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Abstract—Rigid object manipulation with robots has mainly
relied on precise, expensive models and deterministic sequences.
Given the great complexity of accurately modeling deformable
objects, their manipulation seems to call for a rather different
approach. This paper proposes a probabilistic planner, based
on a Partially Observable Markov Decision Process (POMDP),
targeted at reducing the inherent uncertainty of deformable
object sorting. It is shown that a small set of unreliable
actions and inaccurate perceptions suffices to accomplish the
task, provided faithful statistics on both of them are collected
beforehand. The planner has been applied to a clothes sorting
task in a real case context with a depth and color sensor and
a robotic arm. Experimental results show the promise of the
approach since more than 95% certainty of having isolated a
piece of clothing is reached in an average of four steps for quite
entangled initial clothing configurations.

I. INTRODUCTION

This paper presents a planning approach to solve the task

of handling deformable objects with uncertain perceptions

and inaccurate actions. In particular, the approach is applied

to a pile of pieces of clothing, from where a robot has

to successfully remove one piece of clothing at a time.

Manipulation of deformables, like textiles, is a challenging

problem as the shape of the objects can change dramatically

after the execution of manipulation actions, occlusions and

self-occlusions commonly appear, and entanglements lead to

undesired manipulation of multiple objects. Perception of de-

formables is an open problem [1] and can be computationally

very expensive [2].

The main contribution is a planning framework that does

not explicitly work with deformable object descriptions but

instead follows an action policy that takes into account the

uncertainty of the underlying manipulation and perception.

The main idea is that the initial state is unknown (i.e. the

number of objects on the pile or their distribution), and by

performing manipulation actions this uncertainty is reduced

(i.e. one piece is isolated on the table). Once a certain

degree of confidence is reached the textile can be removed

from the table, but not before. Specifically, the goal of the

robot task is to remove each textile from the table with the

minimum number of actions possible while minimizing the

errors. Specially, removing more than one piece of clothing at

once is a failure. Note that separation is a necessary previous

step on a variety of tasks, like identification [1], [3] and

folding [4].

This work has been partially funded by Spanish Ministry of Economy
and Competitiveness under projects PAU+ DPI2011-27510 and the Catalan
Research Commission 2009SGR155; and by the EU project IntellAct FP7-
269959.

The authors are with the Institut de Robotica i Informatica In-
dustrial (CSIC-UPC), Llorens i Artigas 4-6, 08028 Barcelona, Spain
{pmonso,galenya,torras}@iri.upc.edu

II. PREVIOUS WORK

Research on robotic laundry manipulation in relatively

unrestricted scenarios is rather new. For socks manipulation,

Wang et al. [5] propose a complex vision system to identify

sock type and if the sock is inside-out. The manipulation

system relies on deterministic motions using very specialized

tools. Maitin-Shepard et al. [6] use a robot to take towels

from a pile and fold them. Grasping is performed at the

central point and vision detects corners through background

segmentation and stereo. Finally, a pre-defined set of actions

is used to fold the towels.

Alternatively, a more generic approach is to recognize and

classify different pieces of cloth. Willimon et al. [3] propose

a system where the grasping operation is repeated as many

times as necessary to ensure a correct grasp, and then four

basic visual features are extracted to classify a previously

learned object. Cusumano et al. [4] use a robot to bring a

piece of clothing to a specific configuration using predefined

grasping actions by an arbitrary edge, and a series of low-

hanging-point re-grasps.

We propose here to use a planning framework to select

actions. Note that we consider that perceptions can be very

noisy and therefore methods assuming full observability are

insufficient. This will be demonstrated in the experimental

section (Sec. IV) through the comparison of our approach

with a classical MDP and the characterization of the noise

in the perceptions.

Problems where perceptions are hidden or inaccurate can

be handled in two ways: without knowing the world model

beforehand, that is, by learning the model and/or model pa-

rameters (Hidden Markov Models (HMM), Predictive State

Representations (PSR), ...), or otherwise relying on a model

as in the partially observable MDP (POMDP) approach used

in this paper.

Nonetheless, techniques exist that learn the underlying

world POMDP model and its transition probabilities from

data. Chrisman [7] addressed this problem with a variation

of the Baum-Welsh algorithm and later, based on HMM

modelling, successfully retrieved and applied a partially

observable Markov model to speech recognition [8]. Other

techniques have also been proposed to derive the model

from a data set, Roy et al. [9], for example, use Principal

Component Analysis (PCA) to reduce the dimensionality of

the state space and identify the valuable features. In our

case, the model is clear enough to be designed manually,

and its transition probabilities are derived empirically based

on a ground truth. Note that the accuracy of the model is a

required key point of the formulation, as we will see when



(a) Grasping (b) Lifting (c) Leaving on the other side (d) Leaving on the basket

Fig. 1. Experimental setup. The robot provides a set of actions to pick up and remove pieces of clothing by combining 3D color information from the
Kinect camera with basic robot movements. (a)-(b)-(c) Objects are moved from one side to the other side of the table using different actions to gather
information and minimize the uncertainty about the state. Actions possibly fail when no object or several objects are grasped at the same time. (d) When
the uncertainty about the isolation of one object in one side of the table is below a certain threshold the remove action takes place.

we evaluate the results.

As we have pointed out, our approach is based on a

Partially Observable Markov Decision Process formulation.

This formulation has been successfully applied to many

robotic applications ranging from robot navigation [9], [10]

to perception [11], among other applications such as guid-

ance of patients suffering from Alzheimer [12]. Moreover,

the recent performance results of point-based solvers over

high-dimensional POMDPs are encouraging [13], [14], given

that they relax the dimensionality constraints up to several

thousands of states. In particular, for this paper, the experi-

mental computation of the POMDP solution has been derived

with the SARSOP point-based solver [15].

Nonetheless, to our knowledge, POMDP planning has

never been applied to object manipulation other than with

a rigid object and tactile perceptions [16].

III. PROBLEM FORMULATION

The standard formulation of POMDPs defines the problem

by the tuple {S,A,Z, T , Ω,R, γ, b0}, where S is a set of

discrete states modelling the world, A is a set of possible

actions, and Z is a set of possible observations providing par-

tial state information. The probability distribution T (s, a, s′)
establishes the probability of reaching state s′ from state

s by performing action a, while Ω(s, a, z) establishes the

probability of observing z when reaching state s after action

a. R(s, a, s′) represents the reward received when reaching

state s′ by performing action a from state s. Finally, γ is

the discount factor applied to the rewards and b0 the initial

probability distribution over the states, also known as belief,

which is updated with the Bellman equation. The goal of

POMDP solvers is to obtain the optimal policy π∗(s, a) that
maximizes the reward.

For further insights, Kaelbling et al. [17] provides a

thorough descriptive review of the POMDP formulation.

In our particular problem, the chosen definition of the

POMDP tuple is as follows:

• S: The number of objects in each region of the table,

with a catch-all state >3.

• A: Two different sets of actions: remove actions take

an object out of the table; move actions take objects

from one side to the other side of the table. To obtain a

rich action set it is desirable that move actions perform

differently depending on the number of objects and the

amount of deformation on the objects.

• Z : The number of objects seen in each area. Note that,

for the same state perceptions can be very different due

to occlusions and perception errors.

• R : −100 for removing several objects at the same time,

+1 for removing a single object, +5 for removing the

last object, and -1 otherwise.

• γ: The discount factor is set to 0.95.
• Ω : The probability distribution of the number of objects

seen given a number of objects present in each area.

• T : The probability of reaching one state from another

given an action.

We next discuss the most important aspects of this formu-

lation in detail.

A. State definition (S)

We consider 2 zones: the table and the basket where

clothes should be transferred one by one. The table is

divided in two different areas {left,right}, where there are

an unknown number of pieces of cloth. The state is defined

as a tuple < Nx, Ny > that codifies the number of pieces of

clothing in each side with Nx, NY ∈ {0, 1, 2, 3, > 3}. As a

simplification, we consider that in the initial state there are

pieces of clothing only in the right side.

Given the proposed state definition, the planning is exe-

cuted at a symbolic level, delegating part of the intelligence

to the actions and consequently permitting this reduction of

the dimension of the state space. In the deformable object

context, this reduction is specially important given the great

variability of the world. By transferring responsibility to the

actions, the dimensionality of the POMDP becomes tractable.

We will show that, in spite of this simplification, the planning

is successful, since the consequences of such simplification

are handled by the POMDP through the action success

uncertainty.

B. Actions (A)

Actions have been defined in two different groups: 2

specialized actions to remove objects from the table and 20

actions to move objects from one side of the table to the

other side with the goal of isolating one piece of clothing in

one side. Both action groups involve 3 motions of the robot:

grasping, lifting and leaving (See Fig. 1).

Grasp in remove actions is a specialized grasp with high

probability of success when only one piece of clothing is



(a) Original Image (b) Highest point grasp (c) Most Wrinkled grasping point (d) Height modification

Fig. 2. The actions apply two different grasping point selection criteria to the original point cloud image. (2a) original image. (2b) the highest point
relative to the table. (2c) the most wrinkled point. (2d) The grasp point is selected to be close or lifted, which leads to coarse or precise actions.

(a) Finger configura-
tion 1

(b) Finger configuration 2 (c) Finger configuration 3 (d) Finger configu-
ration 4

Fig. 3. Finger configurations used in the actions. The configurations are combined with open-wide or slightly closed joint positions that provide a variety
of rough and accurate grasps.

present. However, grasp in move actions is more complex

and involves: grasping point detection, hand configuration,

and a height modifier. To compute the desired grasping point

we use 2 different perception algorithms (Fig. 2): simple

height and wrinkledness detector [18]. Do not confuse this

"perception for the actions" with the perceptions for the

POMDP observation model. We use a 3-fingered hand, so

different configurations of the fingers are possible (Fig. 3).

Finally, the height modifier is used to obtain specialized

actions (Fig. 2d): going deep to perform a grasp is expected

to take probably one object, but also can take more than one

object; contrarily, a shallow grasp probably takes one object,

but also can fail and take no objects (See Table I and the

transition model discussion).

To summarize, the 20 move actions depend on the direction

of motion ({Movement}), the kind of perception used to

determine a grasping point ({Point analysis}), and a com-

bination of finger configuration and height with respect to

the defined grasping point ({Point modifier {Finger config-

uration}}). This leads to the following action set

{

Left→ Right

Left← Right
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}
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Not all the actions have been used in the experimental

execution. In Sec. V it is shown that the policy selects the

actions that are more suited for the task given its model and

discards the other ones.

Action id: Number of objects present
9 0 1 2 3 4

0 100 20 20 30 30
Number 1 0 80 50 30 50
of objects 2 0 0 30 30 20
taken 3 0 0 0 10 0

4 0 0 0 0 0

TABLE I

EXAMPLE OF THE PROBABILITY DISTRIBUTION OF AN ACTION’S

GRASPING SUCCESS.

C. Rewards

The proportion between rewards and punishments deter-

mines the amount of risk the policy is allowed to take. An

error performing the remove action is fatal as removing 2

pieces of clothing is an error. We choose the reward to be

conservative and only allow remove actions when certainty

of having isolated one piece of clothing raises to 95%.

D. Observation and Transition Model (Ω, T )

Both observation and transition models are derived from

the characterization of the perceptions and actions. Obser-

vations, the number of pieces of clothing present at each

side of the table, are obtained with a simple color histogram

algorithm. The observation model is derived from values in

Table II which are obtained experimentally.

The transition model is more elaborated to obtain, and

requires to compute for each different action (22 in our

case) the probabilities of grasping success. One example

corresponding to the action {wrinkle}{lifted{finger 3}} is

presented at Table I.



Observations Number of objects present
Distribution 0 1 2 3 >3

0 100 0 0 0 0
Number 1 0 79 26 10 3.5
of objects 2 0 9 71 31 7.5
detected 3 0 6 3 48 30.5

>3 0 6 0 11 58.5

TABLE II

OBSERVATIONS PROBABILITY DENSITY DISTRIBUTION OF OBJECTS

DETECTED OVER OBJECTS REALLY PRESENT (IN PERCENTAGE). THE

POMDP OBSERVATIONS ARE DERIVED FROM THIS MODEL.

3 objects
Goal Number % actions First object

reached of actions used removed in:

POMDP partial 90% 12.1 36% 3.8
MDP partial 80% 7.8 32% 2.9
POMDP occluded 70% 15.3 41% 5.0
MDP occluded 20% 6.0 32% 3.0

5 objects

POMDP partial 40% 14.25 36% 3.75

TABLE III

COMPARISON WITH THE FULLY OBSERVABLE CASE WITH AND WITHOUT

TOTAL OCCLUSIONS AND SCALABILITY OF THE METHOD.

IV. EXPERIMENTAL VALIDATION

Through experimentation, we tested the performance of

the algorithm for different levels of complexity of deformable

objects with partial occlusions and total occlusions. Then,

we compare the performance of the POMDP representation

against a MDP representation in terms of task completion

and steps required [19]. The scalability of the approach is

assessed by increasing the initial number of objects on the

table.

The experiments have been conducted with a BarrettHand

WAM robot and a Kinect camera. The POMDP observations

are provided through a simple color histogram analysis, and a

performance test is carried out to characterize the perception

uncertainty (see Table II). Each experiment started with

objects manually spread at random on the right-hand side of

the robot with different difficulties. Figure 6 shows a typical

belief evolution through execution and is discussed on the

following section.

The summary of the experiments is depicted in Table III.

For each set of experiments we evaluate the percentage of

goals successfully completed, the average number of actions

required and the diversity of actions used. A goal is com-

pleted when the robot has successfully extracted separately

every piece of clothing, and it is failed as soon as one remove

action removes more than one piece of clothing from the

table. Increasing the number of objects increases the chances

of error, and the reliability of the action and observation

models becomes critical (Second part of Table III), as we

will discuss in the following section.

Regarding the average number of actions required (column

3 and 5 of Table III), in average, the first removal action is

executed within the 4 and 5 first planned actions. Therefore,

through action planning, two task objectives are reached

concurrently and quite rapidly: achieving more than a 95%

confidence about the real state in conjunction with the

isolation of a piece of clothing in one pile.

Table III’s results also show that, as one would presume,

the occluded scenario is slightly more difficult than the

partially occluded scenario.

A. MDP comparison

An MDP solution for the problem has been implemented.

It considers the same action model used in the POMDP

solution, but the observation model is deterministic, that is,

errors in perceptions are not taken into account. As expected,

the proposed method outperforms the MDP version of the

problem (Table III). In the easy scenario, where all the

pieces of clothing are only partially occluded, MDP almost

performs with the same success as POMDP. The difference

comes because actions sometimes lead to occlusions of

previously seen pieces of cloth, that MDP cannot handle.

In the scenario with occlusions the performance of MDP

drops dramatically. Indeed, as soon as the full observability

condition is broken through interaction, the robot fails to

complete the task. In contrast, because the POMDP also

values the retrieval of information, it is more prone to

exploit the diversity of actions provided to fulfill the task

successfully.

B. Results evaluation

The comparison of the results between POMDP executions

in partially and completely occluded scenarios are encour-

aging (Row 1 and 3, Table III). In the partial occluded

scenario the goal is reached 90% of times, while, when one

object completely occludes one or various objects, the goal

is reached 70% of times. The average total number of actions

is between 12 and 15 (the minimum number of actions is 5:

2 move and 3 remove). Using the POMDP the first object

is removed within the first 4 or 5 actions, and the rest of

actions are used to isolate and remove the rest.

Failures are due to the removal of several pieces of

clothing in the same action: after some manipulation actions,

a complete occlusion remained because grasping could not

split the two objects, and the planner was certain about the

existence of one unique object.

Another source of error involves perception systematic

errors. If not coded explicitly, the POMDP planning has the

naive assumption that two observations over the same state

are independent, which is not always true. Perceptions can

systematically estimate a wrong number of objects, e.g. one

object is always estimated as two. Obviously, manipulations

will never provide the observation of one object.

Thus, the models have to be a representative sample of

the possible inputs, and the actions have to ensure that

new observations of the scene are gathered, asymptotically

reaching the true state of the scene. Otherwise it is difficult

to scale up to a great variety of objects because increasing

the number of objects also increases the occurrence of the
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Fig. 5. Action value domination. The action 0 obtained a better value than
action 8 in all states from the task perspective, and, therefore, the later can
be discarded.

identified sources of error, given that the average number of

actions required to fulfill the task also increases (second part

of Table III).

Concerning the different actions taken in each scenario

(4th column in Table III), Fig. 4 shows that the preferred

actions change depending on the type of complexity of the

scenario: as perceptions are more uncertain in the presence

of occlusions, a higher confidence state is difficult to reach

and the set of actions used by the POMDP also changes.

V. DISCUSSION

A. Action value domination

One of the advantages of the proposed method is that the

value of each action is assessed from the task perspective.

Inspecting the policy, we can rapidly determine the useless

actions by comparing their value in the multidimensional

belief space. The actions a2 that given another action a1
fulfill the inequality V (s, a1) > V (s, a2) ∀s can be auto-

matically discarded. In our case, 8 out of the 22 actions

were dominated by the action 0 or not used at all by the

policy. Figure 5 provides an example of such domination.

In particular, the actions discarded are: 4, 5, 8, 9, 13, 14,

15, 18 and 19, which correspond to {height}{lifted{finger

3}}, {wrinkle}{*{finger 1}}, {wrinkle}{lifted{finger 3}}

and the equivalent actions starting from the other zone.

Fig. 6. Belief evolution through execution. The labels show the (rounded)
probability of each state. The bold state is the most probable. We can see
how fast the certainty increases.

Plus, since the problem is not symmetrical because the task

starts with clothes only on the right-hand side of the robot,

{height}{lifted{finger 1}} is useful on that side, but not on

the other one.

Additionally to the action selection, the value function also

provides an action diversity assessment if a certain degree of

improvement were required over the dominant actions’ value.

B. Belief evolution through manipulation

Figure 6 shows the belief evolution of a selected execution.

At the problem initialization, states representing objects in

the right-hand side of the robot are equally probable. Then,

the POMDP policy chooses an action that is likely to take one

object to the left-hand side, but after running it, the percep-

tion informs that the robot has moved three objects. However,

the probability associated to this outcome after performing

such action is very low, so the belief gets correctly updated

biased to a high number of objects. Additionally, although the

robot sees only one object on its right-hand side, there is still

a 23% probability of having more than one. In this situation,

the full observability procedure would have failed, but the

proposed method runs a couple of additional actions, moving

a piece of clothing from one side to the other, to increase the

certainty of having a single object to 83+17 = 100% at step

5. After that, the doubts over the other pile of clothing have

been dissipated (only a 3% chance of having one object) and

the objects are successfully separated and removed with the

three following actions.

Note that the policy, aware of its acting and perception

failure probabilities, correctly accumulates the information

of the observations received after each action. We can see

that behaviour between steps three and four. Knowing that

the grasp might have failed, the next observation improves

the knowledge of the scene instead of assuming that the

state has changed. In fact, in some executions, the policy



repeats actions in order to increase the certainty of object

isolation. The trade-off between the accepted risk and the

cost of performing additional manipulation actions can be

tuned with the reward mechanism of the POMDP.

VI. CONCLUSIONS AND FUTURE WORK

The paper describes probabilistic planning of an isola-

tion/extraction task. The POMDP design, modeling and im-

plementation of the task have been applied to deformable ob-

ject extraction with a real robot, showing the appropriateness

of the POMDP approach to achieve the robot goals under

unreliable actions and perceptions. The relevant results are

two fold: First, the approach effectively exploits and reduces

the inherent uncertainty through planning and interaction,

which relaxes the precision requirements of robot vision and

manipulation, and, second, the value function provides an

estimate of the relevance of actions within the task planning

context.

Regarding the inherent uncertainty of the perception and

manipulation of deformable objects, we have shown that it

is rapidly reduced through planning: the POMDP planning

effectively combines the certainty distributed amongst sev-

eral states. Through manipulation, the uncertainty about the

state is reduced. Indeed, in the experimental context, the

state confidence raises to 95% in less than five actions. It

is important to note that the state definition was deliberately

kept low-dimensional to show that dealing explicitly with

uncertainty helps the robustness of the planning, in spite

of acting in a simplified world model. In addition, that

constraint makes possible the addition of supplementary

deformable object features to the state encoding, exploitable

from the planning perspective.

Regarding the value function, we have seen that it is a

useful tool for task-driven action selection, a measure to

assess the importance of each action over the state space.

This is important because being able to identify the valuable

actions is not obvious with the raw information, while it

is self-evident once the policy is computed. Moreover, in

order to take advantage of the action repertoire, the planning

requires a sufficient rich state definition.

One focus of future research will be the specialization

of the manipulation actions. Further reducing the uncer-

tainty would increase the planning policy efficiency and

effectiveness. In this sense, thanks to the policy action

evaluation, we could use an over-dimensioned action space

to automatically select the actually relevant ones for the

particular scenario. Moreover, the current image processing

techniques are constrained to colour segmentation, which

sets an unnecessary strong constraint on the environment.

Therefore, in the future, a combination of robot vision

techniques can provide the estimation of the number of

objects.
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