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Abstract. This paper studies the use of temporal consistency to match appear-
ance descriptors and handle complex ambiguities when computing dynamic depth
maps from stereo. Previous attempts have designed 3D descriptors over the space-
time volume and have been mostly used for monocular action recognition, as they
cannot deal with perspective changes. Our approach is based on a state-of-the-art
2D dense appearance descriptor which we extend in time by means of optical
flow priors, and can be applied to wide-baseline stereo setups. The basic idea be-
hind our approach is to capture the changes around a feature point in time instead
of trying to describe the spatiotemporal volume. We demonstrate its effectiveness
on very ambiguous synthetic video sequences with ground truth data, as well as
real sequences.
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1 Introduction

Appearance descriptors have been used to successfully address both low- and high-
level computer vision problems by describing in a succinct and informative manner the
neighborhood around an image point. They have proved robust in many applications
such as 3D reconstruction, object classification or gesture recognition, and remain a
major topic of research in computer vision.

Stereo reconstruction is often performed matching descriptors from two or more dif-
ferent images to determine the quality of each correspondence, and applying a global
optimization scheme to enforce spatial consistency. This approach fails on scenes with
poor texture or repetitive patterns, regardless of the descriptor or the underlying opti-
mization scheme. In these situations we can attempt to solve the correspondence prob-
lem by incorporating dynamic information. Many descriptors are based on histograms
of gradient orientations [1–3], which can be extended to the spacetime volume. Since
the local temporal structure depends strongly on the camera view, most efforts in this
direction have focused on monocular action recognition [4–7]. For stereo reconstruc-
tion, spatiotemporal descriptors computed in this manner should be oriented according
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to the geometry of the setup. This approach was applied in [8] to disparity estimation
for narrow-baseline stereo, but its application to wide-baseline scenarios remains unex-
plored.

We face the problem from a different angle. Our main contribution is a spatiotempo-
ral approach to 3D stereo reconstruction applicable to wide-baseline stereo, augment-
ing the descriptor with optical flow priors instead of computing 3D gradients or similar
primitives. We compute, for each camera, dense Daisy descriptors [3] for a frame over
the spatial domain, and then extend them over time with optical flow priors while dis-
carding incorrect matches, effectively obtaining a concatenation of spatial descriptors
for every pixel. After matching, global optimization algorithm is applied over the spa-
tiotemporal domain to enforce spatial and temporal consistency. The core idea is to
develop a primitive that captures the evolution of the spatial structure around a fea-
ture point in time, instead of trying to describe the spatiotemporal volume, which for
matching requires a knowledge of the geometry of the scene. We apply this approach to
dynamic sequences of non-rigid objects with a high number of ambiguous correspon-
dences and evaluate it on both synthetic and real sequences. We show that its reconstruc-
tions are more accurate and stable than those obtained with state-of-the-art descriptors.
In addition, we demonstrate that our approach can be applied to wide-baseline setups
with occlusions, and that it performs very strongly against image noise.

2 Related Work

The main reference among keypoint descriptors is still the SIFT descriptor [1], which
has shown great resilience against affine deformations on both the spatial and intensity
domains. Given its computational cost, subsequent work has often focused on devel-
oping more efficient descriptors, such as PCA-SIFT [9], GLOH [2] or SURF [10], and
recent efforts such as Daisy veer towards dense computation [3]—i.e. computing a de-
scriptor for every pixel. Open problems include the treatment of non-rigid deformations,
scale, and occlusions. Current techniques accommodate scale changes by limiting their
application to singular points [1, 11, 10], where scale can be reliably estimated. A recent
approach [12] exploits a log-polar transformation to achieve scale invariance without
detection. Non-rigid deformations have been seldom addressed with region descriptors,
but recent advances have shown that kernels based on heat diffusion geometry can ef-
fectively describe local features of deforming surfaces [13]. Regarding occlusions, [3]
demonstrated performance improvements in multi-view stereo from the treatment of
occlusion as a latent variable and enforcing spatial consistency with graph cuts [14].

Although regularization schemes such as graph cuts may improve the spatial con-
sistency when matching pairs of images, in scenes with little texture or highly repetitive
patterns the problem can be too challenging. Dynamic information can then be used
to further discriminate amongst possible matches. In controlled settings, the correspon-
dence problem can be further relaxed via structured-light patterns [15, 16]. Otherwise,
more sophisticated descriptors need to be designed. For this purpose, SIFT and its many
variants have been extended to 3D data, although mostly for monocular cameras, as the
local temporal structure varies strongly with large viewpoint changes. For instance, this
has been applied to volumetric images on clinical data, and to video sequences for ac-
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tion recognition [6, 5, 7, 17]. There are exceptions in which spatiotemporal descriptors
have also been applied to disparity estimation for narrow-baseline stereo [8], designing
primitives (Stequels) that can be reoriented and matched from slightly different view-
points. The application of this approach to wide-baseline scenarios remains unexplored.

Our approach is also related to scene flow—i.e. the simultaneous recovery of 3D
flow and geometry. We have not attempted to compute scene flow, as these approaches
usually require strong assumptions such as known reflectance models or relatively small
deformations to simplify the problem, and often use simple pixel-wise matching strate-
gies that cannot be applied to ambiguous scenes or wide baselines. A reflectance model
is exploited in [18] to estimate the scene flow under known illumination conditions.
Zhang and Kambhamettu [19] estimate an initial disparity map and compute the scene
flow iteratively, exploiting image segmentation to maintain discontinuities. A more re-
cent approach is that of [20], which couples dense stereo matching with optical flow
estimation—this involves a set of partial differential equations which are solved nu-
merically. Of particular interest to us is the work of [21], which decouples stereo from
motion while enforcing a scene flow consistent across different views—this approach
is agnostic to the algorithm used for stereo.

3 Spatiotemporal Descriptor

Our approach could be applied, in principle, to any spatial appearance descriptor de-
scribed in the Section 2. We pick Daisy [3] for the following reasons: (1) it is designed
for dense computation, which has been proven useful for wide-baseline stereo, and
will particularly help in ambiguous scenes without differentiated salient points; (2) it is
efficient to compute, and more so for our purposes, as we can store the convolved ori-
entation maps for the frames that make up a descriptor without recomputing them; and
(3) unlike similar descriptors like SIFT [1] or GLOH [2], Daisy is computed over a dis-
crete grid, which can be warped in time to follow the evolution of the structure around
a point, allowing us to validate the optical flow priors and determine the stability of the
descriptor in time. The last point will help us particularly when dealing with occlusions.
This section describes the computation of the descriptor set for a single camera, and the
following section explains how to match descriptor sets for stereo reconstruction.

We extend the Daisy descriptor in the following way. For every new (gray-scale)
frame Ik, we compute the optical flow priors for each consecutive pair of frames from
the same camera, in both the forward and backward directions: F+

k−1 (from Ik−1 to Ik)
and F−k (viceversa). To compute a full set of spatiotemporal descriptors for frame k
using T = 2 ·B + 1 frames we require frames Ik−B to Ik+B and their respective flow
priors. To compute the flow priors we use [22]. Since the size of the descriptor grows
linearly with T we use small values, of about 3 to 11.

We then compute, for each frame, H gradient maps, defined as the gradient norms
at each location if they are greater than zero, to preserve polarity. Each orientation map
is convolved with multiple gaussian kernels of different values to obtain the convolved
orientation maps, so that the size of the kernel determines the size of the region. The
gaussian filters are separable, and the convolution for larger kernels is obtained from
consecutive convolutions with smaller kernels, for increased performance. The result is



4 Spatiotemporal Descriptor for Wide-Baseline Stereo

a series of convolved orientation maps, which contain a weighted sum of gradient norms
around each pixel. Each map describes regions of a different size for a given orientation.
A Daisy descriptor for a given feature point would then be computed as a concatenation
of these values over certain pixel coordinates defined by a grid. The grid is defined as
equally spaced points over equally spaced concentric circles around the feature point
coordinates (see Fig. 1). The number of circles Q and the number of grid points on
each circle P , along with the number of gradient maps H , determine the size of the
descriptor, S = (1 + P ·Q) ·H . The number of circles also determines the number of
kernels to compute, as outer rings use convolution maps computed over larger regions
for some invariance against rotation. The histograms are normalized separately for each
grid point, for robustness against partial occlusions. We can compute a score for the
match between a pair of Daisy descriptors as:

D(D1(x),D2(x)) =
1
S

S∑
g=1

‖D[g]
1 (x)−D[g]

2 (x)‖, (1)

where D[g]
i denotes the histogram at grid point g = 1 . . . G. To enforce spatial coher-

ence in dealing with occlusions we apply binary masks over each grid point, obscuring
parts of its neighborhood and thus removing them from the matching process, follow-
ing [3]. The choice of masks will be explained in the following section. The matching
score (cost) can then be computed in the following way:

D′ =
1∑S

q=1M[q]

S∑
g=1

M[g]‖D[g]
1 (x)−D[g]

2 (x)‖, (2)

where M[q] is the mask for grid point g. Note that we do not use masks to build the
spatiotemporal descriptor, only to match two spatiotemporal descriptors for stereo re-
construction.

For our descriptor, we use the grid defined above to compute the sub-descriptor over
the feature point on the central frame. We then warp the grid through time by means of
the optical flow priors, translating each grid point independently. In addition to warping
the grid, we average the angular displacement of each grid point over the center of the
grid to estimate the change in rotation over the patch between the frames, and compute
a new sub-descriptor using the warped grid and the new orientation.

An example of this procedure is depicted in Fig. 1. We then match each sub-
descriptor computed with the warped grid against the sub-descriptor for the central
frame, and discard it if the matching score falls above a certain threshold. The matching
score is typically smaller than the occlusion cost in the regularization process (see sec-
tion 4). With this procedure we can validate the optical flow and discard a match if the
patch suffers significant transformations such as large distortions, lighting changes or,
in particular, partial occlusions. Note that we do not need to recompute the convolved
orientation maps for each frame, as we can store them in memory. Computing the de-
scriptors is then reduced to sampling the convolved orientation maps at the appropriate
grid points on each frame. To compute descriptors over different orientations we simply
rotate the grid and shift the histograms circularly. We also apply interpolation over both
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Fig. 1. Computation of the spatiotemporal descriptor with flow priors. Sub-descriptors outside
the central frame are computed with a warped grid and matched against the sub-descriptor for the
central frame. Valid sub-descriptors are then concatenated to create the spatiotemporal descriptor.

the spatial domain and the gradient orientations. The resulting descriptor is assembled
by concatenating the sub-descriptors in time D̃(x) = {Dk−B . . . Dk+B}, and its size
is at most S′ = T · S, where S is the size of a single Daisy descriptor.

To compute the distance between two spatiotemporal descriptors Dk
1 we average

the distance between valid pairs of sub-descriptors:

D̃ =
1
V

k+B∑
l=k−B

vl ·D′(D{l}1 (x),D{l}2 (x)) , (3)

where D{l}i is the sub-descriptor for frame l, vl are a set of binary flags that determine
valid matching sub-descriptor pairs (where both sub-descriptors pass the validation pro-
cess), and V =

∑k+B
l=k−B vl. Note that in a worst-case scenario we will always match

the sub-descriptors for frame k.

4 Depth Estimation

For stereo reconstruction we use a pair of calibrated monocular cameras. Since Daisy is
not rotation-invariant we require the calibration data to compute the descriptors along
the epipolar lines, rotating the grid. We do this operation for the central frame, and
for frames forwards and backwards we use the flow priors to warp the grid and to
estimate the patch rotation between the frames. We discretize the 3D space from a
given perspective, then compute the depth for every possible match of descriptors and
store it if the match is the best for a given depth bin, building a cube of matching scores
of size W × H × L, where W and H are the width and height of the image and L is
the number of layers we use to discretize 3D space. We can think of these values as
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costs, and then apply global optimization techniques such as graph cuts [14] to enforce
piecewise smoothness, computing a good estimate that balances the matching costs with
a smoothness cost that penalizes the use of different labels on neighboring pixels. To
deal with occlusions we incorporate an occlusion node in the graph structure with a
constant cost. We use the same value, 20% of the maximum cost, for all experiments.

We can use two strategies for global optimization: enforcing spatial consistency or
enforcing both spatial and temporal consistency. To enforce spatial consistency, we can
match two sets of spatiotemporal descriptors and run the optimization algorithm for a
single frame. The smoothness function for the optimization process will consider the 4
pixels adjacent to the feature point, and its cost is binary: a constant penalty for differing
labels, and 0 for matching labels.

To enforce spatial and temporal consistency, we match two sets of multiple spa-
tiotemporal descriptors. To do this we use a hypercube of matching costs of size W ×
H × L×M , where M is the number of frames used in the optimization process. Note
that M does not need to match T , the number of frames used for the computation of
the descriptors. We then set 6 neighboring pixels for the smoothing function, so that
each pixel (x, y, t) is linked to its 4 adjacent neighbors over the spatial domain and the
two pixels that share its spatial coordinates on two adjacent frames, (x, y, t − 1) and
(x, y, t + 1). We then run the optimization algorithm over the spatiotemporal volume
and obtain M separate depth maps. The value for M is constrained by the amount of
memory available, and we use M = 5 for all the experiments in this paper.

This strategy produces better, more stable results on dynamic scenes, but introduces
one issue. The smoothness function operates over both the spatial and the temporal
domain in the same manner, but we have a much shorter buffer in the temporal domain
(M , versus the image size). This results in over-penalizing label discontinuities over
the time domain, and in practice smooth gradients on the temporal dimension are often
lost in favor of two frames with the same depth values. Additionally, the frames at
either end of the spatiotemporal volume are linked to a single frame, as opposed to two,
and the problem becomes more noticeable. For 2D stereo we apply the Potts model,
F (α, β) = S · T (α 6= β), where α and β are discretized depth values for adjacent
pixels, S is the smoothness cost, and T (·) is 1 if the argument is true and 0 otherwise.
For spatiotemporal stereo we use instead a truncated linear model:

F ′(α, β) =

{
S·|α−β|

L if |α− β| ≤ L
0 otherwise.

(4)

Notice that F = F ′ for L = 1. This effectively relaxes the smoothness constraint,
but the end results are better due to the integration of spatiotemporal hypotheses. The
frames at either end of the spatiotemporal buffer, which are linked to one single neigh-
bor, can still present this behaviour. We solve this problem discarding their depth maps,
which are reestimated in the following iteration. Note that we do not need to recompute
the cost cubes for the discarded frames: we just store the two cubes on the end of the
buffer, which become the first ones on the next buffer, and then compute the following
M − 2 cubes (M ≥ 3). This procedure is depicted in Fig. 2. This strategy introduces
some overhead in the regularization process, but its computational cost is negligible
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Fig. 2. To perform spatiotemporal regularization, we apply a graph cuts algorithm over the spa-
tiotemporal hypercube of costs (here displayed as a series of cost cubes). The smoothness func-
tion connects pixels on a spatial and temporal neighborhood. To avoid singularities on the frames
at either end of the buffer, we discard their resulting depth maps and obtain them from the next
iteration, as pictured. We do not need to recompute the cost cubes.

with respect to the cost of matching dense descriptors. We use the spatiotemporal op-
timization strategy for most of the experiments on this paper. We refer to each strategy
as GC-2D and GC-3D.

4.1 Masks for occlusions

To deal with occlusions we formalize binary masks over the descriptor, as in [3].We
use a set of P + 1 binary masks, where P is the number of grid points on each ring.
To enforce spatial coherence the masks are predefined as follows: one mask enables all
grid points, and the rest enable the grid points in a half moon and disable the rest, for
different orientations of the half moon (see Fig. 3). After an initial iteration, we use the
first depth estimation to compute a score for each mask, using the formulation proposed
by [3], which penalizes differing depth values on enabled areas. We then compute a new
depth estimation, using for each pixel the mask with the highest score computed from
the previous depth map. Two or three iterations are enough to refine the areas around
occlusions.

As we explained in Section 1 our goal is to design a spatiotemporal descriptor that
can be applied to wide-baseline scenarios without prior knowledge of their geometry,
in order to deal with highly ambiguous video sequences. As such we are not focused on
dealing with occlusions, and in fact do not use masks for most experiments in this paper.
Masks only help around occlusions, and will be counter-productive if the first depth es-
timation contains errors due to ambiguous matches, as they will incorrectly reject valid
data in the following iterations. Nevertheless, we extend this approach to our descriptor
and apply it to a standard narrow-baseline video sequence with ground truth data (see
Section 5.4), to demonstrate its viability for spatiotemporal stereo. To apply a mask over
the spatio-temporal descriptor, we apply it separately to each of its sub-descriptors for
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Fig. 3. Application of masks to scenes with occlusions. Left to right: reference image, a depth
map after one iteration, and a posterior refinement using masks. Enabled grid points are shown
in blue, and disabled grid points are drawn in black. We show a simplified grid of 9 points, for
simplicity.

different frames. For simplicity, we use a GC-2D optimization for the first iterations,
and a GC-3D optimization on the last iteration. The masks are recomputed at each step.
For reference, a round of spatiotemporal stereo for two 480x360 images takes about 24
minutes on a 2 Ghz dual-core computer (without parallelization), up from about 11 min-
utes for Daisy. This does not include optical flow estimation (approximately 1 minute
per image), for which we use a Matlab off-the-shelf implementation—the rest of the
code is C++. The bottleneck is on descriptor matching—note that for these experiments
we allow matches along most of the epipolar lines.

5 Experiments and results

Wide-baseline datasets are scarce, and we know of none for dynamic scenes, so we
create a series of synthetic sequences with ground truth depth data to evaluate our de-
scriptor. We compute a dense mesh over 3D space, texture it with a repetitive pattern,
and use it to generate images and ground truth depth maps from different camera poses.
We generate three datasets: (1) A dataset with 5 × 5 different mesh deformations: si-
nusoidal oscillations, and random noise over the mesh coordinates. (2) A wide-baseline
dataset, with camera poses along five angular increments of π/16 rad (for a largest
baseline of π/4). And (3) a narrow-baseline dataset with gaussian image noise.

We use the first dataset to gain an intuitive understanding of what kind of dynamic
information our descriptor can take advantage of. The second and third datasets are used
to benchmark our approach against state-of-the-art descriptors: SIFT [1], Daisy [3] and
the spatiotemporal Stequel descriptor [8]. Additionally, we demonstrate the application
of masks on a real dataset with occlusions. We also apply it to highly ambiguous real
sequences without ground truth data.

Each of our synthetic datasets contains 30 small (480 × 480) images from each
camera pose. All the experiments are performed over the 15 middle frames, and the
spatiotemporal descriptors use the additional frames as required. We refer to our de-
scriptor as Daisy-3D, and to the spatial Daisy descriptor as Daisy-2D. If necessary, we
use Daisy-3D-2D and Daisy-3D-3D to distinguish between the spatial and spatiotem-
poral regularization schemes presented in Section 4. For Daisy-2D we use the config-
uration suggested in [3], with a grid radius of 15 pixels, 25 grid points and 8 gradient
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orientations, resulting in a descriptor size of 200. For Daisy-3D we use smaller spatial
sub-descriptors, concatenated in time, e.g. 136×7 means (at most) 7 sub-descriptors of
size 136. For Daisy-2D and SIFT, we apply a graph-cuts spatial regularization scheme.
To provide a fair comparison with SIFT we do not use feature points, but instead com-
pute the descriptors densely at a constant scale, over a patch rotated along the epipolar
lines, as we do for Daisy-2D and -3D. For the stequel algorithm we rectify the images
with [23]. We do not compute nor match descriptors for background pixels. We choose
a wide scene range, as the actual range of our synthetic scenes is very narrow and the
correspondence problem would be too simple. To evaluate and plot the results, we prune
them to the actual scene range (i.e. white or black pixels in the depth map plots are out-
side the actual scene range). We follow this approach for every experiment except for
those on occlusions (5.4), which already feature very richly textured scenes.

5.1 Parameter selection

A preliminary study with the synthetic datasets shows that, as expected, noise on the
mesh coordinates is very discriminating, for spatial descriptors but more so for spa-
tiotemporal descriptors. Affine and non-rigid transformations are also informative, but
to a lesser degree. The optimal number of frames used to build the descriptor is often
small, between 5 and 9. Larger values require a smaller footprint for the spatial de-
scriptor, which reduces the overall performance. For the Daisy parameters, we prefer to
reduce the number of histograms (grid points) rather than bins (oriented gradients), as
the latter prove more discriminant. For Daisy-3D we use descriptors of 17 histograms
of 8 bins (size 136) and up to 7 frames in time for most of the experiments in this paper.

5.2 Wide baseline experiments

For this experiment we compare our descriptor with Daisy-2D, SIFT and Stequel. We
match video sequences of the same mesh from five different camera positions, each
rotated π/16 with respect to the mesh (up to π/4), computing depth maps from the
rightmost viewpoint. Figs. 4 and 6 show the results for two video sequences using
different image patterns. One contains a highly textured scene, while the other shows
a sparse, repetitive pattern. On the configuration with the narrowest baseline Stequel
performs better than any of the other algorithms, due to sub-pixel accuracy from a
Lucas-Kanade-like refinement [8], while the rest of the algorithms suffer from the dis-
cretization process in our regularization framework. Stequel still performs well on the
following setup, despite slight systematic errors. For the wide baseline setups the other
algorithms perform much better in comparison, with the Daisy-based descriptors edg-
ing out SIFT. In fact, large baselines prove very informative without occlusions. Note
that we do not apply masks to this experiment, since the scene contains no occlusions.

5.3 Image noise experiments

For these experiments we have 11 video sequences with different levels of image noise.
Despite the distortion over the flow estimates, our descriptor significantly outperforms
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the others (see Figs. 5 and 7). For this experiment we also run our spatiotemporal de-
scriptor with spatial regularization (Daisy-3D-2D) and with spatiotemporal regulariza-
tion (Daisy-3D-3D), to demonstrate that the descriptor itself is robust to image noise.
The Stequel descriptor proves very vulnerable to noise, and SIFT performs slightly bet-
ter than Daisy.

Source Stequel Daisy-3D3D

π
/
4

ba
se

lin
e

Fig. 4. Baseline examples.
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Fig. 5. Samples from the image noise experiment.

5.4 Experiments with masks

To assess the behavior of our descriptor against occlusions we have used a narrow-
baseline stereo dataset from [8]. It contains a very richly textured scene, and we use a
very small descriptor, with 9 grid points and 4 gradients (size 36). Note that Daisy-2D
stereo already performs very well on these settings, and we do not expect significant
improvements with the spatiotemporal approach. Instead, we use it to demonstrate that
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Fig. 7. Image noise results.

propagating sub-descriptors in time around occlusion areas does not impair the recon-
struction process if they are validated with the mechanism presented in Section 3. Fig. 8
shows that the reconstruction does not change significantly as the number of frames
used to build the spatiotemporal descriptor increases. This is to be expected, as the
scene contains few ambiguities and dynamic content. But we also observe that using a
high number of frames does not result in singularities around occlusions.

5.5 Experiments with real sequences

In addition to the synthetic sequences, we apply the algorithm to highly ambiguous
real sequences. We do so qualitatively, as we cannot compute ground truth data at high
rates through traditional means: structured light would alter the scene, most 3D laser
range finders are not fast enough, and available time-of-flight cameras or motion sen-
sor devices such as the Kinect are not accurate enough to capture small variations in
depth. We require high rates to extract an accurate flow, which would otherwise fail on
sequences of this complexity. In fact for this experiment we compute the optical flow
at a higher frame-rate, approximately 100 Hz. We then interpolate the flow data and
run the stereo algorithm at a third of that rate. We do so because even though we have
demonstrated that our spatiotemporal descriptor is very robust against perturbations of
the flow data (see Section 5.3), video sequences of this nature may suffer from the aper-
ture problem—we believe that in practice this constraint can be relaxed. Even without
ground truth data, simple visual inspection shows that the depth estimate is generally
much more stable in time and follows the expected motion (see Fig. 9).

6 Conclusions and future work

We have proposed a solution to stereo reconstruction that can handle very challeng-
ing situations, including highly repetitive patterns, noisy images, occlusions, non-rigid
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Daisy−3D3D against occlusions

 

 

Treshold 5% the range
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Treshold 25% the range

Fig. 8. Benchmarking the spatiotemporal descriptor against occlusions. The image displays the
depth error after three iterations with masks, using the Daisy-3D3D approach with 11 frames. The
error is expressed in terms of layers: white indicates a correct estimation, light yellow indicates
an error of one layer, which is often due to quantization errors, and further deviations are drawn in
yellow to red. Red also indicates occlusions. Blue indicates a foreground pixel incorrectly labeled
as an occlusion. The plot shows accuracy values at different error thresholds for an increasing
number of frames used to compute the spatiotemporal descriptor.

deformations, and large baselines. We have shown that these artifacts can only be ad-
dressed by appropriately exploiting temporal information. Even so, we have not at-
tempted to describe cubic-shaped volumes of data in space and time, as is typically
done in current spatiotemporal stereo methods. In contrast, we have used a state-of-the-
art appearance descriptor to represent all pixels and their neighborhoods at a specific
moment in time, and have propagated this representation through time using optical
flow information. The resulting descriptor is able to capture the non-linear dynamics
that individual pixels undergo over time. Our approach is very robust against optical
flow noise and other artifacts such as mislabeling due to aperture noise—the spatiotem-
poral regularization can cope with these errors. Additionally, objects that suddenly pop
on-screen or show parts that were occluded will be considered for matching across
frames where they may not exist—we address this problem matching warped descrip-
tors across time.

One of the main limitations of the current descriptor is its high computational cost
and dimensionality. Thus, as future work, we will investigate techniques such as vector
quantization or dimensionality reduction to compact our representation. In addition, we
believe that monocular approaches to non-rigid 3D reconstruction and action recogni-
tion [24, 25] may benefit from our methodology, specially when the scene or the person
is observed from very different points of view. We will also research along these lines.

We would also like to investigate the application of our approach to scene flow es-
timation. We currently do not check the flow estimates for consistency—note that we
perform alternative tests which are also effective: we do check the warped descriptors
for temporal consistency and discard them when they match poorly, and we apply a
global regularization to enforce spatiotemporal consistency. Given our computational
concerns, we could decouple stereo from motion as in [21], while enforcing joint con-
sistency.
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Fig. 9. Depth reconstruction for five consecutive frames of two very challenging stereo sequences.
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