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ABSTRACT

In [15], a general singularity classification was attempted

This paper is concerned with the task to obtain a complete based on an input-output velocity equation. This overlamises

description of the singularity set of any given non-redurtdaa-
nipulator, including the identification and the precise qam
tation of each constituent singularity class. Configuratidoe-
longing to the same class are equivalent in terms of the vario
types of kinematic and static degeneracy that charactenieeh-
anism singularity. The proposed approach is an extensiar-of
cent work on computing singularities using a numerical radth
based on linear relaxations. Classification is sought by msea
of a hierarchy of singularity tests, each formulated as aesys
of quadratic or linear equations, which yields sets of céssto
which an identified singularity cannot belong. A planar nmani
ulator exemplifies the process of classification, and itatsts
how, while most singularities get completely classifiedstome
lower-dimensional subsets one can only identify a regtddist
of possible singularity classes.

INTRODUCTION

The study of robot singularities is a central topic in Robot
Kinematics because the properties of the manipulator aang
dramatically, and often different kinds of problems may ap-
pear [1]. Even though the literature on this topic is copjars
approach to obtain a complete description of the singylaet
of any non-redundant manipulator has not yet been givenh Suc
an approach should include the identification and precise-co
putation of each constituent singularity class. Most wpiks
cluding previous methods for computing singularities,uon
particular classes of singularities, and on specific robcitec-
tures [2-14].

where the motion of the mechanism cannot be described with
the input and output speeds only. In [16, 17] more generahimet
ods from differential geometry were applied, and three sing
larity types were proposed. In [18, 19], a general manipula-
tor model, in terms of differentiable mappings between mani
folds, allowed a rigorous mathematical definition of kingima
singularity. Three basic kinds of singularities were idkeed—
configuration-space, input, and output singularities—batap-
proach also allowed for a finer classification usingtgpes each

of which corresponds to a different kinematic phenomenai th
may occur in the singularity. It was also shown that a singu-
larity always belongs to several of these types simultasigpu
but that only twenty-one type combinations,adassescan ex-

ist. Thus, a manipulator can have at most twenty-one sinigyila
classes each containing configurations equivalent in tefrise
occurring types of kinematic and static degeneracy. Var@mn-
ditions for the presence of singularities of all types haeerb
presented [19, 20]. Recent work uses them to obtain an exhaus
tive computation of the whole singularity set, and each efdix
singularity types, by means of a numerical method baseden li
ear relaxations [21]. However, an efficient method for thenco
plete classification of the singularity set of a given medéran

i.e. the identification of the nonintersecting singulaxdtgsses,

is still to be achieved.

The present work aims at completing the task of exhaustive
classification of the singularity set of an arbitrary nodtnadant
manipulator by extending the work in [21]. The paper showas,th
for a singular configuration, a sequence of tests allowsohéte
ing groups of classes to which the configuration cannot lgelon



This fact allows defining a process that is able to preciskly-c
sify most singularities, and only in rare cases this testijest
to sufficient numerical precision.

The rest of the paper is organized as follows. Section “Pre-
liminaries” provides some necessary background, inctytivo
systems of equations that allow identifying the whole slagu
ity set as well as the description of the various singulasipes
and classes. Section “Isolation of the Singularity Set'cdéess
a numerical method that is able to solve the previous systems
thus isolating the complete singularity set of the given iman
ulator. Section “Classification of the Singularity Set” pides
an approach to classify the obtained singularity set byyédipg!
the same method on additional systems of equations. The per-
formance of the approach is illustrated in Section “lllattre
Example”.

PRELIMINARIES

Every manipulator configuration can be described by a vec-
tor q of scalar generalized-coordinate variables. In the case of
manipulators containing closed-loops, or when a joint duss
admit a global parametrization, not all valuesgoforrespond to
feasible configurations, and the configuration space isngye
the solution set of a system of non-linear equations

@(q) =0,

= (1)
which expresses the assembly constraints imposed by the
joints [22]. In addition, the possible motion rates of thenipa-

lator, i.e. its feasible instantaneous motions, are charaed by

a system of linear equations

L-m=0,

called thevelocity equatiorin [19]. The matrixL depends on
the configuratiory. The velocity vectom= [Q°T,Q*T QPT]| T
has as componen®®, a vector describing the rate of change of
the output motion (for example, the velocity of a point or #me
gular velocity, or the twist, of an end-effector body), adlas
Q? and QP, describing the rate of change of input and passive
motion, respectively (typicallyQ? andQP are the actuated and
unactuated joint speeds, respectively). Such a systemuzt-eq
tions can be obtained for any manipulator, for instancegie
twist loop equations, and therefore can be used for theipahct
identification of singularities.

In this paper we assume that, for every configuration, the di-
mension of the output and input velocity vectors are equtido
(global) mobility,n, of the kinematic chain (the mobility is equal
to the dimension of the configuration space, i.e., to the maxi

mum dimension of its tangent space, wherever such space ex-

ists [23]). For later use, assume tthahasN rows, and thus it is

aN x (N+n) matrix, and leL,, Lo andLp be the submatrices of
L obtained by removing the columns corresponding to the jnput
output, and both the input and output, respectively.

Identification of the Singularity Set
The instantaneous kinematic analysis of a manipulator ad-
dresses two main problems:

Theforward instantaneous kinematics problem (FIKP): find
mgiven the inpuQ?, and

The inverseinstantaneous kinematics problem (IIKP): find
m given the outpuf®.

Note that in each case it is required to faltlinstantaneous
parameters of the manipulator, not just the output or inpeesds,
respectively. Following [19], a configuration is said to kmnn
singular when both the FIKP and the IIKP have unique solstion
for any input or output. This leads to the identification afe
basic types of singularities, nameigput singularitiesandout-
put singularitieswhere the FIKP and the IIKP are undetermined,
respectively, anaonfiguration-space singularitiesvhere both
the FIKP and IIKP become undetermined for any definition of
input or output from the given velocity variables.

As proven in [19, 20], the singularities of a manipulator can
be characterized by those configurations where either thexma
L, or the matrixLo is rank deficient. Note that if a matrix is
rank deficient, its kernel has to be non-null and, in paréiguit
must include a vector of unit norm. Thus, all singularitias be
determined by solving the following two systems of equagion

®(q)=0) ®(q) =0
LTE=0;, Lo'é=0 (2
1E12=1) |&|*=1

The first equation of each system constran® be a feasible
configuration of the mechanism. The second and third equatio
imply the existence of a non-zero vector in the kernel of tre ¢
responding matrix. Note that€| can be any consistent norm;
for instance, we may usgf |2 = £ TD& with D a diagonal ma-
trix whose entries have the proper physical units. Thereois n
need for the norm to be invariant with respect to change ofiéra
or units, because the conditit)§ ||2 = 1 only serves to guarantee
thaté is not@.

The solution of the system on the left in Eq. (2) corresponds
to all configurations where the FIKP is undeterminate, idirig
all input singularities, while the solution of the system ttwe
right includes all output singularities, where the [IKP r=eter-
minate. Configuration-space singularities will satisfyttheys-
tems in (2), as well as any analogous system obtained byirglet
n columns inL. The whole singularity set can be computed as
the union of the sets obtained as solutions of each system.



Types and Classes of Singularities

The singularity set can be seen to contain six distinct low-
level singularity types, depending on the cause of the degew
of the FIKP or IIKP. These areedundant inpu{RlI), redundant
output (RO), impossible inpuf(ll), impossible outpuflO), in-
creased instantaneous mobil{tyM) and redundant passive mo-
tion (RPM) [19].

Each of the six singularity-type definitions describes an im
portant change in the kinematic properties of the maniputhat
occurs in a singular configuration of that type. When the mecha
nismis in a singularity of type RO or 10 (Rl or 1), the outpir{
put) is undeterminate or restricted. In an lIM-type confaion
the instantaneous motion of the manipulator is undetertjma
matter whichn parameters are being controlled. In an RPM-type
singularity, the passive motion of the mechanism is undater
nate, which may create problems such as interference witlr ot
links and obstacles.

Moreover, as proved in [19], any singular configuration be-
longs to several of the six singularity types, but only tweohe
different combinations of singularity types, callsthgularity

classesare possible. These correspond to the cells marked with
“Y” in Table 1. Configurations belonging to the same class are

equivalent in terms of the various types of kinematic anticsta
degeneracy that characterize mechanism singularity, thése-
fore, desirable to identify each constituent singularityss in
order to obtain a complete description of the singularity 3e

see how such identification can be performed, we next recall a

method for computing the whole singularity set [21], andnthe

ISOLATION OF THE SINGULARITY SET

The method, which is based on an earlier approach for the
position analysis of multi-loop linkages [24], consistdiist for-
mulating the systems of equations in (2) in an appropriatg wa
and then using a numerical technique that exploits the quarti
lar structure of these systems to isolate the singularityatsthe
desired resolution.

Equation formulation

For manipulators with non-helical pairs, and departingrfro
the generalised coordinatgsproposed in [24], it is possible to
formulate both systems in (2) so that they adopt the form of a
polynomial system of quadratic equations, i.e. equationsres
only monomials of the forna, a2, or ab intervene, where and
b refer to any two of the variables. All variables in such sgste
will only take values within limited intervals, becauseéantal
bounds for all of theq variables can be readily obtained [24],
and equatiori € || = 1 limits the components df to the[—1, 1]
range. This allows the use of a particularly simple techaitp
compute the solution of the systems in (2) numerically. Fesee
of explanation, we will write any one of these systems as

F(y)=0 ®3)

hereafter, wherg is the vector of variables involved in the sys-
tem, andF (y) is a quadratic vector-valued function.

show how such method can be applied to classify the points of Numerical solution

the set into the various possible singularity classes.

10
10 10| 1l and
10 1] and| IIM | and| and| I
1l IIM| IIM| and
1M
1| RI Y
2 | RO Y
3 | RlandRO Y Y Y Y
4 | RPM Y Y
5 | RlandRPM Y Y Y
6 | ROandRPM Y Y
7 | RlandROand RPM Y Y Y Y Y

TABLE 1. The twenty-one singularity classes.

In order to solve (3), we start defining the changes of vari-
ablesp; = y? andby = yiyj for each quadratic and bilinear mono-
mial in (3), transforming the system into the expanded form

(4)

where A(x) = 0 is a collection of linear equations i and
I(x) = 0 is a collection of quadratic equations, each of which
adopts one of the two formg = xi2 or X = XiXj. The vector of
variablesx contains the previoug variables and the newly de-
fined onesp; andby. Note that all variables ix are bounded
within limited intervals, because thevariables are. Thus, from
the Cartesian product of such intervals, one can define aZ&ox
that initially bounds all solutions of the considered syste

We can now solve a system of the form of (4) by recur-
sively applying two operations on the initial bz, called box
shrinkingand boxsplitting. Using box shrinking, portions o
containing no solution are eliminated by narrowing sometof i
defining intervals. This process is repeated until eitherlibx
is reduced to an empty set, in which case it contains no soluti



FIGURE 1. From left to right: Viviani’s curve, solution of the system formed by @tipnsx? +y2 + 72 = 4a2 and(x— a)2 +y2 = a2, and three steps

of the progression of the numerical method when computing such.curve

or the box is “sufficiently” small, in which case it is considd
a solutionbox, or the box cannot be “significantly” reduced, in
which case it is bisected into two sub-boxes via box spittin
(which simply bisects its largest interval). To convergalicso-
lutions, the whole process is recursively applied to the sel+
boxes, until one obtains a collecti@of solution boxes whose
side lengths are below a given threshaid As an illustrative
example, the progression of the method is illustrated in Fig
The crucial operation in this scheme is box shrinking, which
is implemented as follows. Note first that the solutiondriglin
some sub-boxs. C % must lie in the linear variety defined by
A(X) = 0. Thus, we may shrinkg to the smallest possible box
bounding this variety insided.. The limits of the shrunk box
along, say, dimensior can be found by solving the two linear
programs

LP1: Minimizex;, subject to:A(Xx) = 0,X € %,
LP2: Maximizex;, subject to:A(X) = 0,X € ..

However, observe tha¥; can be further reduced, because the
solutions must also satisfy all equations= x,-2 andxy = xxj in

I (x) = 0. These equations can be taken into account by noting
that, if [vi, ui] denotes the interval aB. along dimensiom;, then:

1. The portion of the paraboig = x? lying inside % is bound
by the triangleA1A2A3, where A; and A, are the points
where the parabola intercepts the lings= v; andx = ui,
andAg; is the point where the tangent linesfatandA,; meet
(Fig. 2a).

. The portion of the hyperbolic paraboloi¢ = xiX; lying
inside 4. is bound by the tetrahedroB;B,BzB4, where
the pointsB;, ..., B4 are obtained by lifting the corners of
the rectanglefvi,u;] x [vj,u;j] vertically to the paraboloid
(Fig. 2b).

Thus, linear inequalities corresponding to these boundsbea
added to LP1 and LP2, which usually produces a much larger
reduction of4. or, if one of the linear programs is found unfea-
sible, its complete elimination.

The collectionB of all solution boxes, which is returned as
output upon termination, is said to formbax approximatiorof
the solution set of Eq. (4), because the boxeB farm a discrete
envelop of such set, whose accuracy can be adjusted thrbagh t
o parameter. Notice that the algorithm is complete, in thessen
that it will succeed in isolating all solution points of E4) @éccu-
rately, provided that a small-enough value éois used. Detailed
properties of the algorithm, including an analysis of itedete-
ness, correctness, and convergence order, are given in [24]
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FIGURE 2. Polytope bounds within bos..



CLASSIFICATION OF THE SINGULARITY SET . _ Singularity types
The union of the collection of boxes obtained for each sys- Testname  Propositions Test equations involved
tem in (2) gives a complete representation of the whole singu -
larity set of the manipulator. Its classification among siagty ®@=0
classes can then be sought by applying a hierarchy of sirgula m (i) Leép=0 RPM
ity tests on each box which yields sets of classes that caot I1€pl*=1
present inside such box. ®(q) =0
As it will be seen, the process is able to precisely classify T2 (vi) LTE —0 M
most of the singularities, and only exceptionally this i§jsat -
to sufficient numerical precision. In the latter cases, i bplit- I€c|*=1
ting does not have the necessary resolution, for some bbges t ®(q)=0
will remain a few singularity classes, for which the procedu Lofo =0
can neither confirm nor deny the presence of some of their con- _
figurations in the box. T3 () and (i) Lefp =0 Riand RPM
I€ol” = QEPHZ =1
Singularity Tests [£0] &0-0
The following propositions, proved in [19], give the condi- ®(q) =0
tions for the occurrence of the different singularity typefunc- L& =0
tion of the rank of matrixL and its submatricels;, Lo andLp: T4 (ii) and (iii) LpEp=0 RO and RPM
() ge{RI} < ranklo <rankLp+n, 1€, 2= |€0]2 = 1
(i) qe{RO} < rankL <rankLp+n, ! S
(i) qe {RPM} <= rankLy<N—n, (& 0] &0
(iv) ge{ll} < rankL <rankL, ®(q) =0
(v) ge{l0} < rankLo < rankL, LTE —0
(viy q€{lIM} <= rankL <N, , , !
(vii) ge {RI} orqe {RPM} <= qe {IO} or s (Wandv) LT§ =0 Iland M
qc {lIM} < Lois singular, I/ 11P = 11§17 =1
(vii) ge {RO} orqe {RPM} <= qe{ll}or £§TE =0
ge {lIM} < L, issingular o(q) —
" . ) Q=0
These propositions allow to systematically define systems N
of equations that can be used as tests to discard the occerren Lo'§0=0
of a class or particular singularity types inside a given l5éx T6 (v) and (vi) L'¢ =0 I0and IIM
by imposing the appropiate ran.k deficiency of the corresjmond 1€l = 1€ 12 =1
matrices. The basic tests are given in Table 2, and more exmpl ELTE —0
ones can be derived by joining the equations of two or mots tes o oL
of the table. ®(q) =0
The simplest tests, labeled T1 and T2, follow from proposi- T7 (vii) Loéo=0 1,10, RI, RO
tions (i) and (vi). Indeed, ak, is aN x (N —n) matrix, if T1 IEol2=1
contains no solutions for a given ba#%;, one can be sure that ®(q) -0
there are no RPM-type singular configurations in such box be-
cause the kernel df, does not contain any non-zero vector for T8 (vif) L& =0 1110, RI, RO
any configuration insides;, i.e. it is full rank everywhere. Thus, I1€]2=1
proposition (iii) is not satisfied. Equivalently, T2 allows dis- TABLE 2. Dimension of vectord o, &, and&, isN; &pisN—n.

card the occurrence of IIM-type singularities insig if it has
no solutions. Additionally, it is possible to discard anggilar-
ity corresponding to the (RPM, 1IM) class (row 4, column 4 of

Table 1) if the system resulting of combining the equatidriElo stand these tests take propositions (iv) and (vi) involved$,

and T2 has no solution. for instance. It can be seen that for a configuration to be of
Tests T3 to T6 have a similar structure; we impose the rank type Il and IIM, bothL,; andL have to be rank defficient with

deficiency of two matrices and that the vectors in the keraeds rank L, < rank L. Note also that any vector in the kernellof

different by making them orthogonal to each other. To under- is also in the kernel ok, ™. If T5 had solutions inside a ba%;,

5



there would be a configuration whekeloses rank by 1 at least
andL, by 2 at least. Thus, if T5 has no solutions we can be sure
that there are no singular configurations of type Il and [IM4n
Similar reasoning applies for tests T3, T4 and T6.

The last two systems of equations of Table 2, T7 and T8, can
be used to discard classes of singularities only if previgpss
have been already discarded. Note that this systems arartfe s
as the ones in Eq. (2), that encode the forward and inverse sin
gularities. In fact, if there are no RPM- or [IM-type singrtees
in a box, these test serve to discard types or classes ingplvi
RI or RO or involving 10 or Il, respectively. This results fro
propositions (vii) and (Vviii).

Following the same spirit, one can define tests for most of
the possible singularity classes in Table 1, by properlylmomg
the equations of the tests given in Table 2, in order to déstia
maximum possible number of singularity classes for a Bfx
as it is explained next.

The Process of Classification

The process of classification of the singularity locus cessi
in applying a sequence of singularity tests on each of thedox
the collectionB returned as solution of Eq. (2) by the numerical
method. In principle, using sufficient numerical precisieach
box contains at least one singular configuration that coeldriy
to any of the 21 possible singularity classes of Table 1. Bohe
box, the idea of the process is to discard as many classesas po
sible, until one ends up with only one class being possibla or
restricted set of classes that are or may be present insdmth

or a column may imply that other rows or columns are also not
possible. For instance, if row 5 or 6 is discarded, row 7 ig als
discarded automatically because it includes the previousb¢
nation of singularity types. Row 7 only needs to be testedtifib
rows 5 and 6 have not been discarded. In such case, the test wil
be formed by the combination of the equations in T3 and T4. The
same applies for columns 5-7 and tests T5 and T6. Only if the
RPM- or lIM-types have been discarded in the first step, then T
T8 and, eventually, the combination of T7 and T8 can be used to
discard the remaining rows or columns.

If necessary, the third step follows by testing particular
classes that have still not been discarded. To do so, combina
tions of the tests given in Table 2 must be used. The system of
equations to test the (RO, RPM, I, IIM) singularity clasewr
6, column 6 of Table 1) would be formed by the equations in T4
and T5, for instance. Or, the test for the occurrence of the (R
RO, RPM, 10, 11, lIM) class (row 7, column 7 of Table 1) would
be formed by the equations in T3 to T6.

It is important to notice that, no matter how small the reso-
lution o of the method is chosen, each box will always contain a
continuum of singular configurations, except for the casemf
lated singular configurations. Thus, the process will beblena
to precisely classify a given box when all singular confidiorss
inside such a box are not all in the same singularity class. In
rare cases, when a box contains configurations in at least fou
singularity types, the exact singularity class of the bomfigu-

Notice that all tests have been defined as systems of linear or rations cannot be determined. Instead, a set of possilgelsin

quadratic equations, and are thus solvable using the samernu
ical method described, taking as initial bounding box thacex
ranges given by the bo%; being examined. All tests have been
defined in a way that, if there is no box as solution of the syiste
the corresponding singularity types or classes can berdisda
The hierarchy of tests has three levels, going from the sim-
plest singularities to more complex ones (several typesived):

1. Test RPM- and IIM- type singularities.
2. Test combinations corresponding to rows or columns of Ta-
ble 1.

3. Test particular singularity classes.

Given the possible singularity classes and provided tivit 11
and RPM-type singularities are usually lower dimensiomds s
with respect to the whole singularity set, it is reasonablérst
test the occurrence of these singularity types using sysfEn
and T2. Indeed, if T1 or T2 contain no solution, the classes in
rows 4-7 or columns 4-7 of Table 1 can be directly discarded.

The second step is then attempting to discard the remaining

rows and columns of Table 1 using systems T3 to T8. If any of
the systems T3-T6 has no solution, the singularities in tneee
sponding row or column can not be possible. Discarding a row

6

ity classes is identified. Usually, such a box will contairegist
two different singularity classes. For example, it may bevimn
for a box that it contains singularities of types RI, RO, [,
and so it can be concluded that it contains either (a) corgigur
tions belonging to all four types or (b) a configuration inssa
(RI, 10) and another in (RO, II) or (c) configurations in alf¢le
classes. If there are no (RO, RI, 10, Il) configurations inltbg,
this can be confirmed with further splitting. As illustrateglthe
following example, for most of the boxes only the unique slis
intersects is determined unambiguously.

AN ILLUSTRATIVE EXAMPLE

To illustrate the process of the classification of the siagul
ity set, the 2-dof planar manipulator shown in Fig. 3 is usdue
inputs are the joint velocities @ andE, and the output is the



motion of pointG. The equation®(q) = O are written as

0= —x-+2cosfp + 3 cosh,

0= —y-+2sinfp + 3siné,

0= cosBx +cosbg —2cosbp — 1,

0 =sinBa + sinBg — 2sinBp,

0= 2cosfp + 3 cosbc + 2¢coshg — 3coshe — 1,
0= 2sinp + 3 sinbc + 2sinB — 3sinbE,

®)

whereba, 6g, 6c, Op, 6 andf; are the counterclockwise angles
of links AB, BC, CG, DC, EF, andGF, respectively, relative to
the ground, and, y are the coordinates of poi@ relative to a
fixed frame centered iD. The velocity equation of the manipu-
lator may be obtained, for instance, by differentiatingwh re-
spect to all variables, but it could also be obtained usieglist
loop equations, or by any other means. In order to achieve the
desired quadratic formulation for all systems in Eq. (2) anel
ble 2, the changes of variables= cos8; ands; = sinf; can be
applied for allt € {A,B,C,D,E,G}. Since the variables; and
s; represent the cosine and sine of a variable, the circle ieasat
¢+ = 1 are introduced in the systems for all angles.

The manipulator can be seen as made of a 4-bar manipulator
(loop ABCD) and a 5-bar manipulator (IodpCGFE) with one
link in common CD). As a whole, the manipulator has two de-
grees of freedom, so its configuration space is a surfacepead
may expect the singularity set to be made of curves or isblate
configurations. However, the link dimensions are chosemhab t
the 4-bar part of the manipulator has a one-dimensionalfset o
singular configurations (join® coincident withA, links AB and
BC can rotate around), while the other part can still move for
each of those configurations, with moving on a circle. This
gives raise to a two-dimensional subset of singularitisglmthe
whole singularity set, which is illustrated in Fig. 4a, pcdied
onto thex, y and6, variables. The green, cyan and purple curves

A

FIGURE 3. A 2-dof planar manipulator. The link dimensions are
AB=BC=DE=1,AD=CD=FG=2,CG=15andEF =3.

(@)

6a

-1

(b)

FIGURE 4. Complete singularity set projected onto the space of the
X, ¥y and B, variables (top), and onto the space of thandy variables
only (bottom). The configuration space is shown in blue. Green curves:
(RO, 1), red curves and cylinder-shaped red surface: (RI, 6@8nge
dots: (RI, 10), (RO-II) and (RI-RO-II-10), purple curves: (RD) and
(RI-RO-1I-I0), cyan curves: (RI, 10) and (RI, RO, 1IM), yellowots:

(RI, 10), (RI, RO, lIM) and (RI, RPM, 10, [IM).

are those configurations where the FIKP is undeterminat, an
the red curves, together with the cylinder-shaped red seyfa
where the IIKP is undeterminate. Altogether, around 128000
boxes obtained by solving Eqg. (2) at a small-enoughform

an envelope of the singularity set of the manipulator. Thtase

of the configuration space is also shown in blue, obtainewh fro
the computation of all solutions of (1) using the same nucadri
technique. For clarity, the projection onto theandy variables
only is also shown in Fig. 4b, where the two-dimensional stibs



Box Tests applied Singularity classes Example configuration

T1: E
T2, E
P, T7: E (RO, I |-
T8: NE
T7+78: E
T E T
T2: E
By, B T7: NE (RI, 10)]| -
T8: E
T7+T8: E
T1. E
) T2, E
P4 T7: NE
T8: NE (RI, RO, 10, Il)] —
T7+T8: NE
TL. E
, T2, E (RI, 10)
Zs T7: NE (RO, )
T8NE  [(FLROTL 0]
T7+T8: NE
T1: E
T2: NE
T6: E
B TS E (RO, 1)
T7: NE (RI, RO, II, 10)
TENE [(R1RO, M) -
T7+T8: NE
T2+T7+T8: NE
T1: NE (RO, Il)
T2: NE (RI, 10)
T6: NE (RI, RO, I, 10)
2, TS E (RI, RO, [IM)
T3:NE  (RI, RO, 10, IIM) i;
T4 E (II, 10, RPM)
T1+T2:NE (Rl II, 10, RPM)

T3+T6: NE | (RI, RPM, 10, IIM)| -
(RPM, 1IM)

TABLE 3. Some example boxes of the process of classification. Column “Silityutiasses” shows those classes that have not been discarded by
the sequence of tests (column “Tests applied”), and those actuallynpiesiele the box are framed. Last column shows an example of a oeeatiign
in the box belonging to the singularity class indicated by an arrow.



of singularities is projected to the orange circle.

During the whole process of classification, only 7 different
kinds of boxes are found. To exemplify the classificationyile
use an example box for each of these kinds, labeliado %
in Fig. 4. These can be defined as follows:

1. boxes where only the FIKP is undeterminate (green
curves).

ABy. boxes where only the IIKP is undeterminate &y #
{—m, i} (red curves).

A3. boxes where only the IIKP is undeterminate fy =
{—m, m} (red surface).

ZBa: boxes where both the FIKP and IIKP are undeterminate
and6p # {—m, i} (orange dots).

PBs. boxes where both the FIKP and IIKP are undeterminate
for 6p = {—m, r} andBa # {0, 7T, — 11} (purple curves).

PBe. boxes where both the FIKP and IIKP are undeterminate
for 6p = {—m, 1}, 6o = {0, 11, — 11} andy # 0 (cyan curves).
%7. boxes where both the FIKP and IIKP are undeterminate
for 6p = {—m, 1}, 64 = {0, 71, — 11} andy = O (yellow dots).

The result of the sequence of tests applied on these boxdsecan
seen in Table 3, where “E” and “NE” mean that the correspond-
ing test returns an empty or a non-empty collection of boxes,
respectively, and “T7+T8”, for instance, indicates that tom-
bination of the equations of T7 and T8 is used as test.

Most of the boxes correspond to the kinds.#f, %, or
A3, that get completely classified, and only in the intersectio
between singularity curves or between singularity curved a
the singularity surface, other classes of singularitigseap For
boxes of the kind%, to %#;, the process of classification leaves
several possible singularity classes inside the box, sthduin-
spection allows to discard some of them. In this example only
8 boxes correspond t#,, and they must contain configurations
belonging to the (RI, 10), (RO, Il) and (RI, RO, II, 10) classe
because no RPM- or lIM-types are present. In the caséspthe
purple curve is always on the red surface, so the (RO, lisdas
be discarded. Looking at the classes that are not discasdibd:b
tests in%e, it is straightforward that it must contain the class (R,
RO, IIM), and also (RI, 10), because it contains configunagion
the red surface only. Similarly as fo#s, the cyan curves are on
the red surface, so the rest of classes can be discardedaiSimi
reasonings can be applied to the boxes correspondirig;tto
see that they only contain the (RI, 10), (RI, RO, 1IM) and (RI,
RPM, 10, IIM) classes.

As shown, most of the boxes that form the envelope of the
singularity set of the manipulator get completely clasdif@nd
for those with several options, simple reasoning has aliouse
to achieve a complete classification.

CONCLUSIONS

This article has presented an approach to obtain a complete
description of the singularity set of any given non-redunaaa-
nipulator, including the identification and the precise poma-
tion of each constituent singularity class. This is spéciadeful
and relevant in the early stages of the design of the marigula
to identify the exact physical phenomena that occur at $amgu
configurations, but also to study the behaviour of the meshan
at special configurations. The approach, based on a recent nu
merical method using linear relaxations, consists in dppla
hierarchy of tests on the whole singularity set of the malaipu
tor, computed using the same numerical technique, whidbgie
sets of classes to which an identified singularity cannabrimgl
The procedure is able to completely classify most of thetsing
larities, and only in some particular cases it identifiesstrieted
list of possible singularity classes. Further visual irtdjps of
the singularity set, or building up new systems by combirtirey
ones presented in this paper, may allow to discard some of the
classes. For manipulators with more than 3 degrees of freedo
computation times may increase and visualization becoiiffes d
cult, as is the case with any method, but it is possible toidens
lower-dimensional sections of the configuration spacertauan-
vent this issue. The evaluation of the performance of thénaket
on spatial parallel manipulators will be part of our futureriu
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