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Abstract. The Conductance Electrical Model (CEM) translate a graph
into a circuit. After applying the model, in many cases, it is necessary to
approximate the circuit obtained by a star circuit and this requires the
calculation of the Moore—Penrose pseudoinverse of a matrix for which
there is a general formula that requires transpose, multiply and invert
matrices. But in this particular case, the matrix has a peculiar struc-
ture, exploited this peculiar structure in this paper show that the pseu-
doinverse can be obtained without recourse to the general formula. We
demonstrate a closed formula that gives the values of the elements of the
pseudoinverse directly without iteration, no longer necessary to multiply
or inverter matrices. This improved method eliminates the problems due
to computer rounding and due to bad-conditioned problems in mathe-
matical terms.

1 Introduction

Graphs have been successfully applied in various fields such as chemistry and
biochemistry; transportation, telephony and computers networks, speech recog-
nition and computer vision [1]. In this paper we concentrate in those graphs
coming from the field of computer vision. In this case, graphs have labeled nodes
and/or edges [7] and they usually have a large number of nodes and/or edges.
The methods for graph and sub-graph matching are based on enumerative tech-
niques [2, 3], edit operations [4-6], spectral methods [8], expectation-maximization
[9], random walks [10], genetics algorithms [11] and probabilistic approximations
[12]. The time complexity in the enumerative and edit operation methods is NP—-
complete while in the other methods it is polynomially bounded. Only in the
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enumerative solutions we have the exact solution, in the other cases we can get
only graph and sub—graph matching approximations.

In [13] was proposed a model to replace a graph for a circuit. This will apply
theories and methods of Circuit Theory to solve some of the problems of graph
approximately. In that paper they approached the circuit (N nodes) by a star
circuit (N + 1 nodes and N branches) seeking the value of N resistors of star
circuit minimizing the mean square error of the N(N — 1)/2 values equivalent
resistances between the two circuits. This operation required the calculation of
the Moore—Penrose pseudoinverse (hereinafter simply pseudoinverse) of a matrix
by the general formula involving the product and inversion of matrices. In this
work we demonstrate that the use of that general formula is not necessary to
calculate the pseudoinverse as described in [13].

2 Conductance Electrical Model (CEM)

As explained in [13] becomes an undirected weighted graph in a passive resistive
circuit where the weights of the edges are converted to values of conductance
(siemens), note that at [14] there is another approach to the problem apparently
similar but the initial idea is different because there the edges are replaced by
resistances (§2) and here the edges are replaced by conductances (.5).

The circuit is characterized by its Indefinite Admitance Matrix that will always
be real (the circuit is resistive) and symmetric (no sources dependent) that in
the case the step function, as defined in [13], is the identity will coincide with
the Laplacian of the adjacency matrix of the original graph.

Once the model can be applied consolidated Circuit Theory in order to obtain
valid results for graph problems.

3 Star approximation using CEM

Based on the CEM is obtained from a graph of N nodes and M branches its
counterpart electrical resistive circuit. In this circuit, using Circuit Theory, we
obtain the N(N — 1)/2 equivalent resistances (rq,;) these values can be repre-
sented by a column vector

t
Teq = (Teay 33 Teay 3s -+ > Teay N1 Tean gs -+ > Teay yoworee sTean_3,N—17TeaN_2,N—1Tean—1,n)

At work [13] was proposed to approximate the original circuit by a star cir-
cuit (N branches and N + 1 nodes with the central as the reference) with one
resistance (r;) for each branch, these values can be written as column vector

T = (Tl,Tzw--J’N)t

Also there are N(N — 1)/2 equivalent resistances in the star circuit, note that
the central node is not involved in the calculation of the equivalent resistances.
These can be written as column vector

’ ’
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It easy to see that rg% = r; + r; since the equivalent resistance between two
nodes in the star circuit is the association of two series resistances. Then we have
ry, = Br where B is the matrix show in (1)

1100---000

1010---000

1001---000

1000---000 N — 1 rows

1000---010

1000---001

0110---000

0101---000

0100---000 N — 2 rows

0100---010

0100---001

B=| 9011000 (1)

0010---000

A N — 3 rows

0010---010

0010---001

0001---000

I N — 4 rows

0001---010

0001---001

0000---011 }lrow
The approximation discussed above paragraphs is to be understood as the search
for values of r such that 'r’eq is approximately equal to r., in the sense of min-
imizing the mean square error between r¢, and 7, in this case the solution is
given by

r = (B'B)"'B'r.,

where
BT = (B'B)"'B! 2)

is known as the pseudoinverse of B, note that B* has N rows and N(N —1)/2
columns. Thanks to the above equation we can finally write

r= B*req
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4 Compact form of the pseudoinverse

To obtein the pseudoinverse (BT) of any matrix B by the (2) expresion is neces-
sary to make a matrix inversion, two products of matrices and matrix transpose.
But for the particular case that the matrix B is of the form given in (1) it is
not necessary to use (2) expresion. This substantially simplifies calculations as
discussed in the following theorem.

Theorem 1. Let B be the matriz with the structure shown in (1) with N # 1
and N # 2 then its pseudoinverse is

1
(N - DV -2)

where N is the number of columns of matriz B and 1y y(n—1)/2 is the all ones
matriz with N rows and N(N —1)/2 columns.

Proof. We call M the result of B*B then it is easy to see that

BT = [(N—1)B' — Ly n(nv-1)/2] (3)

1100 00
1010 00
1001 00
1000---10
1000---01
0110---00
0101---00
111---1100---000---000 D .
100---0011---110---000 - 0100 10
010---0010---001---110- 0100 01
M= 001---0001---001---001- 0011 00|
000---1000---100---100---10------ 1 0010---10
000---0100---010---010---01------ 1 0010---01
0001---00
0001---10
0001---01
0000---11
N-11 1 -1
1 N-11 sl
1 1 N—-1---1
= ] _ ] (4)
1 1 1 ~N—1

where M is a square matrix of order N. To calculate M ~! we will use that

M*
M7= —
| M]|
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where M* is the adjugate matrix and |M]| is the determinant that must neces-
sarily be non-zero so that the inverse exists. Applying formula (9) obtained in
Annex substituting n for N and k for N — 1 remains for the determinant

|M]=2(N - 1)(N —=2)¥! ()

Performing the same substitutions in (10) for the adjugate matrix we obtain the
following

2N —3 —1 -1 s —1
-1 2N —3) —1 s —1

M = (N_Q)N—2 —1 -1 2N—3) - —1 (6)
-1 -1 -1 <+ 2N =3)

Dividing the expressions (5) and (6) we obtein

2N —3 -1 -1 |
-1 2N —3 -1 1
- 1 -1 -1 2N —3 ... -1
1Y 7
2(N — 1)(N —2) . . o @
-1 -1 -1 2N -3

Note that M ~! can be written as

1

M= 2(N — 1)(N —2)

2(N -1)Iy —1nnN]

where Iy is the identity matrix of order N. We finally have

1
Bt =M"'B'= 2N — DIy — Iy n] B =
2(N—1)<N—2)[ ( ) N N,N]
1
= 2(N — DIyB' — 1y nyB'| =
2(N —1)(N —2) [ Iy NN B
1
= 2(N —1)B" - 21 _ =
1
= _[(N-1)B'—-1 _
(N—l)(N—Q) [( ) N,N(N 1)/2]
The last step is because all the columns of B add 2. a

5 Advantages of the compact form of the pseudoinverse

The advantages of the calculation of pseudoinverse by compact formula (3) ver-
sus general formula (2) are:

1) The computacional complexity is reduced from O(N?3) to O(N?).

2) This improvement is immune to problems of numerical resolution on a com-
puter and bad—conditioned problems in mathematical terms.
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6 Annex

For a matrix @ of order n as follows

k11---1
1k1---1

Q= 11k---1 (8)
111---k

are fulfilled the two following theorems

Theorem 2. The determinant of matrix Q is
Q= (k+n-1)(k-1)""" 9)

Proof. In effect, this will be to obtain an upper triangular matrix. For each row
adds all the columns to first column

k+n—-111---1
k+n—1Fk1---1
Q| = k+n—11k---1

k+n—-111---k

then
111---1

1k1---1
Q= (e +n—1)|LTRd

111---k
Is replaced each row except the first so that results from subtracting the first
row

11 1 -1
0k—-10 -0

Q= (r+n—1) 00 F=deO
00 0 k=1
As the determinant of a triangular matrix is the product of the diagonal elements
remains

QI = (k+n—1)(k-1)"""
O

Corollary 1. The determinant of @ is not zero if and only if kK # 1 and k +#
1—n.
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Theorem 3. The adjoint matriz (Q*) of the matriz Q is

k+n—2-1 —1 1
—1 k+n—2-1 -1
—1 —1 —1 ck4n—2

Proof. To show this we divide the problem into two parts: (i) calculation diagonal
adjoints and (i) calculation off-diagonal adjoints.

(i) calculation diagonal adjoints

The adjoint of any element of the diagonal (all adjoints from any element of the
diagonal are equal) will be a determinant of order n — 1, applying the formula
(9) is obtained

k11---1
1k1---1

Q=1 k1l —(k4n-2). (k-1
111---k

(ii) calculation off-diagonal adjoints
As seen in (11) to calcultae the adjoint Q;; (i # j) must be removed the row i
and column j (solid line) of Q.

ko111 ---1/1]1---1

1---k11---1]/111---1
1---1k1---1]1/1 -1
1---11Fk---1]111 -1

1111 ---kl1l1---1
1---111---1lkl1---1
1---111---1|1lk---1

1---111---1l1]1--- &
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Thereafter, it easy to see in (12) that appear only one row and only one column

with all ones (solid line) in the adjoint Q;; (with i # j)

E---11]1 ---11---1
1o k1)1 o111
111k ---11---1
Cpr = (—1)iti | = i A
=1 1111 - k101
1111 - 1k---1
1111111k

(12)

This row will all about swapping around to its first row, similar to the column,
for each permutation the determinant changes sign.
Suppose that i < j then the column with all ones appearing at position i while the
row with all ones appears at position j—1. Therefore the number of permutations
(and consequent changes of sign) of the row and column with all ones is j — 2
and i — 1 respectively, being affected the determinant by (—1)7=3. Analogous

result is obtained assuming j < 1.

In short, the coefficient that multiplies the determinant is (—1)77 (—1)7=3 will
always be worth —1 for the exponent always odd, indeed

(_1)i+j(_1)i+j73 _ (_1)2i+2j73 _ (_1)2(i+j)73 -1

Then the adjoint is as follows (i # j)

1111---
1k11---
11k1---
111k ---

1111---

e

k

The calculation of this determinant is similar to that of Theorem 2, being for

Qij = —
i 7.
Cij =
Finally it has
k+n-—2
-1

Q* _ (k _ 1)7172 -1

-1

_(k_l)n—Q

-1 -1 -1
k+n—2-1 - —1

-1 k+n—2---—1

-1 —1 cook4n—2
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