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A Complete Method for Workspace Boundary

Determination on General Structure Manipulators
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Abstract—This paper introduces a new method for workspace
boundary determination on general structure manipulators. The
method uses a branch-and-prune technique to isolate a set of
output singularities, and then classifies the points on such set
according to whether they correspond to motion impediments in
the workspace. A detailed map of the workspace is obtained
as a result, where all interior and exterior regions, together
with the singularity and barrier sets that separate them, get
clearly identified. The method can deal with open- or closed-
chain manipulators, whether planar or spatial, and is able to
take joint limits into account. Advantages over previous general
methods based on continuation include the ability to converge
to all boundary points, even in higher-dimensional cases, and
the fact that manual guidance with a-priori knowledge of the
workspace is not required. Examples are included that show the
performance of the method on benchmark problems documented
in the Literature, and on new ones unsolved so far.
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I. INTRODUCTION

AMain problem of robot kinematics is to determine, for

a given manipulator, the complete set of poses that its

end-effector can adopt, as the manipulator runs through all

possible configurations. The determination of such set, usually

known as the workspace or accessible output set, has received

substantial attention in the Literature, as it finds applications

to mechanism design, path planning, and task execution in

Robotics [2]–[9], as well as to related problems in other

domains [10]–[12].

Since the early studies on the problem [13]–[17], efficient

workspace determination methods have been given, but most

of them are tailored to a particular robot architecture, or class

of architectures. An important group of such methods adopt

a constructive geometric approach. Representative of them

is [18], which computes the constant-orientation workspace

of a spatial parallel manipulator, [19], which extends the

approach to deal with other physical constraints, or [20],
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which provides methods for various planar parallel plat-

forms. Other significant approaches include interval analysis

or discretization techniques for Gough-type manipulators [21,

22], optimization-based algorithms for fully serial or parallel

robots [4], analytic methods for symmetrical spherical mech-

anisms [23], and analytic, topologic, or algebraic-geometric

procedures for serial manipulators [24]–[28].

The literature on the topic is rich, and elaborate surveys can

be found in [2]–[4] and [11], but it should be noted that most

previous methods, including [13]–[28], are difficult to apply

to manipulators outside the class they consider, because they

exploit specificities of the class in some way or another, like

the possibility to parametrize the end-effector pose [24, 29],

simplifications introduced by dimension symmetries [23], or

the feasibility of an algebraic [24]–[28] or geometric [18]–[20]

treatment. Even discretization methods, which resort to con-

figuration sampling only [17, 22, 30], rely on the assumption

that either the forward or the inverse kinematic problems have

a simple solution, which needs not be the case in general.

While ad-hoc methods are desirable because they tend to

yield faster or simpler algorithms in particular cases, methods

for general structure manipulators are required too, to be

able to analyze robots for which no specific solution exists.

This paper presents one such method, applicable to planar or

spatial multi-body systems formed by rigid links and lower-

pair joints, possibly involving closed kinematic chains, on

which particular dimensions, simple forward/inverse kinematic

solutions, or the existence of end-effector pose parameteriza-

tions can in principle not be exploited.

Up to the authors’ knowledge, only one approach of a

similar generality is available in the Literature, due to Haug

and collaborators [31, and references therein]. In their work,

Haug et al. apply the idea that the workspace boundaries can

be extracted from the set of output singularities, and focus

their effort on tracing such singularities numerically using

a continuation method. The procedure is elegant and works

well in favorable situations, but important weaknesses of the

method were identified in [32], including (1) the need to

manually guide the method with a priori knowledge of the

workspace shape, (2) the fact that only cross-sectional curves

of the boundary can be traced in higher-dimensional cases,

or (3) the possibility to miss some boundary segments in the

presence of voids within the workspace. Unfortunately, as it

will be shown in this paper, the performance of the procedure

can further degrade, since one can encounter workspaces with

several connected components, hidden regions, or degenerate

barriers where the method will produce incomplete or mis-

leading maps of the workspace.
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In contrast, the method we propose in this paper is complete,

in the sense that it is able to isolate all boundary and barrier

points of the workspace without guideance, even when voids

or degenerate barriers are present. The method, moreover,

does not require a priori knowledge of the workspace in any

form, and is not limited to compute cross-sectional curves of

the boundary only. By design, it can isolate the boundary

of workspaces of any dimension, with the sole limitations

imposed by the curse of dimensionality. The method is based

on characterizing a set of singularities relative to the output

coordinates with a system of equations of an adequate form,

and then exploiting this form to compute all singular points

at a required precision, using a numerical technique based on

linear relaxations [33]. The singular points are then classified

according to whether they correspond to actual motion im-

pediments for the manipulator, obtaining a detailed map of

the workspace where interior and exterior regions, and the

singularity sets that separate them, get clearly identified.

The rest of the paper is structured as follows. Section II pro-

vides working definitions, assumptions, and necessary back-

ground for the paper. Section III reviews the continuation

method in [31] and identifies a number of situations in which

it fails to properly determine the boundary of the workspace.

Section IV describes the alternative method we propose, which

is robust to such situations. Section V illustrates the perfor-

mance of the method on several cases, including problematic

ones like those described in Section III. Section VI makes

some remarks regarding the application of the method to non-

smooth manifolds. Section VII finally concludes the paper and

discusses points requiring further attention.

II. PRELIMINARIES

A. Basic definitions and assumptions

The allowable positions and orientations of all links in a

manipulator are usually encoded in a vector q̃ of generalized

coordinates, subject to a system of equations

Φ̃(q̃) = 0 (1)

expressing the assembly constraints imposed by the joints [34].

Here, Φ̃(q̃) is a smooth vector function, and (1) is meant to

include all possible assembly constraints, including those due

to mechanical limits on the joints, which can also be modelled

as equality constraints (Appendix A).

To analyze the functionality of the manipulator, a vector

u of nu output coordinates is usually defined, encompassing

Cartesian coordinates and/or orientation angles of the end ef-

fector. Depending on the specific formulation adopted for (1),

such coordinates may or may not be explicit in q̃ but, in

the latter case, it is always possible to transform (1) into an

equivalent system of ne equations

Φ(q) = 0 (2)

using appropriate manipulations, where q is an alternative

vector of nq ≥ ne generalized coordinates now including

u explicitly. The vectors q, u, and Φ(q) take values within

smooth manifolds Q, U , and E , of dimensions nq , nu, and ne,
respectively.

By adopting the partition q = [zT,uT]T, where z accumu-

lates all coordinates in q, except those in u, (2) can now be

written as

Φ(z,u) = 0, (3)

and the workspace of the system relative to the u coordinates

can be defined as the set A of points u ∈ U that satisfy (3)

for some z.

Let C denote the configuration space of the manipulator, i.e.,

C = {q : Φ(q) = 0}. Throughout the paper we shall assume

that Φ(q) : Q −→ E is a smooth function whose Jacobian

Φq = [∂Φi/∂qj ]

is full rank at all points q ∈ C, so that C will be a smooth

manifold of dimension d = nq − ne, but Section VI provides

hints on how to deal with the general case. We shall also

assume that nu ≤ d, and that A is a subset of U of dimension

nu, which is the common situation in general. In particular,

nu ≤ d implies that nz ≥ ne, so that the system in (3) is in

principle not overconstrained for a fixed value of u.

Although a direct computation of A could in principle

be attempted, it is often more effective to delimit A by

computing its boundary, because such boundary is a set of

lower dimension. A point u lies on the boundary of A, denoted

∂A, if every open set of U containing u intersects the interior

and the exterior of A. The following known conditions will

be used to isolate such points [31].

B. Singularity conditions and barrier determination

Let πu : Q −→ U denote the projection map from q

onto the u variables; i.e., πu(z,u) = u. Observe that A is

exactly the image of C through πu. As shown in Appendix B,

moreover, the Jacobian matrix Φz = [∂Φi/∂zj ] must be rank

deficient at the points q ∈ C that project onto some u ∈ ∂A.

Geometrically, these points correspond to critical points of

the projection of C onto U , i.e., to points q ∈ C where the

projection of the tangent space of C does not span the tangent

space of U at u = πu(q), which thus constitute configurations

in which the manipulator loses instantaneous mobility relative

to the u variables. The set S of all such critical points will

be called the singularity set hereafter, and the notation πu(S)
will be used to refer to the projection of S onto U . Fig. 1(a)
illustrates the situation on a simple example.

A preliminary idea of how the workspace boundary would

look like, thus, can be gained by computing all points q ∈ C
for which Φz is rank deficient, and projecting them to the u

variables in order to obtain πu(S). However, note from the

examples in Figs. 1(b) and 1(c) that the rank deficiency of

Φz is a necessary but not sufficient condition for πu(q) to lie

in ∂A, as there can be critical points projecting on the interior

of A too. In fact, as illustrated in the Fig. 1, points q where Φz

is rank deficient can be classified into two broad categories.

They can be traversable or barrier singularities depending

on whether there exists a trajectory on C through q whose

projection on U traverses πu(S) for each neighborhood of q

on C [3, 35]. Points corresponding to barrier singularities can

in turn be classified as boundary or interior barriers, according

to whether they occur over ∂A or over the interior of A,
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u = πu(q)

Barrier singularity
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Traversable singularity

Fig. 1. (a) Sets S and πu(S) when Q = R
3, U = R

2, C is the sphere x2+y2+z2 = 1, and πu is the projection map f(x, y, z) = (x, y). The workspace
relative to the (x, y) coordinates is the projection of the sphere onto the (x, y) plane, and the boundaries of such projection necessarily correspond to points
on the sphere where the tangent plane projects onto a line of R2. (b) and (c): πu(S) can also lie in the interior of A.

respectively. An example of each one of these singularities

is depicted in Fig. 2 for a planar 3R manipulator.

As noted in [31, 32, 35], a workspace determination method

should ideally detect all barriers in the workspace, either inte-

rior or on the boundary, as such barriers constitute true motion

impediments for the end effector. A criterion to determine

whether a point q0 = [z0
T,u0

T] ∈ S corresponds to a barrier

or a traversable singularity was given in [31], based on the

following idea. Let q = q(v) be a smooth parametrization of

C in a neighborhood of q0, where v is a vector of d parameters

and q0 = q(v0) for some v0 ∈ R
d. Since Φq is full rank

for all q ∈ C, the Implicit Function Theorem guarantees that

such a parametrization exists [36]. If n0 is the normal vector

1

2

3

θ1 = π
3

θ1 = −
π
3

θ1 = 0

Fig. 2. Workspace of a planar 3R manipulator relative to the (x, y)
coordinates of the tip point of the last link, assuming that the angle θ1 of the
first revolute joint is restricted to the [−π/3, π/3] range. Points corresponding
to singularities are indicated in solid lines, and those relative to boundary
and interior barriers are indicated with normal vectors on the forbidden side.
Configurations 1, 2, and 3 correspond to a boundary barrier, an interior barrier,
and a traversable singularity, respectively.

to πu(S) at u0, we can check whether q0 corresponds to a

barrier singularity by examining the sign of

ψ(v) = n0
T(u(v)− u0) (4)

for all local trajectories v = v(t) crossing v0 for some time

t = t0 whose corresponding path u = u(t) is orthogonal to

πu(S) at u0. This sign is mostly determined by a quadratic

form corresponding to the second-order term of the Taylor

expansion of (4). If the form is positive- or negative-definite,

then all paths orthogonal to πu(S) lie on one side of πu(S)
and q0 is a barrier singularity. If the form is indefinite, there

are paths in A that cross πu(S) and q0 is a traversable

singularity. Lastly, if this form is semi-definite, we cannot

deduce the singularity type unless we examine higher-order

terms of the Taylor expansion. However, the latter case only

occurs on zero-measure subsets of S generally.

III. ISSUES OF THE CONTINUATION METHOD

In order to see the advantages of our approach in compar-

ison to the continuation method in [31], this method is next

reviewed briefly, identifying a number of cases where it fails

to produce complete maps of the workspace.

We note first that the method in [31] relies on one-

dimensional path tracking procedures, and hence it can only

trace ∂A explicitly on one-dimensional boundaries, i.e., when

nu = 2. Fig. 3(a) explains the method on a simple setting

in which Q = R
3, U = R

2, and C contains two connected

components, C1 and C2, which project onto a workspace

A with two regions. The method begins with a manually-

provided configuration of the manipulator qi = [zi
T,ui

T]T,
with ui ∈ A, shoots a ray through ui in U on an arbitrary

direction, and traces this ray until a point ub ∈ ∂A is found.

The movement along this ray is achieved by continuation of

the corresponding trajectory on C, i.e., by iteratively solving

Φ(z,u) = 0 using a Newton method for u fixed to discrete
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Fig. 3. Performance of the continuation method in multi-component
workspaces (a), hidden regions (b), and degenerate barriers (c).

values along the ray. This process is repeated until a value of

u outside A is found, which is detected because the Newton

method fails to converge, and a dichotomy-search process is

then performed locally to find a point qb ∈ C lying on S . A
second continuation process is then launched from qb to find

the connected component of S that is reachable from such

point, by solving a system of equations that expresses the rank

deficiency of Φz . Once S has been found, the points of πu(S)
are computed by projection, and those corresponding to barrier

or traversable singularities are finally detected through second-

order analysis.

Because path tracking methods based on continuation are

fast and robust to bifurcations [37], this approach will rapidly

determine S in favorable cases. However, one encounters the

following situations in which the method will fail to identify

∂A completely.

a) Multi-component workspaces: Difficulties arise, for

example, when computing ∂A on workspaces with several

connected components, like the one in Fig. 3(a). Independently

of the chosen direction for the ray, note that the previous pro-

cess will certainly hit ∂A1, but not ∂A2, because the tracking

of the ray cannot continue beyond ∂A1 using continuation. To

converge to all boundary curves the previous strategy should

at least be fed with one point on each connected component of

C, but no satisfactory method has been given yet to compute

such points in general, to the best of our knowledge.

b) Hidden regions: The continuation method may seem

to be able to compute, at least, the boundary of the workspace

component to which qi belongs, but this is not the case

in general. Note that S may itself have several connected

components, and some of such components could be missed

depending on the position of ui, even if rays on all possible

directions were shot. In Fig. 3(b), left, for example, the

continuation method may be able to find ∂A1 and ∂A3 from

ui, but not ∂A2, because ∂A2 is hidden behind ∂A1. The

problem also arises on workspaces with interior barriers, as

seen in Fig. 3(b), right. Starting the continuation from qi

allows hitting the interior barrier corresponding to S1, but not

the boundary barrier corresponding to S3, thus ignoring a full

circular region that actually lies inside the workspace.

c) Degenerate barriers: When ∂A has dimension two or

higher the continuation method slices ∂A through hyperplanes

Hi in order to obtain one-dimensional curves ∂Ai trackable

by the method [Fig. 3(c), left]. On manipulators of a special

geometry, however, portions of ∂A can degenerate into lower-

dimensional barriers D, thus making the slices Hi contain

isolated points only [Fig. 3(c), right]. The method will clearly

miss the lower-dimensional barriers in such a situation be-

cause the ray shooting technique will fail to meet them with

probability one, independently of the location of ui.

As it will be shown in Section V, examples of multi-

component workspaces, hidden regions, and degenerate bar-

riers occur easily on real manipulators and, thus, there is a

clear need to develop alternative methods which are robust to

such situations. Next section provides one such method.

IV. A LINEAR RELAXATION METHOD

The proposed method consists in first formulating a system

of quadratic equations that characterize S (Section IV-A), then

applying a numerical technique that exploits the structure of

this system to isolate S (Section IV-B), and finally using a

local method to classify the points of S as boundary barriers,

interior barriers, or traversable singularities (Section IV-C).

A. Equation formulation

For a manipulator involving lower pairs of any kind, except

the helical pair, the formulation proposed in [33] makes (1)

adopt the form of a polynomial system of quadratic equations

(i.e., equations where only monomials of the form a, a2, or ab
intervene, where a and b refer to any two of the variables). We

next show that, by adopting a formulation of such kind, it is

possible to extend (1) with additional variables and equations,

so as to obtain a new system

χ(y) = 0 (5)

that characterizes the points of S . This system will be shown

to be quadratic too, which will allow defining a conceptually

simple technique to compute S numerically.
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To explain how (5) can be derived, we shall distinguish

two situations, depending on whether the u variables appear

explicitly in q̃, or are only determined implicitly by some of

the variables in q̃, both illustrated in Section V on particular

examples. In all cases it will be assumed that (1) has been

formulated following [33], with q̃ containing the pose of the

end-effector encoded as a vector [pT, rT]T, where p and r

respectively encompass the Cartesian coordinates of a point on

the effector, and the components of a rotation matrix giving

the orientation of the effector.

1) Dealing with explicit output: Assume initially that q̃

explicitly contains u. This occurs in positional workspaces,

i.e., when u includes part or all of the variables in p. Then,

by adopting the partition q̃ = [zT,uT]T, (1) can be directly

cast into the form of (3) so that S will be the set of points

q = [zT,uT]T satisfying Φ(z,u) = 0 for which Φz is rank

deficient, i.e. the set of points q that satisfy

Φ(z,u) = 0

Φz
Tξ = 0

ξTξ = 1







, (6)

for some ξ, where ξ is an ne-dimensional vector of unknowns.

Clearly, the first equation in (6) constrains q to be a valid

configuration, and the second and third equations impose

the rank deficiency of Φz . This matrix is of size ne × nz ,
with nz ≥ ne, and hence it will be rank deficient whenever

there exists a linear combination of its rows with non-null

coefficients. Since (1) is quadratic, (6) will be quadratic too,

because all entries in Φz
T will be linear terms, and ξTξ is

directly a quadratic expression. Thus, χ(y) = 0 adopts the

form of (6) in this case, with y = [zT,uT, ξT]T.
2) Dealing with implicit output: There are situations in

which the u variables do not all intervene in q̃ but, instead,

they can be related to a subset ũ of nũ variables in q̃, through

a smooth function of the form

ũ = µ(u). (7)

This occurs whenever u contains orientation angles of the

end-effector. Since [33] represents end-effector orientations by

rotation matrices, orientation angles are only related implicitly

to the components of r through a parametrization of the

Special Orthogonal Group under consideration [SO(2) or

SO(3), depending on whether the manipulator is planar, or

spatial]. In order to transform (1) into the form of (3) it will

be possible, in such situations, to consider the partition

q̃ = [z̃T, ũT]T,

and subdivide (1) into two subsystems as follows

Ψ(z̃, ũ) = 0

η(ũ) = 0

}

, (8)

where η(ũ) = 0 is a subsystem of equations whose solution

set can be globally parametrized by (7), and Ψ(z̃, ũ) = 0

collects the rest of equations. Since ũ = µ(u) parametrizes

the solution set of η(ũ) = 0, η(ũ) = 0 can be replaced by

ũ = µ(u) in (8), obtaining the equivalent system

Ψ(z̃, ũ) = 0

ũ = µ(u)

}

, (9)

which now contains u explicitly. Therefore, (3) adopts the

form of (9) in this case, with z = [z̃T, ũT]T, and

Φ(z,u) =

[

Ψ(z̃, ũ)
ũ− µ(u)

]

, (10)

so that S will be the set of points q = [zT,uT]T satisfying (9)

for which Φz is rank deficient.

Note however that, because of the form of (10), Φz has the

block structure

Φz =







Ψz̃ Ψũ

0 Inũ







in this case, where Inũ
is the nũ×nũ identity matrix, so that

Φz will be rank deficient if, and only if, its upper-left block

Ψz̃ is rank deficient. Hence, S can be characterized as the set

of points q = [z̃T, ũT,uT]T that satisfy

Ψ(z̃, ũ) = 0
ũ = µ(u)

Ψz̃
Tξ̃ = 0

ξ̃
T

ξ̃ = 1















(11)

for some ξ̃, where ξ̃ is a new vector with the appropriate size.

While we could now proceed to isolate S by solving (11),

µ(u) usually introduces trigonometric terms that complicate

the solution. Fortunately, since ũ = µ(u) parametrizes the

solution set of η(ũ) = 0, and the u variables only intervene

in the second equation of (11), we can substitute ũ = µ(u)
for η(ũ) = 0 in (11), arriving at the equivalent system

Ψ(z̃, ũ) = 0

η(ũ) = 0

Ψz̃
Tξ̃ = 0

ξ̃
T

ξ̃ = 1















, (12)

which is quadratic, because Ψ(z̃, ũ) and η(ũ) are quadratic

under the adopted formulation. Thus, χ(y) = 0 adopts the

form of (12) in this case, with y = [z̃T, ũT, ξ̃T]T.

B. Equation Solution

A numerical method able to solve (5) is next described,

based on expanding the equations into a canonical form, and

then using a linear relaxation method exploiting this form to

isolate the solutions [33].

Let yi and yj refer to any two variables appearing in (5).

The method starts by introducing the changes of variables

pi = y2i (13)

bk = yiyj (14)

for all yiyj and y2i monomials intervening in (5). This allows

transforming the system into the expanded form

Λ(x) = 0

Ω(x) = 0

}

, (15)

where x is an nx-dimensional vector including the original y

variables, and the newly-introduced pi and bk ones, Λ(x) = 0
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is a collection of linear equations in x, and Ω(x) = 0 is a

collection of equations adopting one of the two forms

xk = x2i ,

xk = xixj ,

which correspond to the variable changes in (13) and (14).

It can be seen that each variable xi of x can only take

values within a prescribed interval [33], so that from the

Cartesian product of all such intervals one can define an initial

nx-dimensional box B that bounds all solutions of (15). The

algorithm to isolate such solutions recursively applies two

operations on B: box shrinking and box splitting.

Using box shrinking, portions of B containing no solution

are eliminated by narrowing some of its defining intervals.

This process is repeated until either (1) the box is reduced to an

empty set, in which case it contains no solution, or (2) the box

is “sufficiently” small, in which case it is considered a solution

box, or (3) the box cannot be “significantly” reduced, in which

case it is bisected into two sub-boxes via box splitting (which

simply bisects its largest interval). To converge to all solutions,

the whole process is recursively applied to the new sub-boxes

until one obtains a collection of solution boxes whose side

lengths are below a given threshold smax.

The crucial operation in this scheme is box shrinking, which

is implemented as follows. Notice first that the solutions falling

in some sub-box Bc ⊆ B must lie in the linear variety defined

by Λ(x) = 0. Thus, we may shrink Bc to the smallest possible

box bounding this variety inside Bc. The limits of the shrunk

box along, say, dimension xi can be found by solving the two

linear programs

LP1: Minimize xi,

subject to: Λ(x) = 0,x ∈ Bc,

LP2: Maximize xi,

subject to: Λ(x) = 0,x ∈ Bc.

However, observe that Bc can be further reduced, because

the solutions must also satisfy all equations xk = x2i and

xk = xixj in Ω(x) = 0. These equations can be taken into

account by noting that, if Bc is adjusted to the graph of the

considered equation, and [li, ui] denotes the interval of Bc

along dimension xi, then:

1) The portion of the parabola xk = x2i lying inside Bc is

bound by the triangle A1A2A3, where A1 and A2 are

the points where the parabola intercepts the lines xi = li
and xi = ui, and A3 is the point where the tangent lines

at A1 and A2 meet [Fig. 4(a)].

2) The portion of the hyperbolic paraboloid xk = xixj
lying inside Bc is bound by the tetrahedron B1B2B3B4,

where the points B1, . . . , B4 are obtained by lifting the

corners of the rectangle [li, ui]× [lj , uj ] vertically to the

paraboloid [Fig. 4(b)].

Thus, linear inequalities corresponding to these bounds can be

added to LP1 and LP2, which usually produces a much larger

reduction of Bc, or even its complete elimination, if one of

the linear programs is found unfeasible.

As it turns out, the previous algorithm explores a binary

tree of boxes whose internal nodes correspond to boxes that

(a) (b)

A1
A2

A3

B1

B2

B3

B4

xk

xk

xj

xi

xi

ui

ui

li

li

uj

lj

Fig. 4. Polytope bounds within box Bc. (a) The points on the parabola
xk = x2

i are bound by the triangle A1A2A3. (b) The points on the hyperbolic
paraboloid xk = xixj are bound by the tetrahedron B1B2B3B4.

have been split at some time, and whose leaves are either

solution or empty boxes. The collection B of all solution

boxes is returned as output upon termination, and it is said

to form a box approximation of the solution set of (15),

because the boxes form a discrete envelope of such set, whose

accuracy can be adjusted through the smax parameter. Notice

that the algorithm is complete, in the sense that the boxes

in B include all solution points of (15), and hence it will

succeed in isolating all points of S accurately, provided that

a small-enough value for smax is used. Detailed properties

of the algorithm, including an analysis of its completeness,

correctness, and convergence order, are given in [33].

Having obtained B, it is finally straightforward to obtain

a box approximation BS of the singular set S . If (5) adopts
the form of (6), then z and u explicitly intervene in (15) as

part of x, and each box in B already has ranges along the

q = [zT,uT]T dimensions. Such ranges define a box in q-

space enclosing points of S , and the collection of all of such

boxes provides BS . If (5) adopts the form of (12), BS can be

obtained in a similar way. The only difference is that, because

the u variables do not intervene in (12), the boxes in B do not

provide explicit ranges for them. However, if for each box in

B we consider the ranges along the ũ variables, we can derive

corresponding ranges for the u variables by solving ũ = µ(u)
using interval techniques [33, 38].

C. Boundary identification

Once BS has been obtained, it remains to check whether the

points of S enclosed in BS correspond to boundary barriers,

interior barriers, or traversable singularities. This classification

is performed in two stages, illustrated in Fig. 5.

In a first stage, we classify the boxes of BS according to

whether they enclose barrier or traversable singularities. For

each box Bi ∈ BS [Fig. 5(a)], a point qi ∈ S is computed

[Fig. 5(b)], and the barrier determination method mentioned

in Section II-B is applied to this point. The computation of

qi is done by solving (6) or (11), depending on the situation,

using a Newton-Raphson method starting from an arbitrary

point q0
i inside Bi. This procedure will quadratically converge

to some point qi ∈ S provided that the points within Bi are

close enough to S , which can be guaranteed by computing

BS using a small-enough smax threshold. The singularity type

obtained for qi (either barrier or traversable singularity) is
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replacements

(a) (b)

(c) (d)

R1

R2

R3

R4

q0

i

qi

S

Bi

U

U U

πu(Bi)

Fig. 5. Boundary identification process. (a) Box approximation of S projected
onto the output space U . (b) Computation of qi ∈ S for each box Bi. (c) Clas-
sification of the points of πu(S) into barrier or traversable singularities. (d)
Regions into which πu(S) subdivides U and their classification into interior
(grey) or exterior (white) regions.

taken as an estimation of the singularity type of all points in

Bi∩S , so that, after repeating this process for all of the boxes

in BS , it is possible to subdivide S into subsets of constant

singularity type. If qi is a barrier singularity, a normal vector

ni pointing towards the forbidden side of the barrier is drawn

at ui = πu(qi) [Fig. 5(c)].
In a second stage, we determine which of the barrier points

qi computed in the previous stage correspond to boundary or

interior barriers. To this end, notice that πu(S) subdivides U
into several regions R1, . . . ,Rnr

, where each region fully lies

in the interior or in the exterior ofA, and a barrier point ui will

lie on ∂A if, and only if, one of its two neighboring regions

is exterior to A. Thus, determining which of the barrier points

ui correspond to boundary barriers boils down to checking

whether the regions R1, . . . ,Rnr
are interior or exterior to A.

The type of a regionRj can be determined by selecting a point

uj in the region, and solving Φ(z,uj) = 0 for that point,

which is here done by resorting to the numerical technique

proposed in [33]. If Φ(z,uj) = 0 has at least one solution,

then Rj is an interior region, otherwise it is exterior.

While solving Φ(z,uj) = 0 can be costly, note that it is

not necessary to apply this test to most regions because the

type of a region can often be decided by noting that:

• If u only contains position coordinates of the end-

effector, then the outer region will necessarily be exterior

to A, because the effector can only reach a bounded set

of positions in practice.

• A region Rj whose boundary contains a traversable sin-

gularity can be marked as interior, because Rj contains

trajectories that enter Rj through that singularity.

• A region Rj whose boundary contains a barrier point ui

with ni pointing outwards from Rj can be marked as

interior as well, because such barrier indicates that there

are feasible trajectories in C projecting inside Rj .

In Fig. 5(d), for example, these observations allow identifying

R1 as an exterior region if u only contains position coordi-

nates, and R2 and R3 as interior regions. Only the type of R4

needs to be disambiguated by checking a point in the region.

V. PERFORMANCE ON SEVERAL SITUATIONS

We next illustrate the performance of the method on various

situations. Several representative workspaces on planar and

spatial manipulators are computed to emphasize the generality

of the approach, and to encounter cases of multi-component

workspaces, hidden regions, and degenerate barriers like those

described in Section III, which hinder the application of the

continuation method in [31].

All experiments reported have been carried out using a

parallelized version of the method implemented in C using

the libraries of the CUIK platform [33], and executed on a

grid computer with four DELL Poweredge units equipped with

two Intel Quadcore Xeon E5310 processors and 4 Gb of RAM

each one. For each experiment, Table I provides the dimension

of ∂A (d), the number of variables (nv) and equations (nc)
intervening in (5), the amount of CPU time required to solve

it (ts, in minutes), and the number of solution boxes returned

(ns), assuming smax = 0.1 in all cases.

A. Multi-component workspaces

To illustrate the performance of our approach on complex

multi-loop linkages, and to give one example of a multi-

component workspace, we apply our method to compute

Manipulator Workspace d nv nc ns ts

D. Butterfly reachable 1 37 36 145369 218
Stewart platf. const.-orient. 2 27 25 1677906 45
3-UPS/S platf. orientation 2 21 19 156699 30
Agile Eye orientation 1 21 19 100636 17

TABLE I
PERFORMANCE DATA ASSUMING smax = 0.1.

P

θ1

θ2

θ3

θ4

θ5

θ6

θ7

a0

a1
a2

l3
l4

l5

a6

l7

b0

b1 b2

b6

X

O

Ground link

Fig. 6. The planar double-butterfly linkage with variable lengths l5 and l7.
The fixed frame is centered at O with the X-axis aligned as indicated, and
all angles θi are measured relative to such axis.
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the reachable workspace of a planar mobility-three double-

butterfly linkage (Fig. 6). This mechanism has been used to

compare the performance of general position analysis meth-

ods [39]–[41], but no complete method has been given to

compute the boundaries and interior barriers of its reachable

workspace yet, as far as we know.

For this example it will be assumed that the end-effector is

the upper left body in Fig. 6, whose pose is determined by

point P and angle θ1, and that two slider joints are mounted

to let lengths l5 and l7 vary within the ranges [11, 13] and
[10, 12], respectively. As for the parameters in Fig. 6, we adopt

the same values considered in [39]–[41]. Namely, a0 = 7,
a1 = 7, a2 = 5, b0 = 13, b1 = 6, b2 = 3, l3 = 7, l4 = 9,
a6 = 3, b6 = 2, and γ0 = 36.87◦, γ1 = 22.62◦, γ2 = 53.13◦,
γ6 = 36.87◦, where γi is the acute angle between segments

ai and bi. Then, for this manipulator, (1) is formed by:

1) The loop equations enforcing the closure of the three

loops that leave the ground link via l7, and return via

l4, l3 and l5 [40]:

0 = l7c7 + b2c2cγ2
− b2s2sγ2

− l4c4−
− a6c6 + a0cγ0

,

0 = l7s7 + b2s2cγ2
+ b2c2sγ2

− l4s4−
− a6s6 − a0sγ0

,

0 = l7c7 + a2c2 + a1c1 − l5c5 + b0,

0 = l7s7 + a2s2 + a1s1 − l5s5,

0 = l7c7 + a2c2 + b1c1cγ1
− b1s1sγ1

−
− l3c3 − b6c6cγ6

+ b6s6sγ6
+ a0cγ0

,

0 = l7s7 + a2s2 + b1s1cγ1
+ b1c1sγ1

−
− l3s3 − b6s6cγ6

− b6c6sγ6
− a0sγ0

,

where cγi
and sγi

stand for the cosine and sine of γi,
and ci and si for those of θi.

2) The equations providing the x and y coordinates of P
relative to the fixed OXY frame:

x = b0 + l7c7 + a2c2,

y = l7s7 + a2s2.

3) The circle equations constraining ci and si:

c2i + s2i = 1.

4) The joint limit constraints for l5 and l7

(li −mi)
2 + d2i = h2i ,

where mi and hi are the mid-point and half-range of the

intervals for l5 and l7 (Appendix A).

The reachable workspace is defined as the set of attainable

locations for a point on the end-effector, e.g. P in our case.

Thus u = [x, y]T for this workspace, and since x and y are

explicit in the previous equations, we are in the situation of

Section IV-A1. Moreover, since nu = 2, the boundary of

the reachable workspace will be one-dimensional in general.

The proposed method computes the box approximation of

πu(S) shown in Fig. 7 in this case, which delimits three

workspace areas corresponding to different assembly modes

of the mechanism. The result of the boundary identification

x

y

Fig. 7. Box approximation of the set πu(S) corresponding to the reachable
workspace of the linkage in Fig. 6. The boxes can be better appreciated by
zooming the electronic version of the paper.

x

y

Fig. 8. Results of applying the boundary identification process from
Section IV-C to one of the curve components in Fig. 7. The same conventions
as in Figs. 2 and 5(d) are used.

process on one of such areas is shown in Fig. 8. Note that,

having several connected components, this workspace would

be difficult to map out entirely using the method in [31].

B. Hidden regions

To show the performance of the method on spatial mecha-

nisms, and to encounter workspaces with hidden regions, we

next apply the method to the Stewart platform [Fig. 9(a)]. This

is a challenging test case for any workspace determination

method. Its full workspace is six-dimensional, and its bound-

ary five-dimensional, which hinders any attempt of computing
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(a) (b) (c)

O

OO

P

Ai
Ai

Ai

Bi

Bi

Bi

li
li

Fig. 9. The 6-6 Stewart platform (a), and the 3-UPS/S and 3-RRR spherical platforms (b and c). Figs. (b) and (c) are adapted from [23].

it exhaustively, due to the curse of dimensionality. For this

reason, and because six-dimensional spaces are impossible to

visualize directly in three dimensions, comprehension on this

workspace is being gained by obtaining lower-dimensional

workspaces like (1) the constant orientation workspace, or

set of attainable locations by a point P on the platform, for

a fixed platform orientation [18, 42], (2) the constant position

workspace, or set of platform orientations for a fixed position

of P [22, 43]–[45], and (3) the reachable workspace, or set

of locations that P can attain, with at least one platform

orientation [46, 47]. All of these workspaces can be computed

by the proposed technique using a proper choice of the u

variables and fixing others to given values. To provide one

example where hidden regions arise, we next compute a

constant orientation workspace studied in [18].

In order to formulate (1), let ai and bi denote the position

vectors of the base and platform anchor points of the ith leg,

expressed in fixed (OXY Z) and moving (PX ′Y ′Z ′) reference

frames, respectively. The length of the ith leg can then be

written as

l2i = |p+Rbi − ai|2 (16)

for i = 1, . . . , 6, where R is a rotation matrix that provides the

orientation of PX ′Y ′Z ′ relative to OXY Z, and p = [x, y, z]T

is the position vector of P in the OXY Z frame. Note that if

rj refers to the jth column of R, then it must be

|r1|2 = 1, (17)

|r2|2 = 1, (18)

r1 · r2 = 0, (19)

r3 = r1 × r2, (20)

for R to be a proper rotation matrix. Also, since the lengths

li can only take values within limited ranges [lmin
i , lmax

i ], it
must be

(li −mi)
2 + d2i = h2i (21)

for i = 1, . . . , 6, where mi and hi are the mid-point and half-

range of [lmin
i , lmax

i ].
Since we are computing the constant orientation workspace,

R will be a known matrix in the previous equations, and (1)

will be the system formed by (16) and (21), with q̃ =
[l1, . . . , l6, d1, . . . , d6, x, y, z]

T
. Clearly, u = [x, y, z]T now,

and we are in the situation in which u intervenes in q̃

explicitly, and (5) adopts the form of (6).

Fig. 10 shows 3D views of the box approximation obtained

for πu(S), which describes an umbrella-like surface overall.

The computation was done assuming the parameters in Table II

and with R fixed to the identity matrix. In fact, this workspace

has an additional connected component symmetric to the one

of Fig. 10, which corresponds to the assembly mode of this

manipulator where P sweeps a similar volume for z < 0. All
results obtained are consistent with those in [18].

To better appreciate the shape of the enclosed volume,

Fig. 10 plots constant-z slices of πu(S) indicating the results

of the boundary identification process. Note from the plots

that it would be difficult to compute such slices by con-

tinuation [31], because many slices present multi-component

boundaries and hidden regions that difficult the application

of the ray-shooting technique described in Section III. If, for

example, the ray is shot from point E on the z = 5.12 slice,

it will not hit the boundary of voids V2 and V3 on that slice.

While it is true that in [42] the authors were able to compute

πu(S) using the method in [31], they did so by defining

particular slices of this set obtained by cutting the umbrella

with planes through line L shown in Fig. 10. This solution

avoids the appearance of internal voids within each slice, but

obviously relies on using a-priori knowledge of the result.

C. Degenerate barriers

Because of the complexity of their defining equations,

orientation workspaces are considered among the most difficult

ones to compute and represent [7, 22, 44, 45]. Their derivation

could be illustrated on Stewart platforms, but we shall do so

i 1 2 3 4 5 6
ai,x 92.58 132.58 40.00 −40.00 −132.58 −92.58
ai,y 99.64 30.36 −130.00 −130.00 30.36 99.64
ai,z 23.10 23.10 23.10 23.10 23.10 23.10
bi,x 30.00 78.22 48.22 −48.22 −78.22 −30.00
bi,y 73.00 −10.52 −62.48 −62.48 −10.52 73.00
bi,z −37.10 −37.10 −37.10 −37.10 −37.10 −37.10
lmin

i 454.5 454.5 454.5 454.5 454.5 454.5
lmax

i 504.5 504.5 504.5 504.5 504.5 504.5

TABLE II
PARAMATERS OF THE STEWART PLATFORM STUDIED IN [18].
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x
x y

y

z

z

z = 4.95 z = 5.00

z = 5.10 z = 5.12

z = 5.145 z = 5.30

E

V1 V2

V3

L

Fig. 10. Top row: Two views of the boundary of the constant orientation
workspace of a Stewart platform. Boxes are semitransparent to better appre-
ciate the shape. Remaining rows: Slices of the workspace for different values
of z. All points of S are classified as barrier singularities in this case.

on spherical parallel manipulators (SPM) because this will

lead to one example of the degenerate barriers mentioned in

Section III, which the method in [31] is unable to identify.

The examples are taken from [23] and correspond to popular

architectures of three degree-of-freedom SPMs: the 3-UPS/S

and 3-RRR designs, depicted in Fig. 9(b) and 9(c). These

are orientational manipulators where the mobile platform can

be rotated with respect to the base about a fixed point O
by actuating some of the leg joints. We next compute their

orientation workspace and verify the results with those of the

analytic method in [23]. Note that whereas the method in [23]

is only applicable when certain symmetries hold, the method

we propose here remains general.

To derive (1), note that each leg imposes the same constraint

on the moving platform irrespectively of the chosen architec-

ture. In a 3-UPS/S platform, for example, li is constrained

to take values within some interval [lmin
i , lmax

i ] by design,

which limits the angle between OAi and OBi to some range

[αmin
i , αmax

i ]. In a 3-RRR platform, the angle between OAi

and OBi is also limited to some range [αmin
i , αmax

i ] due to me-

chanical limits on the joints, or to the angles encompassed by

the leg links. Both designs are thus kinematically equivalent.

Moreover, the 3-UPS/S design can be obtained as a special

case of the Stewart platform by making three anchor points

of such platform coincident, and locking the corresponding

legs. Hence, for both the 3-UPS/S and 3-RRR designs (1)

can be formulated as the system formed by (16)-(21) with

p = [0, 0, 0]T, for i = 1, 2, 3, assuming that the fixed and

moving reference frames are centered at O.

In general, the orientation workspace is defined as the set

of possible values for three orientation angles of the platform.

Although any set of Euler angles could be used for such

matter, we shall here adopt the azimuth (φ), tilt (θ), and

torsion (σ) angles assumed in [23] to ease the comparison of

results. Using such angles, R = Rz(φ)Ry(θ)Rz(γ), where
γ = σ − φ, and thus the columns of R are

r1 =





cosφ cos θ cos γ − sinφ sin γ
sinφ cos θ cos γ + cosφ sin γ

− sin θ cos γ



 , (22)

r2 =

[

− cosφ cos θ sin γ − sinφ cos γ
− sinφ cos θ sin γ + cosφ cos γ

sin θ sin γ

]

, (23)

r3 =

[

cosφ sin θ
sinφ sin θ

cos θ

]

. (24)

Under the previous convention, Bonev and Gosselin define

the orientation workspace as the set of possible values that

u = [φ, θ, σ]T can attain [23], restricting φ ∈ (−π, π],
θ ∈ [0, π), and σ ∈ (−π, π] to guarantee a one-to-one

relationship between the orientations and the corresponding

triples {φ, θ, σ}. We are thus in the situation in which u

does not intervene explicitly in (1), but it can be related to

ũ =
[

r1
T, r2

T, r3
T
]

T using (22)-(24). Therefore, equation

η(ũ) = 0 is given by (17)-(20) in this case, and Ψ(z̃, ũ) = 0

consists of (16) and (21) with z̃ = [l1, l2, l3, d1, d2, d3]. Over-
all, equation (12) contains 19 equations in 21 variables and

the boundaries of the orientation workspace are thus expected

to be 2-dimensional.

For the particular examples shown next we shall assume the

same symmetry conditions as in [23]. Namely, Ai and Bi will
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θ

θ

θ

φ

φ

φ

σ

σ

σ

0

π

π

π
−π

−π

Fig. 11. Top: 3D view of the boundary of the orientation workspace of the
3-UPS/S manipulator of Fig. 9(b). Bottom: orthogonal projections of such
boundary onto the coordinate planes.

lie on a unit sphere centered at O with position vectors

ai =

[

cos((i − 1) 2π
3
) sin β1

sin((i − 1) 2π
3
) sin β1

− cos β1

]

, bi =

[

cos((i − 1) 2π
3
) sin β2

sin((i − 1) 2π
3
) sin β2

− cos β2

]

,

and we will set [αmin
i , αmax

i ] = [αmin, αmax] for all i.

θ

θ

θ

φ

φ

φ

θ = π

θ = π
2

Fig. 12. Constant torsion (σ) workspace of the spherical parallel manipulator
of Fig. 9(b), with parameters β1 = 45◦, β2 = 35◦, αmin = 20◦, αmax =
130◦, σ = −30◦.

Fig. 11 shows the resulting box approximation of πu(S)
for β1 = 0◦, β2 = 35◦, αmin = 20◦, αmax = 130◦.
These parameters correspond to one of the cases analyzed

in [23], where constant-torsion slices of πu(S) are provided

for these manipulators. As expected, πu(S) is a surface

in the {θ, φ, σ}-space and, by analyzing the neighborhood

relationships of the returned boxes, this surface can be shown

to contain just one connected component. Figs. 12 top and

middle respectively show a σ = −30◦ slice of the surface

shown in Fig. 11 and the barriers identified on such slice. The

resulting curve and the interior regions detected match those

in [23] when plotted in polar coordinates (Fig. 12, bottom).
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θ

φ
σ

0

π

π

π

−π

−π

Fig. 13. The workspace of the Agile Eye has degenerate barriers.

While the orientation workspace will generally have a

two-dimensional boundary, such boundary may degenerate

into lower-dimensional barriers for particular choices of the

geometric parameters, thus posing serious difficulties to the

continuation method in [31]. This is what occurs on the Agile

Eye for example, a well-known instance of the 3-RRR design

in Fig. 9(c), where β1 = β2 = arccos(1/
√
3), αmin = 0,

and αmax = π [48]. As mentioned in Section III, computing

such barriers using [31] is almost impossible because the ray

shooting technique will fail to converge to the barriers almost

always. On the contrary, the presented technique is immune to

such situations. If the same equations considered for obtaining

the plot in Fig. 11 are now used for determining the workspace

boundaries of the Agile Eye relative to u = [φ, θ, σ]T, we
readily obtain the curves depicted in Fig. 13, which agree

with those described in [23]. When analyzed, these curves are

seen to be barrier singularities interior to the workspace. In

other words, the manipulator will be able to reach any possible

orientation, but it will find a motion impediment when trying

to traverse across the curves.

VI. NON-SMOOTH MANIFOLDS

It has been assumed throughout the paper that Φq is full

rank at all points q ∈ C, so that C is guaranteed to be a

smooth manifold of dimension nq−ne (Section II). In practice,
however, manipulators can be encountered for which Φq is

rank deficient at some points of C. Since all maximal minors

ofΦq vanish at those points, it is not possible to guarantee that

C will be locally diffeomorphic to R
nq−ne on them. However,

this does not modify the presented algorithm significantly.

Note first that, even if Φq is not full rank everywhere in

C, Φz must still be rank deficient for a point q to belong

to ∂A (Appendix B). When computing S using the proposed

technique, thus, we shall certainly obtain all points projecting

onto ∂A, even those for which Φq is rank deficient.

Observe also that the points q0 of S for which Φq is rank

deficient cannot be classified into barrier or traversable singu-

larities, because such classification depends on the existence

of a parametrization q = q(v) of C in a neighborhood of

q0 (Section II-B), which cannot be guaranteed if all maximal

minors of Φq vanish. However, such points correspond to so-

called configuration space singularities [49], which can be in-

terpreted as points where the controllability of the manipulator

is lost irrespectively of the choice of actuated coordinates.

Since these configurations are to be avoided, there is no need

to classify them, and they can be marked as “uncontrollable”

in the returned output.

Finally, we realise that the rank deficiency of Φq implies

the rank deficiency of Φz . Thus, the set of points for which

Φq is rank deficient will be a subset of dimension lower than

that of S usually, and the boundary identification process in

Section IV-C will not be altered in a significant way.

VII. CONCLUSIONS

This paper has presented a complete method for workspace

determination on general manipulators. The method delivers

a detailed map of the workspace including all motion barriers

and output singularities that may be encountered by the manip-

ulator, which is a substantially richer output than that produced

by several methods for particular manipulators [20, 22, 43, 44].

In comparison to general methods based on continuation [31],

the method is advantageous in that it is uninformed, since

it does not need to be fed with a-priori knowledge of the

workspace, such as pre-computed assembly configurations or

suitable slicing directions, and complete, as it returns the full

workspace map even in the presence of several connected

components, hidden regions, or degenerate barriers.

By design, the method is able to compute workspaces of

arbitrary dimension but the curse of dimensionality usually

restricts its applicability to workspaces of dimension nu ≤ 3
in practice. While workspaces of dimension nu > 3 arise

frequently, e.g. in spatial manipulators, it must be noted that

such workspaces are impossible to visualize directly in three

dimensions, so that in such cases the common practice is to ob-

tain three-dimensional subsets that are meaningful to the robot

designer. In this sense, the paper shows that the reachable,

constant-orientation, and constant-position workspaces, which

are those typically required in spatial manipulators, can all be

computed by the proposed method. Moreover, we emphasize

that while for nu = 3 many previous methods are limited to

obtain cross-sectional curves of the boundary only [4, 18]–

[20, 23, 31, 46], the proposed method will directly isolate the

whole surface.

A class of workspaces not treated explicitly in the paper

are dexterous workspaces. These are defined as the set of

end-effector positions that can be reached with any orientation

within a given range. While computing such workspaces seems

plausible under the proposed approach, several modifications

need to be introduced in the method in order to do so. This

point, together with the extension of the method to consider

further constraints, such as collision constraints, or to compute

forward singularities within the workspace, certainly deserve

further attention.
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APPENDIX A

MODELLING JOINT LIMITS

Mechanical limits on the joints can easily be modelled as

equality constraints. Two types of limits need to be treated:

those referring to distance constraints and those referring to

angular constraints. Typically, they arise on slider and revolute

joints, respectively, but combinations of both limits may be

encountered on other joints. Note on the one hand that, if qi
is a joint distance that must satisfy

qmin
i ≤ qi ≤ qmax

i , (25)

then we can impose this constraint setting

(qi −mi)
2 + d2i = h2i , (26)

where mi =
qmax
i +qmin

i

2 , hi =
qmax
i −qmin

i

2 , and di is a newly-

defined auxiliary variable. The values mi and hi are called the

mid-point and half-range of the interval [qmin
i , qmax

i ], and (26)

simply constrains the pairs (qi, di) to take values on a circle

of radius hi centered at (mi, 0) in the (qi, di) plane. As a

consequence, qi satisfies (25) if, and only if, it satisfies (26)

for some value of di. On the other hand, if qi is a joint angle

that must satisfy

−αi ≤ qi ≤ αi, (27)

then this angle will be represented by its cosine cqi and its sine

sqi under the proposed formulation. The previous constraint

is equivalent to cqi ≥ cosαi, which can be written as

cqi = t2i + cosαi, (28)

where ti is a new variable that can take any value. Again qi
satisfies (27) if, and only if, it satisfies (28) for some ti.

APPENDIX B

BOUNDARY CONDITION

We next show that the rank deficiency of Φz at a point

q = [zT,uT]T ∈ C is a necessary condition for u to belong to

∂A, and that the points q ∈ C for which Φz is rank deficient

correspond to critical points of the projection of C on U .
Observe first that if Φz is full rank at q = [zT,uT]T ∈ C,

then there exists a non-vanishing ne×ne minor of Φz , say rel-

ative to the variables z′, and by the Implicit Function Theorem

it is possible to find a function z′ = F (u′) relating z′ with

the remaining u′ variables, satisfying Φ(F (u′),u′) = 0 [36].

Thus, the u′ variables, which include the u ones, can be used

as a local parameterization of C around (z′,u′), implying that

arbitrary values in a neighborhood of u have a corresponding

z satisfying Φ(z,u) = 0, so that u must lie in the interior of

A. Thus, Φz must be rank-deficient for u to belong to ∂A.

Now recall that if Γ : Q → U is an arbitrary smooth map

between two manifolds Q and U of dimensions nq and nu,
respectively, the differential of Γ at q ∈ Q is the Jacobian

matrix Γq = [∂Γi/∂qj ], which relates the vectors in TqQ to

the vectors in TuU , the tangent spaces to Q at q, and to U at

u = Γ(q), respectively. A point q ∈ Q is said to be a critical

point of Γ if Γq is not surjective at q, i.e., when Γq(TqQ)
is a subspace of TuU of dimension lower than nu. One can

also speak of the critical points of Γ with domain restricted

to a submanifold C ⊆ Q, to mean the points q ∈ C for which

Γq(TqC) does not span TuU entirely.

Suppose now that C is defined implicitly by Φ(q) = 0 as

in Section II, where Φ : Q → E is a smooth map whose

differential Φq is full rank at all points in C. Then, it can be

proved that a point q ∈ C is a critical point of Γ with domain

restricted to C if, and only if, the matrix

(Φ,Γ)q =

[

Φq

Γq

]

has rank less than ne + nu at q [50, page 102].

By the previous result, the critical points of the projection

map πu with domain restricted to C are the points q for which

(Φ,πu)q =







Φz Φu

0 Inu







is rank deficient, where Inu
denotes the nu × nu identity

matrix. Observe that (Φ,πu)q is rank deficient whenever Φz

is rank deficient, which proves that the mentioned critical

points are those for which Φz is rank deficient.
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Informàtica Industrial (IRI, CSIC-UPC). His current

research interests include workspace and singularity analysis of robot mech-
anisms.

Montserrat Manubens received the Mathematics
degree from the Universitat de Barcelona in 2001,
and the Ph.D. degree (with honors) in Computer Al-
gebra from the Universitat Politècnica de Catalunya
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