected from the system in non-
faulty scenarios is provided. Finally, the methodology is
applied to a realistic example that is used as a benchmark
by the research community in fault diagnosis and fault-
tolerant control: the wind turbine benchmark.

The paper is structured as follows. Section II outlines
a basic background on constraint satisfaction. In Sec-
tion III, robust fault detection using ARRs is formulated
as a ICSP. In Section IV, fault isolation and estimation
task using ARRs are also formulated as ICSPs. Sec-
tion V shows how to estimate the uncertainty in the
system model parameters using data collected in a non-
faulty scenario. The description of the whole integrated
diagnosis methodology is addressed in Section VI. In
Section VII, to illustrate the usefulness of the proposed
approach, it is applied to the wind turbine benchmark.
Finally, in Section VIII, the conclusions are drawn.

II. CONSTRAINT SATISFACTION BACKGROUND

A. Constraint Satisfaction Problems

A CSP on sets can be formulated as a 3-tuple
H = (Z,D, C) [15], where

• Z = {z1, · · · , zn} is a finite set of variables,
• D = {D1, · · · ,Dn} is the set of variables domains

represented by closed sets, and
• C = {c1, · · · , cm} is a finite set of constraints,

where each constraint ci is specified by a pair
(Zi,Ri) such that Zi is a subset of Z , called the
constraint scope, and Ri, called constraint relation,
is a relation specifying the allowed combination of
values for the variables in Zi.

Solving a CSP consists in finding all variable value
assignments such that all constraints are satisfied. The
variable value assignment (z̆1, · · · , z̆n) ∈ D is a solution
of H if all constraints in C are satisfied. The set of all



solution points of H is called the global solution set and
denoted by S(H). The variable zi ∈ Z is consistent in
H if and only if ∀z̆i ∈ Di

∃ (z̆1 ∈ D1, · · · , z̆i−1 ∈ Di−1, z̆i+1 ∈ Di+1, · · · , z̆n ∈ Dn)

such as (z̆1, · · · , z̆n) ∈ S(H).
The solution of a CSP is said to be globally consistent

if and only if every variable is consistent. A variable
is locally consistent if and only if it is consistent with
respect to all directly connected constraints. Thus, the
solution of the CSP is said to be locally consistent if all
variables are locally consistent. An algorithm for finding
an approximation of the solution set of a CSP can be
found in [15].

B. Implementation using Intervals

It is well known that the solution of CSPs involving
sets has a high computational complexity [15]. In order
to reduce complexity, the CSPs derived from the fault
diagnosis problem are relaxed to Interval Constraint
Satisfaction Problems (ICSPs) [16].

Available interval constraint satisfaction solvers allow
to combine techniques with local and global consistency.
Local consistency can be obtained by using domain
contraction and propagation, global consistency requires
bisection.

Contraction: First of all, consider the following defi-
nition.

Definition 2.1 (Contractor): A contractor is an opera-
tor that reduces domains. Applied to the solution H of
a CSP, an operator CH : IRn → IRn is a contractor if it
satisfies

∀[z] ∈ D :

{
CH([z]) ⊂ [z]
CH([z]) ∩ S(H) = [z] ∩ S(H). (1)

Contractors are algorithms that reduce the interval
domains of variables which comply with a set of cons-
traints. The purpose of a contractor is to reduce any box
[z] without loosing any solution point in S(H). In [15],
a number of contractors for a variety of sets are given.
The application of the contractor operator is therefore
known as contraction.

Propagation: Consider now the following definition.
Definition 2.2 (Propagator): A propagator is an ope-

rator that sequentially performs contractors until no more
significant contraction can be observed when several
constraints are involved.

The procedure of applying propagators is known as
propagation. The interval propagation method converges
to a box which contains all solution vectors of the
constraint set. If this box is empty, it means that there is
no solution. It can be shown that the box to which the

method converges does not depend on the order to which
the contractors are applied [15], but the computation time
is highly sensitive to this order. There is no optimal order
in general, but in practice, one of the most efficient is
called forward-backward propagation.

Bisection: The combined use of contraction and prop-
agation leads only to obtain a local consistent solution.
The locality problem is due to the strategy for reducing
domains processes every constraint projection indepen-
dently. To escape from local consistency, every resultant
box from the application of contraction and propagation
should be bisected in two sub-boxes, sharing all variable
domains of the original box, except the one with largest
width, which is split by its mid point. Then, contractors
and propagation are applied on the new resultant sub-
boxes. This process, called bisection, is iterated until no
refinement of those sub-boxes below to a pre-established
amount is achieved.

C. Computational and implementation issues

Contractors are algorithms that present polynomial
complexity in the number of uncertain variables. Unfor-
tunately, since they only assure local consistency, their
use may lead to over-bounded solutions depending on
the considered problem. To avoid this, contractions are
combined with bisections. However, the use of bisections
leads to a branch and bound algorithmic structure with
exponential complexity.

To obtain the results presented in the case of study,
the Real Paver solver [17] has been used. Real Paver
allows to use or to limit bisections, which according
to the previous discussion has a direct impact in the
obtained solutions and in the computation time. This
allows to adapt the solver to the particular properties
of the considered problem.

III. ROBUST FAULT DETECTION AS ICSP

A. System Modelling

Consider that the behaviour of system to be monitored
may be described by the following discrete-time non-
linear model:

xk+1 = g(xk, uk, θk) + wk,

yk = h(xk, uk, θk) + vk,
(2)

where x ∈ Rnx is the vector of system states, u ∈ Rnu

is the vector of system inputs and y ∈ Rny is the
vector of system outputs; θk ∈ Rnθ is a vector of
uncertain parameters; wk ∈ Rnw and vk ∈ Rnv are
process and measurement noises; g : Rnx 7→ Rnx and
h : Rnx 7→ Rny are the state-space and measurement
non-linear functions, respectively.



The proposed model is able to represent different types
of uncertainties through θk, wk and vk. Unmodelled dy-
namics, disturbances and errors due to the discretization
process may be captured in the process noise wk. Errors
in sensors are represented in the measurement noise vk.
Parameter uncertainty is represented through θk. It is
asumed that all uncertain parameters, process and mea-
surements noises are unknown (i.e., their instantaneous
values) but bounded in (known) intervals. All this latter
may be expressed in compact form as

θk ∈ Θ =
{
θ ∈ Rnθ | θ ≤ θ ≤ θ̄

}
, (3)

wk ∈ W = {w ∈ Rnw | w ≤ w ≤ w̄} , (4)

vk ∈ V = {v ∈ Rnv | v ≤ v ≤ v̄} , (5)

where Θ, W are V axis-aligned n-dimensional boxes
(Cartesian products of intervals).

Different cases may be considered with respect to the
time variance of the parameter vector θk (uncertainty
in vk and wk is naturally assumed to be time-variant).
If no additional conditions are stated, according to (3)
the system is considered time variant with parameters
bounded but freely varying inside Θ. But sometimes the
inter-sample variance is known to be bounded. This can
be represented by adding to the system description (2)
the following equations

θk+1 = θk + pk, (6)

pk ∈ P =
{
p ∈ Rnp | p ≤ p ≤ p̄

}
(7)

Finally, it can be assumed that the monitored system
is time invariant. This can be easily represented as
particular case with pk = 0.

A key aspect about the use of uncertain models is how
the uncertainty bounds are obtained. Regarding process
and measurement noises, it is assumed in this work
that a priori theoretical or practical considerations allow
to obtain useful intervals that define the boxes W and
V . This is the case, for instance, when the precision
or the maximum absolute errors of the used sensors
are known. Or when starting from a given continuous-
time model a particular discretization method is used.
Regarding the parameter uncertainty, it is assumed that
a priori initial intervals can also be obtained, leading
to an initial box Θ0. For instance, this is the case
when tolerances for the values of components or limits
for physical coefficients are known. A problem appears
when these intervals are too wide and their direct use
limit seriously the detectability of faults. To avoid this
problem, set-membership parameter estimation [6] can
be applied. An algorithm implementing such type of
parameter estimation is proposed in Section V. Applied
to data collected in a fault-free scenario, the algorithm

will obtain the reduced parameter box Θ that will be
used for fault diagnosis purposes.

B. ARR Generation using Structural Analysis

The design of model-based diagnosis systems may be
based on utilizing the system model in the construction
of diagnosis tests based on ARRs. These latter are static
or dynamic constraints deduced from the system model
that link the time evolution of the known variables
(inputs and measured outputs) when the system operates
in a non-faulty condition, and commonly represented as
equalities of the form ri = 0. To obtain ARRs for state-
space representations such as (2), it is necessary to ma-
nipulate the model to eliminate the unknown state x. As
a consequence of this model manipulation, the obtained
ARRs relate the values of the known variables not only
in the current time instant but along a time horizon of
length L. For linear systems, the unknown state may
be eliminated by using the parity-space approach [18].
For particular types of non-linear systems, elimination
methods (e.g., elimination theory, Gröebner bases or
characteristic sets) may be used [11]. For complex and
non-linear systems in general, it is possible to obtain
ARRs, by using, among others (e.g., state observers),
the structural methods presented in [19].

Let define the sequences of values for the variables
involved in (2) as

q̃k = {qj}kj=k−L, q ∈ {u, y, θ, w, v, p}. (8)

Any equation obtained from manipulation or combina-
tion of the equations in (2) can be represented in the
following way:

ri = Ψi(ũk, ỹk, θ̃k, w̃k, ṽk, p̃k) = 0, (9)

where Ψi is called the ARR expression. Strictly speaking,
it can not be said that (9) is an ARR because it depends
on several unknown variables, but this will be taken into
account later. For a more compact notation, if all the
unknown but bounded variables are represented together

δ̃k =
(
θ̃k, ṽk, w̃k, p̃k

)
, (10)

then the general expression for an uncertain ARR is

ri = Ψi(ũk, ỹk, δ̃k) = 0. (11)

The structural analysis of the system will provide a set
of ARRs that agree with the previous general form. This
set can be represented as

R = {ri = Ψi(ũk, ỹk, δ̃k) = 0 , i = 1, . . . , nr}, (12)

where nr is the number of obtained ARRs.



Remark 3.1: According to (11), the use of ARRs is
preferred since it allows to reduce the ICSP compu-
tational burden. However, the proposed methodology
also allows to consider directly the initial non-linear
equations when their combination is not possible.

C. Fault Detection using ARRs and ICSP

Using the set of generated ARRs, the fault detection
procedure must check at each time instant whether or not
they are consistent with the observations. If all the vari-
ables in the ARRs expressions were known, this would
mean to check if all ARR expressions evaluate to zero
or not. However, only some of the variables are known
and a different type of consistency checking procedure
is needed to deal with the uncertain variables. If the
unknown variables are simply not taken into account
in the evaluation of the ARR expressions (evaluating
simplified expressions commonly called computational
forms), then non-zero values will be obtained in the
non-faulty case. If the model parameters were precisely
known and statistical distributions for the noises were
available, an statistical framework might be adopted
to determine whether these deviations from zero had
to be attributed to the uncertainty or to the presence
of faults. See the book [4] for further details about
such type of statistical FDI techniques. Here, instead,
considering the unknown but bounded description of the
noise, disturbances and parametric uncertainty in (2), the
consistency checking procedure is performed as follows.

Definition 3.1 (Consistency for sets of ARRs): Given
a set of ARRs expressed according to (12) and a
sequence of measured system inputs ũk and outputs
ỹk at time k, the set of ARRs is consistent with those
measurements and the known bounds of uncertain
parameters and noises if there exist valid sequences
(with values inside their corresponding intervals) for
these uncertain variables that simultaneously satisfy the
ARRs, i.e.

∃δ̃k ∈ D̃δ

∣∣∣ (Ψi(ũk, ỹk, δ̃k) = 0
)nr

i=1
, (13)

where δ̃k ∈ D̃δ means that every element in the sequence
δ̃k is inside the domain given by (the × operator repre-
sent the Cartesian product)

Dδ = Θ×W × V × P. (14)

The previous definition directly provides a way to
implement fault detection. If the set of ARRs (12) is
proven to be inconsistent (not consistent according to the
previous definition) at a given time instant k, then the
system behaviour can not be explained by the model (2)
and a fault is detected. Inconsistency can be verified by

Algorithm 1 Fault detection using ICSP
1: for k = 0 to N do
2: Get current measured input/output data (uk, yk)
3: Update measured input/output sequences (ũk, ỹk)
4: Z ⇐ {δ̃k}
5: D ⇐ {D̃δ}
6: C ⇐ {Ψi(ũk, ỹk, δ̃k) = 0, i = 1..nr}
7: Hk = (Z,D, C)
8: Sk = solve(Hk)
9: if Sk = ∅ then

10: Exit (Fault detected)
11: end if
12: end for

solving an ICSP whose variables are the ones involved in
(10), their domains are given by (14) and the constraints
correspond to the ARRs in (12), and checking whether
the obtained result is the empty set. This procedure is
summarized in Algorithm 1. Notice that the sequences
ũk and ỹk are considered as parameters (not variables)
in the ICSP formulation and that the total number of
variables in the problem is (nθ + nw + nv + np)L.

Remark 3.2: The requirement about the existence of
sequences for the uncertain variables that simultaneously
satisfy all the ARRs allows to take into account that for
a variable that appear in several ARRs the associated
unknown value (for a given time instant) must be the
same in all these ARRs. If this fact would not be
considered then some sensitivity to faults would be lost.

Remark 3.3: Since outer approximations are com-
puted by ICSP solvers, if the obtained result is the empty
set then it can be assured that the exact solution is in fact
the empty set. It is therefore preserved in practice the
expected property associated to a bounded description
of uncertainty by which false alarms are avoided.

IV. FAULT ISOLATION AND ESTIMATION AS ICSPS

A. Fault Isolation as ICSPs

Once a fault is detected by using Algorithm 1, fault
isolation is considered. Fault isolation aims at identifying
the fault acting on the system in a set of possible faults
or fault hypothesis set F =

{
f1, f2, . . . , fnf

}
. It is

assumed that just one fault may be acting on the system
at a given time instant.

Fault isolation is based on identifying at time instant
k those ARRs that are consistent and those that are not
and implementing a diagnostic reasoning that leads to the
identification of the fault present in the system, assum-
ming that different faults affect different ARRs. This fact
means that, unlike for fault detection, consistency has to



be evaluated independently for each ARR. This can be
done according to the following definition.

Definition 4.1 (Consistency for a single ARR):
Given an ARR expressed according to (11) and a
sequence of measured system inputs ũk and outputs
ỹk at time k, the ARR is consistent with those
measurements and the known bounds of uncertain
parameters and noises if there exist valid sequences for
these uncertain variables that satisfy the ARR, i.e.

∃δ̃k ∈ D̃δ | Ψi(ũk, ỹk, δ̃k) = 0. (15)

Using the previous definition, fault isolation
starts by obtaining the observed fault signature
{ϕ1k, ϕ2k, . . . , ϕnrk}, where each single fault signal
indicator ϕik is defined as

ϕik =

{
0, if rik is consistent,
1, if rik is inconsistent.

(16)

Standard fault isolation reasoning exploits the know-
ledge about the binary relation between the set of fault
hypothesis and the set of ARRs that is stored in the so
called Fault Signature Matrix (FSM), denoted as M . An
element mij (i indicates rows, j indicates columns) of
M is equal to 1 if the fault f j affects the computation of
the ARR ri; otherwise, the element mij is zero-valued.
A column of M is known as a theoretical fault signature
and indicates which ARRs are affected by a given fault.
A set of faults is isolable if all the columns in M are
different (two columns that are equal indicate two faults
that can not be distinguished).

Based on the use of FSMs, different reasoning pro-
cedures have been proposed in the literature, see for
instance [20]. The accepted as standard procedure by the
FDI community involves finding a matching between the
observed fault signature and one of the theoretical fault
signatures. However, this reasoning is not appropriate in
an unknown but bounded context. Due to the uncertainty,
when a fault is present in the system, an undefined
number of the ARRs affected by the fault can be found
inconsistent, mainly depending on the sensitivity of each
ARR with respect to the fault and on the fault magnitude.
In other words, the observed fault signature will not
exactly match the theoretical signature of the present
fault. In this case, if the column-matching procedure is
used, then the particular fault will not be identified. An
appropriate reasoning should only consider the ARRs
that are inconsistent when searching for the fault (incon-
sistency is relevant, consistency is not). An ARR that is
found inconsistent indicates that one of the faults that
affect the ARR is acting on the system. But the contrary
is not true, if an ARR is satisfied this do not assures
that none of the associated faults is present. According

to the established terminology [20], the used algorithm
must avoid single-fault exoneration (which is implicit in
the column matching reasoning).

Under single-fault assumption, this can be easily
achieved by taking into account that the fault that is
actually present in the system has to affect all the
ARRs that have been found inconsistent according to the
observed fault signature (if not the single fault hypothesis
can not explain the observed behaviour). Algorithm 2
summarizes an isolation procedure based on this idea.
Notice that the procedure requires the solution of nr

ICSP problems with the same number of variables that
the one needed to solve the fault detection problem.
This fact justifies the use of Algorithm 1 for real-time
fault detection (Algorithm 2 may be directly applied
for simultaneous fault detection and isolation, but at
expenses of a higher computational cost).

Remark 4.1: Since consistency is checked indepen-
dently for ARRs that share uncertain variables, some
sensitivity to faults is lost. On one hand, this is a second
argument that justifies the use of Algorithm 1 for fault
detection. On the other hand, this means that some faults
may be correctly detected but not isolated.

Remark 4.2: Due to the uncertainty, it is possible that
the observed fault signature may be attributed to more
than one fault and hence more than one fault candidate
is provided by Algorithm 2. On other hand, it can always
be assured that the real fault present in the system is one
of the proposed fault candidates.

B. Fault Estimation

Once a fault f j (j ∈ {1, . . . , nf}) has been isolated
at time k, fault estimation is considered. The goal of the
fault estimation task is to estimate the fault magnitude
f j
k . This is useful, for instance, for implementing fault-

tolerant control strategies. Due to the uncertainty, the
estimation of the magnitude of a given fault at a given
time instant will be obtained as an interval. The fault
estimation procedure described here is based on modi-
fying the consistency checking procedure introduced in
Definition 3.1.

Unlike for fault isolation, where it is not necessary, the
estimation of the fault magnitude requires the modelling
of the way the fault affects the system. In general, if the
effect of the isolated fault f j

k is included in the system
model (2) as

xk+1 = g(xk, uk, θk, f
j
k) + wk,

yk = h(xk, uk, θk, f
j
k) + vk,

(17)

then the application of the structural analysis approach
leads to a set of ARRs that include the fault effect. This



Algorithm 2 Fault isolation using ICSP
1: k ⇐ fault detection time
2: Z ⇐ {δ̃k}
3: D ⇐ {D̃δ}
4: for i = 1 to nr do
5: Ci ⇐ {Ψi(ũk, ỹk, δ̃k) = 0}
6: Hi = (Z,D, Ci)
7: Si = solve(Hi)
8: if Si = ∅ then
9: ϕik = 1

10: else
11: ϕik = 0
12: end if
13: end for
14: FC ←

{
f1, f2, . . . , fnf

}
15: for i = 1 to nr do
16: if ϕik = 1 then
17: for j = 1 to nf do
18: if mij = 0 then
19: FC ← FC − f j

20: end if
21: end for
22: end if
23: end for
24: Fault candidate set FC

set of fault-dependent ARRs can be represented as

Rj = {ri | ri = Ψ
fj

i (ũk, ỹk, δ̃k, f̃
j
k) = 0, i = 1, . . . , nrj},

(18)
where f̃ j

k is the sequence of fault magnitudes along a
horizon of length L and nrj is the number of ARRs
that are affected by the fault f j . It must be noticed that
the previous nomenclature is valid for both additive and
multiplicative (parametric) faults.

The fault estimation procedure requires an interval
bounding the possible fault magnitudes. Sometimes this
interval can be obtained from theoretical or practical con-
siderations about the nature of the fault. But if this is not
possible then the initial interval can be chosen arbitrary
large. For parametric faults, the initial interval used by
the fault estimation algorithm can be the same used as
initial interval by the parameter estimation algorithm (see
Section V).

In general, assume that

f j
k ∈ F

j =
{
f j
k | f

j ≤ f j
k ≤ f̄ j

}
. (19)

Definition 4.2 (Fault magnitude estimation): Given
an isolated fault f j and the sequence of measured
system inputs ũk and outputs ỹk at time k, the estimated

magnitude for the fault at time k is given by

F j
k =

{
f j
k ∈ F

j
∣∣∣ ∃ (δl ∈ Dδ)

k
l=k−L ,

∃
(
f j
l ∈ F

j
l

)k−1

l=k−L
,(

Ψfj

i (ũk, ỹk, δ̃k, f̃
j
k) = 0

)nrj

i=1

}
,

(20)

with F j
k ⊂ R.

Notice that the previous definition is recursive in time,
i.e., the computation of F j

k uses the previously estimated
values F j

l , l = k−L..k−1. Once again, the previous set
can be approximated by the solution of an ICSP. This is
reflected in Algorithm 3, where ki indicates the isolation
time and where the domains for the values in the fault
magnitude sequence, represented by F̃ j

k , agree with (20),
i.e., f j

k ∈ F
j , f j

l ∈ F
j
l , l = k − L..k − 1.

Remark 4.3: When several fault candidates are indi-
cated by the fault isolation algorithm, the fault estimation
algorithm is applied independently to all of them. For a
given fault candidate, if the associated ICSP is found
inconsistent (empty solution set) then the fault can be
excluded as candidate. On the other hand, if the ICSP is
consistent then an interval of possible fault magnitudes
will be obtained.

Remark 4.4: The application of the ICSP framework
assumes that the estimated sets F j

k are intervals (the
result obtained at a given time instant is used as interval
domain in the ICSP for the next time instant), but
according to Definition 4.2 this fact can not be assured
for any type of ARR expressions (for discontinuous
expressions, for instance). Hence, it is assumed that
interval enclosures are obtained at each time from the
solution provided by the ICSP solver (which in general
will be a union of connected or disconnected intervals).

Remark 4.5: If f j is known to be an abrupt fault
(its magnitude remains constant once it has appeared),
then the domain for f j

k can be fixed as the previously
estimated interval F j

k−1 (instead of the a priori known
interval F j).

V. ARR UNCERTAIN PARAMETER ESTIMATION AS

ICSP

One of the key points in passive robust model based
fault detection is how models and their uncertainty
bounds are obtained. Classical system identification
methods [21] are formulated under a statistical frame-
work. Assuming that the measured variables are cor-
rupted by additive noises with known statistical distribu-
tions and that the model structure is known, a parameter
estimation algorithm will provide nominal values for the



Algorithm 3 Fault estimation using ICSP for a given f j

1: F̃ j
k ⇐ {F

j}
2: for k = ki to N do
3: Get current measured input/output data (uk, yk)
4: Update measured input/output sequences (ũk, ỹk)
5: Z ⇐ {δ̃k, f̃k}
6: D ⇐ {D̃δ, F̃ j

k}
7: C ⇐ {Ψfj

i (ỹk, ũk, δ̃k, f̃
j
k) = 0, i = 1..nrj}

8: Hk = (Z,D, C)
9: Sk = solve(Hk)

10: Estimated fault size F j
k

11: end for

parameters together with descriptions of the associated
uncertainty in terms of the covariance matrix or confi-
dence regions for a given probability level [22], [23].
However, this type of approaches can not be applied
when measurement errors are described as unknown
but bounded values and/or modelling errors exist. The
problem of bounding the model uncertainty has been
mainly stated in many references coming from robust
control field. Recently, some methodologies that provide
a model with its uncertainty have been developed but
always thinking on its application to control [24]. One
of the methodologies assumes the bounded but unknown
description of the noise and parametric uncertainty. This
metholodogy is known as bounded-error estimation or
set-membership estimation [6], which produces a set of
parameters consistent with the model structure selected
and the pre-specified noise bounds. In [25], it is sug-
gested that bounded error estimation problem can be
solved using constraint satisfaction tools. This is the type
approach used for estimating parametric uncertainty of
the ARRs in (12).

Regarding the uncertain variables that appear in (2),
it is assumed that a priori theoretical or practical con-
siderations allow to obtain useful intervals associated to
process and measurement noises, leading to known boxes
W and V . Moreover, if a bounded-rate time varying
formulation is used, then it is assumed that the intervals
defining P are also known. The goal of the parameter
estimation algorithm is to characterize the parameter
box Θ consistent with the data collected in a fault-
free scenario. The parameter estimation algorithm is
quite similar to the fault estimation algorithm described
in the previous subsection, the differences rely on the
estimation of parameters and the off-line nature of its
implementation. An initial box Θ0 is required, but it can
also be chosen arbitrarily large.

Definition 5.1 (Feasible Parameter Set (FPS)):

Given the set of ARRs (12) and a sequence of inputs
ũk and outputs ỹk at time k, the set of parameters
consistent with the measurements and the noise and
parameter variation bounds, W , V and P , is given by

Θk = {θk ∈ Θ0 | ∃ (θl ∈ Θl)
k−1
l=k−L ,

∃ (wl ∈ W)kl=k−L ,

∃ (vl ∈ V)kl=k−L ,

∃ (pl ∈ P)kl=k−L ,(
Ψi(ũk, ỹk, θ̃k, w̃k, ṽk, p̃k) = 0

)nr

i=1

}
,

(21)

with Θk ⊂ Rnθ .
The previous set identifies the set of parameters

compatible with the observations and the uncertainty
bounds at time instant k (this includes observations in
the temporal window k − L..k). If measurements along
a complete time horizon k = 0..NF (NF >> L) are
available for a fault-free scenario, the parameter set
Θ which is compatible with all the available data is
of interest. This set will be computed in a different
way depending on the assumed time variance for the
parameter set. If a time variant behaviour is assumed
then Θ is given by the union of all the individual Θk

computed along the horizon. If the system is assumed to
be time invariant then Θ is given the intersection between
the different Θk. In the latter case, the intersection can be
computed implicitly by using Θk−1 as the search domain
Θk. This is reflected in the following definition.

Definition 5.2 (Time-Invariant FPS): Given the set of
ARRs (12) and sequences of inputs and outputs from
k = 0, the set of LTI parameters consistent with the
measurements and the noise bounds W and V is given
by

Θk = {θ ∈ Θk−1 | ∃ (wl ∈ W)kl=k−L ,

∃ (vl ∈ V)kl=k−L ,

(Ψi(ũk, ỹk, θ, w̃k, ṽk) = 0)nr

i=1} .
(22)

The previous definition directly leads to the parameter
estimation procedure reflected in Algorithm 4.

Remark 5.1: The application of the ICSP framework
assumes that the estimated set Θk is a box, but in general
it would be an arbitrary shaped set. Hence, it is assumed
that the interval hull (smallest box that approximates the
set of interest) is obtained at each time instant from the
solution provided by the ICSP solver.



Algorithm 4 ARR uncertain parameter estimation using
ICSP

1: for k = 0 to N do
2: Get current measured input/output data (uk, yk)
3: Update measured input/output sequences (ỹk, ũk)
4: Z ⇐ {θ, w̃k, ṽk}
5: D ⇐ {Θk−1, W̃, Ṽ}
6: C ⇐ {Ψi(ũk, ỹk, θ, w̃k, ṽk) = 0, i = 1..nr}
7: Hk = (Z,D, C)
8: Sk = solve(Hk)
9: Estimated parameter set Θk

10: end for

VI. DESCRIPTION OF THE WHOLE INTEGRATED

DIAGNOSIS METHODOLOGY

For clarity purposes, the whole diagnosis methodol-
ogy is summarized in this section. The methodology is
developed in two different phases. The Off-line phase is
completed by the following sequence of steps:

1) By using a-priori physical knowledge about the
system, define the model structure, i.e., functions
g and h and uncertainty bounds Θ0, W , V and P .

2) Define the set of faults of interest or fault hypoth-
esis set F =

{
f1, f2, . . . , fnf

}
.

3) Using structural analysis [19], derive the set of
ARRs that will be used for fault detection and
isolation R = {Ψi(...), i = 1..nr} and the fault
signature matrix M .

4) Using R, apply Algorithm 4 to data collected in a
fault-free scenario to obtain the parameter box Θ.

5) Include the fault effects in the ARRs to obtain the
sets of fault dependent ARRs that will be used
for the magnitude estimation of each fault Rj =
{Ψj

i (...), i = 1..nrj}, j = 1..nf .
The On-line phase is given by the execution, at each

time instant k, of the following conditional steps:
1) Apply Algorithm 1 for fault detection.
2) If a fault is detected then apply Algorithm 2 for

fault isolation.
3) If exactly one fault candidate f j is obtained at pre-

vious step then use Algorithm 3 for the estimation
of the fault magnitude f j

k .

VII. CASE OF STUDY

This section illustrates the effectiveness of the pro-
posed fault diagnosis approach by applying it to the Wind
Turbine based benchmark proposed in [26].

A. System Description

Wind turbines generate electrical energy from the
wind kinetic energy. The wind turbine described in the

Fault Tolerant Control benchmark proposed in [26] is a
three blade horizontal axis variable speed wind turbine
with a full converter coupling. The basic operation prin-
ciple is that the wind energy is captured by the blades and
transformed into mechanical rotational energy through
the rotor and the shaft. This energy conversion can be
optimized by changing the aerodynamics of the turbine
by pitching the blades or by controlling the relative
rotational speed of the turbine against the wind speed.
The mechanical energy is in turn converted into electrical
energy by a generator fully coupled to a converter.
Between the rotor and the generator, a drive train is used
to increase the rotational speed from the rotor to the
generator. The converter can be used to set the generator
torque, which consequently can be used to control the
rotational speed of the generator as well as the rotor.
The objective of the overall control system is to follow
a power reference.

A system block diagram is presented in Figure 1,
showing the relations between the different subsystems:
Blade & Pitch, Drive Train, Generator & Converter
and the Controller. The controlled inputs are the pitch
position reference for the blades βr and the converter
reference τg,r. The pitch position of each blade is mea-
sured using two sensors to ensure physical redundancy:
β1,m1, β1,m2, β2,m1, β2,m2, β3,m1, β3,m2. The generator
and rotor speeds are also measured with two sensors
each: ωr,m1, ωr,m2, ωg,m1, ωg,m2.

The model that details the operation of each subsystem
can be found in the original reference [26].

B. Fault Scenarios

The benchmark specifies the use of a given wind speed
sequence and a set of faults that includes eight faults
with different locations and types. The input sequence
corresponds to real measured wind data from a wind
park, sampled with fs=100Hz along a 4400s time period.
The set of selected faults is the following:

1) Fault 1: βf
1,m1 = 5o (sensor fault, fixed value) in

the time period 2000s-2100s.

Figure 1. Block diagram of the wind turbine.



2) Fault 2: βf
2,m2 = 1.2 ∗ β2,m2 (sensor fault, gain

factor) in the time period 2300s-2400s.
3) Fault 3: βf

3,m1 = 10o (sensor fault, fixed value) in
the time period 2600s-2700s.

4) Fault 4: ωf
r,m1 = 1.4 m/s (sensor fault, fixed value)

in the time period 1500s-1600s.
5) Fault 5: ωf

r,m2 = 1.1 ∗ ωr,m2 (sensor fault, gain
factor) and ωf

g,m1 = 0.9 ∗ωg,m1 (sensor fault, gain
factor) in the time period 1000s-1100s.

6) Fault 6: parameters in pitch actuator 2 abruptly
change from {ωn, ξ} (pitch actuators are modelled
as second order systems) to {ωn2, ξ2} (actuator
fault, changed dynamics), due to a hydraulic pres-
sure drop, at time t=2900s; the initial value is
recovered in t=3000s.

7) Fault 7: parameters in pitch actuator 3 change
from {ωn, ξ} to {ωn3, ξ3} (actuator fault, changed
dynamics), due to the presence of air un the oil,
following a given temporal evolution: change from
the initial to the final value linearly over 30s,
then maintained during 40s, and finally slowly
decreasing up to the initial value during 30s; the
fault begins at 3500s and ends at 3600s.

8) Fault 8: τ fg = τg + 2000 (actuator fault, offset)
from 3800s to 3900s.

C. Analytical Redundancy Relations

According to [27], after applying structural analysis
[19] with the aid of the SaTool [28] to the set of
equations provided in [26], the set of twelve ARRs given
in (24)-(35) can be obtained, where a.., b.. and c.. are
model parameters that have to be estimated (ηg is a
known coefficient). This is the set of ARRs that will be
used for fault detection and isolation. It must be noticed
that a non-linearity is hidden in some of the ARRs due
to the use of the variable τr, which is estimated from the
wind speed vw by using the relation

τr(k) = ρπR3Cq(λ(k), β(k))vw(k)
2/2. (23)

Moreover, SaTool provides the FSM represented in
Table I, which captures the relation between residuals
and faults and where a cross ’x’ indicates that a given
ARR is affected by a given fault (according to the
notation used in Section IV-A, mij = 1 where there
is a cross, mij = 0 elsewhere).

Notice that this paper is not focused on how to obtain
the ARRs. Structural methods have been actually used
to obtain the ARRs for the example, but other methods
could be considered and the proposed ICSP formulation
could also be applied to the resulting set of ARRs. For
instance, it would be possible to apply the methodology

Table I
FAULT SIGNATURE MATRIX

ARR f1 f2 f3 f4 f5 f6 f7 f8

r1 x x
r2 x x x x x x x
r3 x
r4 x x x x x x x
r5 x
r6 x
r7 x
r8 x x
r9 x
r10 x x
r11 x
r12 x

to the complete set of ARRs obtained for the wind
turbine benchmark in [29].

D. Uncertainty and Parameter Estimation

The parameter estimation procedure described in Al-
gorithm 4 has been applied to the fault-free scenario
specified in the benchmark in order to obtain the intervals
for the parameters of the ARRs that will be used for fault
detection and isolation purposes.

The parameter estimation algorithm requires the a
priori knowledge of bounds for the process and measure-
ment noises. For each measured variable, the noise bound
has been chosen as the maximum difference, along the
fault-free scenario data, between the values provided by
the two sensors that measure the variable. On other hand,
model errors and the uncertainty in the measurement
of the wind speed, which act as a model input, might
be represented as process errors. Alternatively, process
errors are assumed to be null and the effect of these
sources of uncertainty will be captured as parameter
uncertainty after the estimation.

Besides the bounds for the noises, the parameter
estimation algorithm requires initial intervals for the
parameters (initial parameter box Θ0) that are going to be
estimated. These initial intervals could be simply chosen
as [−∞,+∞], but a different option has been used,
based on the results of a nominal parameter estimation.
Hence, classical parameter estimation has been applied
to estimate some nominal parameters for each ARR (ex-
cept for the ARRs that just compare two measurements
of the same variable) and then each initial interval has
been chosen as [0, 2∗θi,nom] if the nominal value for the
parameter is positive, or as [2 ∗ θi,nom, 0] if the nominal
value is negative.

Results of this uncertain parameter estimation are
summarized in Table II. For each parameter appearing



r1(k) = ωr,m1(k)− ωr,m2(k) (24)

r2(k) = ωr,m2(k)− a21ωr,m2(k − 1)− b21τr(k − 1)− c21τg,m(k − 1) (25)

r3(k) = ωg,m1(k)− ωg,m2(k) (26)

r4(k) = ωg,m2(k)− a41ωg,m2(k − 1)− b41τr(k − 1)− c41τg,m(k − 1) (27)

r5(k) = β1,m1(k)− β1,m2(k) (28)

r6(k) = β1,m2(k)− a61β1,m2(k − 1)− a62β1,m2(k − 2)− b61βr(k − 1)− b62βr(k − 2) (29)

r7(k) = β2,m1(k)− β2,m2(k) (30)

r8(k) = β2,m2(k)− a81β2,m2(k − 1)− a82β2,m2(k − 2)− b81βr(k − 1)− b82βr(k − 2) (31)

r9(k) = β3,m1(k)− β3,m2(k) (32)

r10(k) = β3,m2(k)− a101β3,m2(k − 1)− a102β3,m2(k − 2)− b101βr(k − 1)− b102βr(k − 2) (33)

r11(k) = τg,m(k)− a111τg,m(k − 1)− b111τg,r(k − 1) (34)

r12(k) = Pg,m(k)− ηgωg,m2τg,m (35)

Table II
UNCERTAIN PARAMETER ESTIMATION

Parameter Initial interval Final interval

a21 [0,1.9837] [0.7107,1.4523]
b21 [0,1.7345e-009] [0,1.7345e-009]
c21 [0,7.4906e-007] [0,7.4906e-007]
a41 [0,1.9998] [0.9785,1.9677]
b41 [0,3.3113e-008] [2.0303e-008,3.1808e-008]
c41 [-3.2095e-006,0] [-2.9952e-006,-2.8157e-008]
a61 [0,3.6371] [0.0834,3.6371]
a62 [-1.6715,0] [-1.6715,0]
b61 [-2.7357e-004,0] [-2.7357e-004,0]
b62 [0,0.0345] [0,0.0345]
a81 [0,3.6395] [0.0743,3.6395]
a82 [-1.6738,0] [-1.6738,0]
b81 [0,0.0017] [0,0.0017]
b82 [0,0.0325] [0,0.0325]
a101 [0,3.6382] [0,3.6382]
a102 [-1.6728,0] [-1.6728,0]
b101 [-2.0893e-004,0] [-2.0893e-004,0]
b102 [0,0.0347] [0,0.0347]
a111 [0,1.2131] [0.5443,0.6727]
b111 [0,0.7869] [0.3272,0.4556]

in the set of ARRs, the first column indicates the
initial interval for this parameter, selected by using the
previously described procedure, while the second column
indicates the final interval obtained after applying the
uncertain parameter estimation algorithm to the fault-
free scenario data. As example of the refinement, Figure
2 details the evolution of the estimated intervals for a21.

Finally, it must be noticed that, in order to validate
the completeness of the obtained intervals (in fact, the
completeness of the initial intervals), the fault detection
Algorithm 1 has been applied to the fault-free scenario
and it has been verified that no false alarms are reported.
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Figure 2. Evolution of the estimation interval for a21 provided by
the uncertain parameter estimation.

E. Fault Detection and Isolation

The fault detection and isolation procedures summa-
rized in Algorithm 1 and Algorithm 2 have been applied
to the eight fault scenarios specified in subsection VII-B.

Satisfactory results (fault detected and isolated) have
been obtained in all scenarios except for fault scenario
6, in which the fault effects are small enough to be
undetectable given the uncertainty. Table III shows the
isolation times obtained in the eight fault scenarios.
The results are quite similar (including that Fault 6 is
undetected) to the ones reported in [27], obtained using
a zonotope set-membership approach. For comparison
with other approaches, the reader is referred to papers
presented in the two invited sessions about the wind
turbine benchmark competition at IFAC 2011.



Table III
FDI RESULTS FOR THE SET OF CONSIDERED FAULT SCENARIOS.

Fault scenario Fault time Fault Diagnosis time

1 2000s 2000.04s
2 2300s 2307.33s
3 2600s 2600.03s
4 1500s 1500.07s
5 1000s 1000.01s
6 2900s Undetected
7 3500s 3534.97s
8 3800s 3800.01s
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Figure 3. Evolution of ϕ2, ϕ4, ϕ5 and ϕ6 during the appearance of
Fault 1.

Next, the results for fault isolation in two of the
fault scenarios are discussed in detail. Consider the
fault scenario associated to Fault 1. Figure 3 shows
the evolution of the components ϕ2, ϕ4, ϕ5 and ϕ6 of
the observed fault signature (the ones that are sensitive
according to Table I) when Fault 1 appears. Notice that
only ϕ5 is activated (only the ARR r5 is inconsistent), the
other components remain not activated due to the present
uncertainty. Remember that this situation is considered
by the isolation procedure (Algorithm 2) in such a way
that the current fault will not be excluded from the
generated diagnosis although other fault candidates may
be indicated. In fact, since f5 is the only fault that affects
r5, Fault 1 is correctly isolated (it is found as the unique
fault candidate). Regarding the temporal behaviour, the
fault is correctly isolated once it has been detected at
t=2000.04s (four samples after the fault appearance) and
since ϕ5 is active during all the time in which the fault
is active, a correct diagnosis is maintained.

As a second example, Figure 4 shows the evolution of
ϕ1, ϕ2, ϕ3 and ϕ4 when Fault 5 appears. Notice now that
ϕ3 is active during all the time the fault is present. On
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Figure 4. Evolution of ϕ1, ϕ2, ϕ3 and ϕ4 during the appearance of
Fault 5.

other hand, ϕ4 is activated just when the fault appears
and when it disappears (this is a common behaviour,
some ARRs are specially sensitive to fault magnitude
changes), ϕ1 is activated just for one time instant in
the middle of the period of fault activity and ϕ2 is not
activated at all. However, since the isolation algorithm is
not sensitive to lost ones in the observed signature fault
and since there is no other fault affecting r3, Fault 5 is
properly isolated.

F. Fault Estimation

Fault 2 is now considered to illustrate the fault estima-
tion procedure. Fault 2 is a gain sensor fault that can be
parametrised as βf

2,m2 = Kf2 ∗ β2,m2. According to the
FSM shown in Table I, this fault affects the ARRs given
by r2, r4, r7 and r8. For the sake of simplicity, only r7 is
considered. By including the fault effect in this relation,
the following fault dependent ARR is obtained:

r7,f2(k) = β2,m1(k)−
1

Kf2

β2,m2(k). (36)

The fault estimation procedure summarized in Algo-
rithm 3 has been applied to the Fault 2 scenario data
starting from t = 2300s. The used initial interval for
Kf2 is [0, 2], which includes the real fault magnitude
(Kf2 = 1.2). Figure 5 details the evolution of the
uncertain fault magnitude estimation along the first ten
seconds, showing an important refinement. No further
refinement is obtained after processing the rest of the
scenario and the obtained final interval for the fault
estimation is [1.1115, 1.3169].
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Figure 5. Evolution of the uncertain magnitude estimation for Fault
2.

VIII. CONCLUSIONS

This paper has proposed a new approach for the robust
fault diagnosis of non-linear systems in presence of
bounded parametric modelling errors and noises, based
on using Analytical Redundancy Relations and Interval
Constraint Satisfaction techniques.

The proposed fault detection procedure checks the
consistency between the measurements using a set of
Analytical Redundancy Relations (ARRs) derived from
a normal operation model of the monitored system. In
presence of bounded uncertainty, this consistency che-
cking is formulated as an Interval Constraint Satisfaction
Problem (ICSP) that can be solved using appropriate
solvers. Accordingly to the bounded nature of the un-
certainty, the method assures the elimination of false
alarms but faults whose effects do not exceed the level
of uncertainty will remain undetected. The fault isolation
procedure, executed when a fault has been detected, is
based in the solution of several ICSPs, one for each
ARR, and in the implementation of a binary diagnostic
reasoning that takes into account the fact that due to the
uncertainty some of the ARRs that are sensitive to the
present fault may be found consistent. The procedure
may return several fault candidates, but it assures that
the real fault is one of them. Finally, the fault estima-
tion procedure uses a set of fault-dependent ARRs and
again an ICSP formulation to estimate the actual fault
magnitude. Moreover, the paper addresses the problem
of determining the uncertainty in the parameters of the
used uncertain ARRs. The proposed procedure is similar
to the one used for fault estimation and it is applied
off-line to data collected in fault-free operation of the
system.

The usefulness of the proposed approach is illustrated
through its application to the well known wind turbine
benchmark. Satisfactory results have been obtained com-
pared to those reported in the literature.

There are two main directions for future research.
First, the multiple fault assumption has to be consid-
ered. Although algorithms for multiple fault isolation
are available in the literature, the problem of estimating
the magnitude of simultaneous faults in presence of
uncertainty has to be studied. In particular, it is necessary
to study under which conditions it is possible to identify
and quantify the contribution of each fault. Second,
fault isolability is currently limited by the use of a
standard binary FSM. According to [30], information
about the sensitivities of the ARRs against the faults
and/or information about the dynamics of the ARRs
during the appearance of faults can be used to improve
fault isolation and estimation. This will be integrated
with our approach in the future.
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