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Abstract—In this article, we analyze the effects of ambient
light on Time of Flight (ToF) depth imaging for a plant’s leaf in
sunlight, shadow and room conditions. ToF imaging is sensitive
to ambient light and we try to find the best possible integration
times (IT) for each condition. This is important in order to
optimize camera calibration. Our analysis is based on several
statistical metrics estimated from the ToF data. We explain the
estimation of the metrics and propose a method of predicting the
deteriorating behavior of the data in each condition using camera
flags. Finally, we also propose a method to improve the quality of
a ToF image taken in a mixed condition having different ambient
light exposures.

I. INTRODUCTION

Depth imaging for indoor applications is becoming more
popular especially with the advent of RGBD cameras. Tasks
in which better depth resolution and ambient light cancellation
are desirable, Time of Flight (ToF) cameras are still a more
preferred but relatively expensive solution. Various brands of
ToF cameras are available in the market but their performance,
generally, is compromised under strong sunlight conditions.
ToF cameras are active sensors having Near InfraRed (NIR)
light emitters (850 nm) and scene depth is estimated from time
required for the light to reflect back to the sensor. The sensor
is fairly low resolution (max: 200x200 at present) and low
signal-to-noise ratio (SNR). A good reference for explaining
the working principal is Lange and Seitz [1] and for noise
characteristics of state-of-the-art ToF cameras are Foix et al.
[2] and Mufti and Mahony [3]. For an ambitious reader,
a detailed study with derivations of mathematical equations
can be found in the PhD thesis of Lange [4]. In short,
ToF cameras typically return registered depth, amplitude and
intensity images of the same size.

Our domain of research is agriculture, where it is impor-
tant to monitor and measure the morphological properties
of plants (such as size and structure) in order to quantify
plant density, vigor and identify the species. Digital imaging
is an important tool for this task but mere 2D imaging is
insufficient to cope with overlapping and complicated plant
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Fig. 1. PMD CamBoard and ToF working principle

canopies. Depth sensing is hence important, especially in
modern phenotyping facilities which use robotic manipulators
to grasp desired parts of the plant. This task demands highly
precise and accurate depth data. Stereovision vision suffers
from the correspondence problem and efficiency bottlenecks
when working at close ranges for low texture leaf surfaces.
ToF cameras provide high frame rate depth data (more than
30 fps) without correspondence issues which is proving vital in
this regard. Therefore, ToF imaging is finding a greater utility
in agricultural projects (such as ASETA [5] and GARNICS
[6]). It is hence pertinent to review important work done in
agriculture using ToF technology.

A. ToF imaging in agriculture

Feasibility of ToF cameras for plant analysis has been done
by Klose et al. [7] and Kraft et al. [8] but they fail to address
some important aspects such as integration time (IT: time for
which sensor integrates the returned signal) without which ToF
data evaluation becomes somewhat meaningless. Still, these
works found ToF a potential candidate for plant phenotyping.
Alenya et al. [6] also investigated ToF potential for plant
phenotyping. Their focus stays limited to indoor environments
by combining ToF with RGB images. In field operations, both
light and wind pose a great challenge. Nakarmi and Tang [9]
used SR4000 ToF camera for inter-plant distance measurement
in corn fields. Their camera assembly covered both the camera
and the view from sunlight and wind. To the best of authors’
knowledge, depth imaging for plants have not been compared
under natural and room illumination settings.

Although ToF light is modulated on a carrier wave typically
having frequency in the range of 15-30 Mhz, its reflection,



Flag Identifier (Hex) Description
Invalid 0x00000001u Depth value unreliable

(amplitude too high or too low)
Inconsistent 0x00000004u Raw data inconsistent

(motion artifacts, saturation etc)
Low Signal 0x00000008u Not enough signal strength to

measure depth accurately
SBI Active 0x00000010u Suppression of background

illumination is active

TABLE I
CAMBOARD FLAGS

transmission and absorption largely depends on the NIR fre-
quency in it. As this light is not in the visible range, it is
necessary to carry out a brief survey on optical characteristics
of NIR rays on plant leaves.

B. Leaf optical characteristics in NIR spectrum

Light interaction on plant canopy and leaf surface, which
includes both the photosynthetically active radiation (PAR) as
well as infrared radiation (IR), has been studied for many
decades. From the surface of a leaf, some part of the incident
light is absorbed, some is reflected and the rest is transmitted.
For leaf surface analysis, reflectance ought to be higher.
Woolley [10] found that both the reflectance and transmittance
for soyabean and maize leaves were high in NIR region
as compared to visible spectrum, since the plants absorb
significant amount of incident visible light. Similar results
were achieved by reflectance-transmittance model proposed
by Jacquemoud and Baret [11] which showed almost 51%
reflectance, 45% transmittance and 4% absorption for green
soyabean leaves in the NIR region. This reflectance is low
but in their findings on a frequency scale from 400 nm to
2500 nm, which also includes most of the visible spectrum,
the only region having highest reflectance and lowest possible
transmittance and absorption is the NIR region between 750
nm and 1000 nm. ToF cameras operating at 850 nm are right
in the ball park, making them quite feasible for leaf imaging.

However, one major problem is the saturation of ToF
cameras under sunlight as mentioned in the manufacturer
documentation. Only PMD cameras are claimed to work under
sunlight, but not out-of-the-box as IT has to be adjusted for a
given ambient illumination and object distance. As discussed
by May et al. [12], IT affects the amplitude and intensity of
the data. They also proposed a method to find best integration
times avoiding both saturation and low signal for ToF cameras
using amplitude and intensity variation with IT. With new
cameras, the manufacturer’s application programming inter-
face (API) returns either a confidence matrix (SwissRanger
[13]) or flags (PMD [14]) which comment on the behavior of
every pixel during image acquisition, which we intend to use.

In this article, we provide a comprehensive study of the
response of a PMD CamBoard camera under sunlight, shadow
and room conditions and we propose a criteria to select
different camera integration times based on the internal error
flags and the amplitude values. The challenge is to find a

suitable IT for each of the three conditions because a different
calibration has to be applied for each IT and calibration is a
costly process. Additionally, we propose a method to obtain
an optimal image when sunlight and shadow are both present
at the same time.

The breakdown of this paper is as follows: In Sec. II,
we briefly describe the hardware. Mathematical relationship
between IT and amplitude is discussed in Sec. III, followed by
experimental setup in Sec. IV. In Sec. V, metrics for evaluation
of data are defined. Data analysis is done in Sec. VI. Sec. VII
concludes the paper.

II. PMDTEC CAMBOARD: SPECIFICATIONS

The choice of CamBoard is due to its small size and low
power consumption (USB powered). It is a webcam style
ToF camera (Fig. 1(a)) by PMD Technologies. Image sensor
size is 200x200 pixels. It returns a depth image, 3D data,
registered amplitude and intensity images and a limited set
of flags per pixel. CamBoard works on the standard Lock-in
Time of flight principle [2]. NIR light is typically modulated
at a 20 Mhz carrier although it can be changed. Continuous
Wave (CW) modulation is employed and phase difference is
used to estimate depth rather than directly measuring the turn
around time of the signal.

A. Depth

Depth image returned by CamBoard contains the Z coordi-
nate of the object in view in meters. The data is signed double.
The higher are the depth values, the farther is the object from
the camera. Integrity of the depth data is judged by amplitude
and flags.

B. Amplitude

The amplitude has no specific units. It represents the amount
of NIR light reflected from the scene. Higher amplitude means
more confidence in the measurement. But a very high ampli-
tude leads to saturation which is an indication that no more
photons can be accommodated by the pixels, thus producing
unreliable depth measurements.

C. Intensity

CamBoard returns a typical 8 bit intensity image of the same
size as depth image.

D. Flags

The flag matrix of CamBoard has a 32 bit flag value for
every pixel. If set, the reason could be one or more of the
flags in Tab. I. Sometimes, with Invalid flag, other bits provide
information for the possible reason(s) of invalidity.

III. EFFECT OF AMPLITUDE AND IT ON DEPTH PRECISION

Depth precision is directly related to the amplitude and is
given by [1]:

∆L =
L
2π

.∆ϕ =
c

4π fmod

√
B√

2A
(1)



where ∆L is the depth precision (or range resolution) due to
photon-shot noise (quantum noise), B (intensity) is the offset to
account for background illumination B0 and mean amplitude
A of the returned active illumination [3]:

B = B0 +A (2)

and L is the maximum depth:

L =
c

2 fmod
(3)

here c is the speed of light and fmod is the modulation
frequency (20 Mhz for CamBoard). Details of the derivation
can be found in the thesis of Lange [4] chapter 4. According
to Mufti and Mahony [3], ToF signal to noise ratio (SNR) is
given by:

SNR =

√
2A√
B

(4)

and therefore Eq. 1 can be reduced to:

∆L =
c

4π fmod

1
SNR

= σL (5)

Photon shot noise is represented by Poisson distribution of
the process of arrival of photons at the sensor which in case
of very large number of photons (as in ToF cameras) can
be approximated by Gaussian distribution with the standard
deviation σL of the range measurement [3]. According to Eq.
1 and also from general observation, low amplitude decreases
SNR and makes depth invalid. Very high amplitude, on the
other hand, saturates the sensor producing incorrect depth
estimate. It seems convenient then to have an upper threshold
for amplitude. But amplitude is directly controlled through
IT for a given distance, due to which IT plays a key role in
precise depth estimation. Strong background illumination B0
(such as sunlight) increases B and hence worsens this situation.
So in order to reduce its effect, IT must be reduced which
in turn decreases A. B also includes A, but due to square
root dependence of σL on B, an increase in A results in an
overall increase of precision. It is therefore obvious, that an
optimum IT is a best compromise between σL, A and B and
no single value of IT can be optimal for different ambient
illumination settings. This fact makes use of ToF cameras more
challenging as for more accurate measurements, ToF camera
must be calibrated for a specific IT which means that an
optimal calibration for outdoor conditions will not be suitable
for indoor applications and if used, will have integration time
related errors [2].

For CamBoard, we have found the flag matrix obtained
through the manufacturer’s API very useful in this regard.
We use the flag matrix to find pixels marked Invalid due to
low signal amplitude or inconsistency as a result of strong
scintillation or multiple depth values which could probably be
caused either by multiple reflections, rapid motion or satura-
tion. PMD cameras have an on-board circuitry for suppression
of background illumination (SBI) along with an associated
flag. Our analysis will also test its performance under sunlight.

(a) Mean and Std.Dev.
across frames with a sample
4x4 ROI

(b) 20x20 ROI on leaf im-
age used for analysis

Fig. 2. Data Interpretation

IV. EXPERIMENTAL SETUP

The object in view was a plant leaf, Anthurium An-
draeanum. Plant was grown in pot and the camera-to-leaf
distance was between 30-35 cm. Imaging was performed under
three ambient illumination conditions i.e. sunlight, shadow and
room. The absolute distance between the lens of the camera
and the center of the leaf could be slightly different for each
setting because the plant and camera mount were displaced
for each condition. The leaf was not held in place by any
device and best efforts were made to capture data with no leaf
perturbation due to wind. The camera was mounted on a tripod
looking down between 45-60 degrees with the horizontal.
Orientation of the camera was kept roughly orthonormal (leaf
surface normal coincides with Z-axis of the camera). Only
a single leaf was in view. On the border of the image, the
amplitude is usually lower than in the middle [15], so for
simplicity, the entire analysis was done inside a small window
(20x20 pixel Region of Interest: ROI) near the center of the
image (Fig. 2(b)) which reduces chances of errors in ToF data.

During the test, company provided calibration was used,
although the camera was operated at a range shorter than the
calibrated range. Calibration only affects the accuracy and not
the integrity or precision of the data, and therefore, the depth
will not be accurate in meters. This is irrelevant as long as
we evaluate pixel values relative to their neighborhood and
take into account the validity of data for every pixel under
consideration. After all, the purpose of the test is to find an
optimal IT, so to calibrate the camera at that IT for higher
accuracy.

V. DATA INTERPRETATION AND METRICS FOR
EVALUATION

CamBoard data is high frame rate (up to 60 fps), so we
analyze it by accumulating it across several frames (Fig. 2(a))
using various statistical measures. As mentioned in Sec. IV,
these metrics are estimated in the ROI on the surface of the
leaf. The leaf is assumed to be static. In order to empirically
estimate the precision (Eq. 5), we first find the mean value of
depth for each pixel i across f frames:

µi =

f
∑

t=1
Li,t

f
, (6)



Fig. 3. Analysis of amplitude and depth at 30-35 cm in a 20x20 (ROI) under room, full shadow and sunlight conditions for one leaf in view (Fig. 2(b))
and a white wall. A Good pixel is one which does not get marked inconsistent (Tab. I) throughout the IT range while a Bad pixel is one of the first pixels
to become inconsistent and hence invalid. Both pixels are inside the ROI (c) Poly. Fit is the trend line for the mean Std.Dev. curve (blue line) of ROI (d)
Inconsistent →Maxima shows the curve when inconsistent pixels are set to maximum depth manually (a,b) A quick glance shows CamBoard performance
in descending order as (iv) best to (i) better, (ii) satisfactory and (iii) worst.

where Li,t is the depth value of pixel i of t frame. The scheme
of data accumulation across frame is shown in Fig. 2(a). The
standard deviation across frames is:

σLi =

√√√√√ f
∑

t=1
(Li,t −µi)2

f −1
. (7)

In order to extract a more tangible 1D metric to compare
precision over IT, we find mean of σLi :

µσL =

n
∑

i=1
(σLi)

n
(8)

where n=NxN is the total number of pixels in the ROI. In the
next section, a comparison of these metrics will be done for
selected pixels as well as the entire ROI in order to understand
the deterioration of depth behavior with increasing IT.

VI. ANALYZING THE EFFECT OF AMBIENT ILLUMINATION
ON TOF DATA FOR LEAF IMAGING

A pixel’s amplitude represents the number of photons
received by it. Increasing IT linearly increases amplitude.

After a certain point, this behavior becomes non-linear. This
is an indication that the pixel is reaching a saturation point
where it cannot accommodate incoming photons any further.
Saturation, therefore, should be avoided as it renders incorrect
depth measurements. May et al. [12] show the over-saturation
gap when the mean amplitude curve vs. IT deviates from
linearity. We go a step further and find out the reason for this
non-linearity. Fig. 3(a,i),(a,ii),(a,iii) show a similar situation
for room, shadow and sunlight conditions, respectively. These
figures show the mean amplitude across frames for a single
pixels and average of the 20x20 ROI on the leaf (Fig. 2(b))
of a scene having one leaf in the view.

In these graphs, good pixels are those that reach saturation
amplitude (greater than 3x104). Contrarily, bad pixels exhibit
a very unpredictable behavior and do not necessarily reach the
saturation amplitude at all. Due to these bad pixels, the average
of ROI deviates from linearity much earlier. Assuming the
same material properties for all the pixels on the sensor of the
camera, it appears that non-linearity is not related to saturation
amplitude only. Fig. 3(b,i),(b,ii)(b,iii) show the corresponding
depth values of pixels which start getting out of synchroniza-
tion as soon as their amplitudes deviate from linearity. The IT



range where this behavior starts is shown between dotted green
bars, we call it the green zone. This is the region providing
best trade-off between precision (highest possible amplitude)
and depth synchronization among neighboring pixels.

According to May et al. [12] and also by our observation,
the deviation from linearity depends on the object distance. For
closer objects, it occurs earlier (lesser IT) than for distant ob-
jects. It can be seen that ambient illumination affects linearity
as well. Deviation occurs earlier under sunlight than in shadow
and room conditions. If the IT is increased further than the
green zone, the deviation continues and worsens to a point that
the PMD onboard system sets inconsistent flag which in-turn
also sets the invalid flag (Tab. I). Inconsistency, according to
PMD documentation, means multiple depth values pertaining
to one pixel or incompatible amplitudes such as saturation. In
Fig. 3(a,b), pixels shown as bad become inconsistent at some
point, while good pixels do not.

As discussed in section III, depth precision is directly
related to the amplitude of the received signal, therefore
amplitude must be high enough to enable correct depth mea-
surement, still below the saturation level. Amplitude increases
with IT. In order to find the highest possible IT suitable for
a given setting, let us consider the standard deviation in Fig.
3(c,d). The mean standard deviation is the mean precision of
the ROI (Eq. 8).

As expected, the precision is quite low at very low IT. It
improves with increasing IT, but the most important part is the
first valley of the trend line i.e. when precision is the highest
for the first time. This indicates that there is a consensus
among the values of one pixel across frames. Any second
valley will not be important because it will be either due to
data discontinuity or saturation, the latter would still bring
consensus among frames.

The rise of the trend line after the first valley indicates fall of
precision which is indicated between red dotted bars, we call
it the red zone. Bad pixels start getting marked inconsistent
somewhere in the red zone. But the depth or amplitude values
may not significantly change at this stage. They are just
different from frame to frame, which means precision starts
falling. In order to see the corresponding change in the mean
depth curve, we set the depth values of the inconsistent pixels
to a very high value as soon as the flag is set. The result is
displayed in Fig. 3(d). The sharp rise in the curve (blue line)
indicates the IT at which the pixels are becoming inconsistent.
This provides us the upper threshold of the IT.

In our experiments, the number of inconsistent pixels be-
come significant above approximately 800, 600 and 120 µs for
room, shadow and sunlight conditions respectively. The point
where the green zone starts usually lies 20-30 % below these
values. In other words, we consider appearance of inconsistent
flag an early warning of non-linearity of amplitude which
could be due to forthcoming saturation or any incompatibility
of amplitude and hence increasing IT any further would only
worsen the credibility of data.

In all the three conditions, the IT associated with the highest
precision lies in the green zone. The ambient light intensity

Fig. 4. ToF images of plant leaves under the three different ambient
illumination conditions with inconsistent pixels marked maxima, therefore,
they appear as dark spots on the leaf surface. Red cross indicate ROI, location
of a good pixel is indicated by blue circle and a bad pixel by black cross

can vary which will displace the zones slightly over IT. Still,
the inconsistent flag serves as an indicator of pixels getting out
of synchronization. Fig. 4 shows a sample set of leaf images
for the three conditions (columns). The three ITs (rows) are
those at which inconsistent pixels are noticeable at any one of
the conditions.

A. Comparison of Leaf and White Wall

Fig. 3 column (iv) shows the ROI characteristics of white
wall at approximately 35 cm from the lens of the camera in
room. White wall was chosen in order to benchmark the ToF
imaging for leaves as white wall is a highly, if not perfectly,
reflecting planar surface and is usually used for testing the ToF
imaging quality [15]. We compare it to the best characteristics
of the leaf images i.e. room conditions (Fig. 3 column (i)).

Although the reflectivity of the wall was not known, still,
it can be assumed to be fairly lambertian with low absorption
and transmittance. Wall’s imaging characteristics are better
than that of the leaf as the amplitude (Fig. 3(a,iv)) and depth
(Fig. 3(b,iv)) are more synchronized over the entire range of
IT than the leaf. As already discussed in section I-B leaves
have high transmittance in NIR. This could possibly be the
cause of a slight late appearance of inconsistency whereas
the wall has much higher reflectance than transmittance or
absorption, so it is more likely to produce saturation earlier.
Overall performance of the leaf in the room condition is quite
comparable to that of the white wall. This further validates the
use of ToF imaging for leaf analysis.

B. Image Enhancement Under Mixed Conditions

In outdoor applications, it is highly likely to encounter a
situation in which a leaf is partly under sunlight and partly



under shadow. The shadow in such a case would be brighter
than a complete shadow due to possible diffraction of sunlight
which means that the pixels will become inconsistent a little
earlier than shown in Fig. 3(d,ii). Fig. 5(a) and Fig. 5(e) show
depth images taken under such a condition at IT 70 and 300
µs respectively. These two values are chosen because the flags
start appearing at almost 30% higher IT values than these.
Although Fig 5(c) and Fig. 5(d) show no pixels on the leaf
flagged at IT 70 µs, but the part of leaf under shadow will
be having low precision. Therefore, 70 and 300 µs ensure
operation in green zone for both exposures hence providing
high precision. In order to improve the depth data, we replace
the depth values of all the pixels with Inconsistent and Low
Intensity flags set at IT 300 µs with the corresponding values
from IT 70 µs. The result is shown in Fig. 5(i). With this
approach we will only require calibration for the two IT values
and as discussed in section VI, this will enable us to achieve
both high precision and optimal accuracy. The reason for
including Low Intensity flags as well is due to the fact that
we have noticed that some of the pixels receiving multiple
reflections may also be flagged as low signal, perhaps due to
accepting lower amplitude among the multiple values.

VII. CONCLUSION

We have tested CamBoard under sunlight, shadow and room
conditions and presented a detailed analysis of its behavior for
the particular case of close range plant imaging. Comparison
with flat white wall indicate suitability of using ToF imaging
in agricultural applications. As ToF cameras are sensitive to
ambient light, we have proposed a method to find a suitable IT
for the three conditions using the appearance of inconsistent
flags in PMD devices. This scheme can be extended to any
ambient illumination setting. Choosing a specific IT for a given
condition allows higher accuracy through optimal calibration
for that IT, which adds to the value of imaging in close range
tasks such as plant phenotyping in which robot grasping tasks
may be involved. Although the results presented in this article
are only limited to one type of plant, they are still sufficient
to validate the approach. While the corresponding camera
settings may change slightly with the plant species and leaf
thickness, this work provides a method to find optimal ToF
camera parameters for any plant, ambient illumination and
range.
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