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The workspace of a Stewart platform is a complex siparameters are held constant, leading to three-dimersiona
dimensional volume embedded in the Cartesian space derkspaces that are easier to obtain and represent. The
fined by six pose parameters. Because of its large dimerenstant-orientatiorworkspace, in particular, is clearly un-
sion and complex shape, this volume is difficult to computierstood, and fast geometric algorithms exist for comput-
and represent, and comprehension on its structure is beiimgy its boundary [10], even in the presence of joint limits
gained by studying its three-dimensional slices. While suin the passive joints, or potential link-link interferesdé 1].
cessful methods have been given to determine the constadmtierval analysis methods have also been given to compute
orientation slice, the computation and appropriate viszal the interior of such workspace [12]. Th®nstant-position
tion of the constant-position slice (also known as the oeriemvorkspace, also known as tleeientation workspace [13],
tation workspace) has proved to be a challenging task. Thigs also been studied, but its computation and visualizatio
paper presents a unified method for computing both of suttirn out to be more problematic, due to the complexity of
slices, and any other ones defined by fixing three pose pihe intervening equations, and to the difficulty of représen
rameters, on general Stewart platforms possibly involvingg orientations in an intuitive way. Previous methods ei-
mechanical limits on the active and passive joints. Advather assume one of the orientation angles held fixed [14, 15],
tages over existing methods include, in addition to theiprexthus producing two-dimensional sections of the workspace
ous, the ability to determine all connected componentseof thnly, or let the three angles vary [13, 16—19], but all meth-
workspace, and any motion barriers present in its interior. ods rely on some sort of discretization, which leads to in-

complete or less accurate output in some situations. The
most recent of such methods is fast, and provides appeal-
1 Introduction ing visualizations of the orientation workspace [19], bg-m

Due to their advantages in terms of dynamic propertieghanical limits in the passive joints are neglected, sottigt
load-carrying capacity, high accuracy, and stiffnessaifelr computed workspace is, a}ctyall_y, an overestimation of the
manipulators are widely used as flight simulators [1], higal workspace. Another limitation of this method, as well
precision positioning devices [2, 3], vibration isolat¢43, 2S of those in [16, 18], is that it c_mly allows obtaining the
machining centers [5, 6], or surgical robots [7]. The assefflorkspace component that is achievable from a known con-
bly constraints imposed by their kinematic design, howevédfguration, which provides only a partial picture of the waol
substantially reduce the set of poses that such manipslatBtotion range of the manipulator.
can attain, leading to highly-constrained workspaces istmo  Despite the literature on the topic is rich, three impor-
of the cases. The availability of proper tools to accuratetgnt requirements are not fully met by previous approaches.
compute and represent such workspaces is thus of utmpeatt of all, a method should ideally beomplete i.e., it
importance, not only to assist the robot designer during tk@ould be able to obtain all connected components of the
conception of the platform, but also to be able to implememtorkspace, rather than just one achievable from a given con-
trajectory planners more efficiently [8], once an adequate dfiguration. Such ability is useful to the robot designer, to
sign has been chosen for a particular application. choose the appropriate component on which to assemble the

The workspace of the Stewart platform, in particular, ismanipulator, according to the operational volume desived,
hard to compute and visualize [9]. Its large dimension artd motion restrictions imposed by the application environ-
complex shape, which may encompass several conneciteent. Moreover, the method should aecurate not only
components, difficult any attempt of computing it exhaugproviding a precise representation of the workspace volume
tively. In many situations, fortunately, the platform ath but also of any motion barriers interior to the volume. Such
operates with a fixed orientation or rotates about a fixdshrriers constitute true obstacles within the workspand, a
point, so that it can be assumed that three of the six posmy be encountered on Stewart platforms of special geom-



etry, as shown in the paper. Finally, the method should be
asgeneralas possible, allowing to determine the constant-
orientation and constant-position workspaces, and argroth
of the twenty workspaces that can be defined by fixing three
of the six pose parameters of the platform, in order to under-
stand the motion capability of the platform under any of the
corresponding working modes.

The continuation approach in [16, 20] and references
therein is perhaps the closest to satisfy the previous requi
ments simultaneously. This approach uses ray-shootihg tec
nigues in conjunction with continuation methods to traek th
configurations for which the moving platform loses some of
its instantaneous degrees of freedom, which yield the bound
ary of the workspace and its interior barriers when properly
analyzed. However, while this approach is general and accu-
rate in favorable cases, it loses boundary segments inadever
situations, as mentioned in [21, 22], and therefore it is not
complete.

A method satisfying the three previous requirements is
given in this paper, valid for Stewart platforms of arbiyrar
geometry, involving mechanical limits both on the active an
passive joints. The approach is similar to the one givé:ri\g' 1. A Stewart platform. The base and platform joints are meant
in [22] for general structure manipulators, but specifésti t© P universal and spherical, respectively.
of the Stewart platform are herein exploited to achieve a
mpch faster c;omputatlon of the Workspace.. The method or R andp are allowed, however, because the mechanical
tails formulating a system of equations defining the bound-

ary of the workspace (Section 2), and then using an iter:';xmlts present in the active and passive joints constrai th

tive procedure based on linear relaxations [23, 24] to ’(eolap os&b[e poses of the plgtform. We next d_efme the equations
modelling these constraints, so as to obtain a system of equa

. . . ) . tions describing the workspac®’ of the manipulator (Sec-

tion (Section 3). It is worth noting that while no consen:, . . . .
: .tion 2.1). This system is then extended with an additional

sus has been reached as to how should platform orientations "7 . : .

. : C constraint, in order to select the points that lie on the loeun

be parameterized in order to yield intuitive Workspaceeeprar of W only (Section 2.2)

sentations, the method we propose here does not adopt arX/ y e

particular choice on this respect, and can obtain the @rient

tion workspace under any possible parameterization, diclu.1  Workspace Equations

ing those based on conventional Euler angles [19], tilt-and | et a; andb; denote the position vectors of the anchor
torsion angles [13, 25], or Euler-Rodrigues parameterk [1hointsA; andB; of theith leg, respectively expressed in the

The approach has been implemented and validated sucGgg&d and moving reference frames. The squared leg lengths
fully on several test cases (Section 4) and possible appligan then be written as

tions and extensions have been identified (Section 5).

I? = lail?, (1)
2 Formulation
A Stewart platform consists of a body (the platform}or i—1,...,6, whereq; — p+ Rb; — a is a vector aligned

linked to the ground (the base) by means of six legs, Whefin theith leg, expressed in the fixed reference frame.
each leg is a universal-prismatic-spherical chain (FigThe Although the entries oR are here assumed to be vari-

most general version of such platform follows the so-callegbl : ; :
. : i es, they are not independent, since they must define an
6-6 UPS design, where the leg anchor points are all dlf'feé- y P y

joints are active, i.e. actuated, allowing to control theds- ropriate dot- and cross-product equations on the columns

grees of.freedom of the platform, and the remaining join R, but more intuitive representations of the orientation are
are pLi?S(.I)\;(eY ZandPX'Y'Z' be fixed and movin referenceobtained when three-parameter expressions:fare intro-
9 duced. For ease of comparison with [19], we will here adopt

frames, respectively attached to the base and the plath{Ir'ré parameterization provided by rofi)( pitch @), and yaw
(Fig. 1). Any pose of the platform can be uniquely repre(w) angles, for which
sented by a X 3 rotation matrixR that provides the orien- ’

tation of PX'Y’Z’ relative toOXY Z and the position vector
p=[xY,Z" of point P in the fixed frame. Not all values R =Rz(Y)Ry(B)Rx(¢),



or, in columnwise form,

[r1x] [cosBcosyp

riy | = | cosBsinyg |, (2)
L M1z ] | sin@
[r2x] [ singsin®cosy — cospsiny |

roy | = | singsin@siny + cospcosy | , )
[rez| | singcoso |
[r3x| [ cospsinBcosy + singsiny |

ray | = | cospsin@siny — singcosy | , 4)
| 13z i cospcoso

but the presented method is applicable to other paramateriz
tions as well, including those based on tilt-and-torsiogles
or Euler-Rodrigues parameters.

To see the constraints introduced by the mechanical lim-
its on all joints, note first that the prismatic joints usyall
have a range of actuation that force the lengjths take val-
ues within some intervalg™" I, These constraints can
be modelled as equalities by defining = (1M |Min) /2
andh; = (IMa& M) /2 "and imposing

(i —m)2+d? =h?, (5)

fori=1,...,6, where thal; are newly-defined auxiliary vari- Fig. 3. Elements of a passive joint-limit constraint.

ables. Observe that, in this way, the value$ afre certainly
constrained to the desired interval, becamsandh; are the These inequalities can be transformed into equalities by in
mid-point and half-range of the interval, and Eq. (5) definagoducing a new variablg for each leg, and writing
a circle of centem; and radiusy; (Fig. 2).

The passive joints on the base and on the platform also
have mechanical limits constraining the allowable posgio
of each leg. To describe these constraintsjdebe a unit ] ) o )
vector given in the fixed frame, aligned with the fixed axis dNOte thatjaqi > li cosa; is satisfied if, and only if, Eq. (6)
the universal joint a#\ (Fig. 3). Following [13], we assume !s_satlsﬂed for some value _tnf Similarly, _for each passive
that the mechanical design of such joint restricts the maxfint on the platform we define a new varialgieand impose
mum allowed misalignment betwegq and theg; vector to
be of anglen;, which means that, for the platform pose to be jB (RTai) —licosBi = g2, (7)
valid, it must be

jaQi —licosaj = t?. (6)

wherejg, is a unit vector along the axis of symmetry of the
jagi > licosu, i=1,...,6. joint atB;, expressed in the moving frame, gfds the max-
imum allowed misalignment in this joint.
In conclusion, the workspac#®’ of the platform is the
dj set of all possible tuples

(X,Y,2,9,0,p)

that satisfy Eqgs. (1)-(7) for some value of

(Ily"'alﬁarl,Xa~-'7r3727d17"'ad67tl7-"atﬁaglr"vgﬁ)'

Since Eqgs. (1)-(7) form a system of 33 equations in 39 vari-
ables, W will be a six-dimensional set in general, which is

in agreement with the fact that the Stewart platform has six
Fig. 2. Circle constraint of an active-joint limit. degrees of freedom.




2.2 Boundary equations ducing the changes of variables
We could now try to findi by solving Egs. (1)-(7) di-

rectly, but it is preferable to compute the boundary7ef

instead, because such boundary is a more informative set of

lower dimension. A point lies on the boundary®f when-

ever any of the active or passive joints reaches a mechanical

limit of the joint. for T € {@,8,}. Since the new variables ands; represent
In order to select only the points on the boundary, not&e cosine and sine af they must obey the circle equations

that theith leg reaches its maximal or minimal length, or a

limit angle on its passive joints, whenewr t;, or g; vanish 2

for somei. Thus, a solution to Egs. (1)-(7) corresponds to a & +3% =1 ©)

boundary point if, and only if,

Cr = COST,
S = sint,

which hence need to be introduced into the system, for

6 Te {(p7 97 LIJ}
I_!ditigi —0. (8) After applying sucr_l changes, note t_hat the system
i= formed by Egs. (1)-(9) is already polynomial. Letbe a

vector containing all of the variables of this system, arid le

yi andy; refer to any two of the components yf A second
In summary, the boundary of¥ is formed by the change of variables

points(x, Y,z @, 6, ) that satisfy Egs. (1)-(8) for some value

of the remaining variables. Such points will form a five-

dimensional set in general, because just one equation and P =YF, (10)
no extra variable have been added to Egs. (1)-(7). Despite bk = yiy;j, (1))
the boundary of#/ has one dimension less thaw, it is

still hard to compute it exhaustively. However, by setting . 5 o o
three pose variables to a constant value, one can obtain tkontroduced for alliy; andy” monomials intervening in the

dimensional slices of the boundary whose computation is £9Uations, in order to allow transforming the system iné th
fordable, as shown below, and yet provide useful represéiPanded form

tations. Note that, while previous methods concentrate on

the constant-orientation or the constant-position sliesy A(X) =0
other slice defined by fixing any three of the six pose pa- Q(x) = 0}’
rameters should also be available to the designer. In our

case, such slices are simply characterized by the system of . ) ) ) ] o
equations formed by Egs. (1)-(8) with the correspondin‘dh?rex is annx—dlmenspnal vector including the origingl
three pose variables held constant. The case of the plandiables and the newly-introducegd andby onesA(x) =0
mode workspace, where the platform moves on a plane dfd® collection of linear equations x andQ(x) = 0 is a

is only free to rotate about an axis orthogonal to the plangf!lection of quadratic equations, each of which adopts one
as well as the constant-orientation and the constantiposit®f the two forms

workspaces, will be given later as examples of such slices.

(12)

X=X,
Xk = XiXj,
3 Boundary isolation
A numerical method able to solve the system of €qUhich correspond to the changes of variable in Egs. (10)

tions just described is next provided, adapting the linear fand (11), respectively. Note that in some cases, as in Eq. (8)

Iaxation parad_igm proposec_zl in [.23’ 24]. The ?‘proaCh ®the change relative to Eq. (11) needs to be applied reclysive
tails algebraizing the equations into a quadratic form (Seﬁ1 order to arrive at the form assumed in Eq. (12)
tion 3.1), then computing an initial box that bounds the oca ' '

tion of all solutions (Section 3.2), and finally using a branc
and-prune method exploiting the quadratic form of the equd-2 Initial bounding box
tions, to iteratively isolate all boundary points at theidks We next show that each variabdeof x can only take val-
resolution (Section 3.3). ues within a limited interval, so that from the Cartesiandsro
uct of all such intervals one can definergrdimensional box
B C R™ that initially bounds all solutions of Eq. (12).
3.1 Equation algebraization Since the feasibility intervals for tha, andby variables
In order to algebraize the system of equations, two di€an be readily obtained by propagating the intervals of the
ferent changes of variables need to be introduced. Fitst, plvariables through Egs. (10) and (11), we only need to see
trigonometric terms of Egs. (2)-(4) are eliminated by introhow to define proper intervals for thevariables. To this



end, note that the lengths of the legs are directly bound k&{) X
their maximal and minimal values, i.e., Ao

min |ma
li € [ll 7|i 5

fori=1,...,6. Moreover, since the columns Bf are or-
thonormal vectors, the entries Bfmust satisfy AL
Az

Fix Ty Tjz€ (—1,1], Vi Ui

for j =1,2,3. Similarly, it must be

¢, S € [—1,1], b)

for 1 € {,8, Y}, since these variables refer to the cosine and
sine oft.

For the variablesd; we note that Eq. (5) simply con-
strains such variables to take valuegrh;,h;]. Similarly,
Egs. (6) and (7) constrain the left-hand side of the equa-
tion and thet; andg; variables to take values on a parabola
of vertical axis with its minimum point at the origin. Note
that, in any case, the maximum value that the left-hand
side of these equations can achieve/18*— ["®*cosa; or

|"X— |M&cosp;, respectively. In sum, we obtain the follow- X
ing bounds foi =1,...,6: Fig. 4. Polytope bounds within box Bc.
di € [—hi,hi], eliminated by narrowing some of its defining intervals. This
t e [_ I MaXCogy; | /Iax— |imaxcosai} : process is repeate_d until eﬁherthe bo.x is reduced to.aryempt
set, in which case it contains no solution, or the box is “suffi
ciently” small, in which case it is consideredalutionbox
i € | —4/IM&X— M3Xcogf; \/I-max— [M&Xcosf; | . ’ e ) o
g < { \/' : i/ ! SB'} or the box cannot be “significantly” reduced, in which case

it is bisected into two sub-boxes via box splitting (which

Finally, it only remains to find the ranges for they, and simply bisects its largest ipterval). .To converge to all so-
zcomponents op. While tight bounds could be computed tdutions, the whole process is recursively applied to the new
accurately confine these variables, this is not necessary §Hb-Doxes, until one obtains a collection of solution boxes
der the presented approach. The method is not significanfifi0se side lengths are below a given thresfwold -~~~
sensitive to the volume of the initial box because parts with The crucial operation in this scheme is box shrinking,
no solution are rapidly discarded by the numerical procedupvhich isimplemented as follows. Note first that the solusion
Thus, we can use any easy-to-compute upper bound to est&$ing in some sub-boxg; C B must lie in the linear variety
lish the ranges of these position variables. Here, we shall (f€fined byA(x) = 0. Thus, we may shrini; to the small-
the fact that, for any valid configuration of the platformjmgo €St possible box bounding this variety insiig The limits
P will always lie inside a sphere of radilf®+-|b;| centered ©Of the shrunk box along, say, dimensigncan be found by
atA, which is valid for any leg = 1,...,6. By choosing any S°lving the two linear programs
leg, for instance leg one, we can take the ranges of the small-

est box containing the sphere, that is LP1: Minimizex;,
subject to:A(x) = 0,x € B,

X € [ayx— 17— |baf, 8 x + 17"+ [y ], LP2: Maximizex;,
y € [ary — 11"~ |baf,azy + 17"+ [ba ]], subject to:A(x) = 0,x € B.

z€ [agz— 17"~ [baf, a1z + 17"+ [ba].

However, observe th&. can be further reduced, because the
3.3 Numerical solution solutions must also satisfy all equatiogs= xi2 andxg = XiX;
The algorithm for solving Eqg. (12) recursively appliesn Q(x) = 0. These equations can be taken into account by
two operations orB: box shrinkingand boxsplitting. Us- noting that, if[v;, u;] denotes the interval @ along dimen-
ing box shrinking, portions o8 containing no solution are sionx;, then:



Table 1. Stewart platform parameters.

1. The portion of the parabobg = xi2 lying inside B; is

bound by the trianglé;A,As, whereA; andA; are the i 1 2 3 4 S 6
points where the parabola intercepts the lixes v; and aix 0 0 07598 07598 —0.7598 —0.7598
X = U, andAg is the point where the tangent linesAat aiy 0 0 13161 13161 13161 13161
andA, meet (Fig. 4a). I

2. The portion of the hyperbolic paraboloi = xx; ly- ?—S &z 0 0 0 0 0 0
ing inside B. is bound by the tetrahedroB;B,B3B4, & bix —04559 04559 04599 0 0 —0.4559
where the pointd,,...,B, are obtained by lifting the biy —0.2632 —0.2632 —0.2632 05264 05264 —0.2632
corners of the rectangle;, u;] x [vj,u;] vertically to the b, 0 0 0 0 0 0

paraboloid (Fig. 4b).
aix 08165 —0.4082 —0.4082 08165 —0.4082 —0.4082

Thus, linear inequalities corresponding to these bounds ca

: | ay 0 07071 —-0.7071 0 07071 —0.7071

be added to the previous linear programs LP1 and LP3

which usually produces a much larger reductiorBgfor, if éji iz 0 0 0 0 0 0

one of the linear programs is found unfeasible, its completé bix 0 0 0 08165 —0.4082 —0.4082

elimination. by 0 0 0 0 07071 —0.7071
As it turns out, the previous algorithm explores a binary 0 0 0 05774 05774 05774

tree of boxes whose internal nodes correspond to boxes that 2
have been split at some time, and whose leaves are either so-
lution or empty boxes. The collectidhof all solution boxes,

which is returned as output upon termination, is said to form ~_ 3m
abox approximatiorof the solution set of Eq. (12), because
the boxes irB form a discrete envelope of such set, whose ac-
curacy can be adjusted through th@arameter. Notice that
the algorithm is complete, in the sense that it will succeed i
isolating all solution points of Eq. (12) accurately, pibsi
that a small-enough value faris used. Detailed properties
of the algorithm, including an analysis of its completeness
correctness, and convergence order, are given in [24].

4 |llustrative examples

We next illustrate the performance of the method by
computing the boundaries of several workspaces of the Stew
art platform. To emphasize the generality of the method,
we first obtain the boundaries corresponding to the constanmt
orientation, constant-position and planar-mode workspac”
of a standard platform. We then analyze a special platform —% _3r ®
to show that the method performs well on situations that hin-
der the application of previous methods. The method is able ) L

. . F.|rg';. 5. Boundaries of the constant-position workspace of the stan-

to completely determine the boundaries of the workspace i _ _ T
all situations. dard platform, without taking passive joint limits into account.

The geometric parameters of the analyzed platforms are

indicated in Table 1, and the ranges foare assumed to be 14 see that such limits really reduce the workspace, we have
(1.2, 1_.8] for all legs. All results reported have been obtainegympyted the workspace twice: first neglecting the limits
by using a parallelized version of the method, implementeg, e passive joints, and then taking them into account.

in C using previous software libraries developed in [23, 24} 5 shows the obtained results for the roll-pitch-yaw an-

and executed on a grid computer with four PC units equippe s, assuming = [07% va, g]T as in [19]. As it can be
with two Intel Quadcore Xeon E5310 processors and 4 Gb , ;

. . Seen, the workspace contains three different connected com
RAM each one. Table 2 provides, for each experiment, the

amount of CPU time required to solve ig)and the number ponents, while in [19] the authors are only able to describe
of solution boxes retumedy) usinga — 0.1 the one accessible from the origin (the lower-right compo-

nent in Fig. 5). Detecting all connected components is reces

sary though, to let the designer choose the most appropriate

4.1 A standard platform assembly mode for the platform, depending on the specific
The standard platform analyzed here corresponds to tlask to be performed.

one studied in [19], where the authors compute the constant- By taking into account the limit angles; = 3j = 50°

position workspace obtained by fixiqpgto a constant value, on all passive joints, some of the components in Fig. 5 are

but neglecting the mechanical limits on the passive jointao longer accessible, and the workspace reduces to just one
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Fig. 6. Only the lower-right component in Fig. 5 (left) is partially achievable after taking passive-joint limits into account (right).

Fig. 7. Boundaries of the constant-orientation workspace of the standard platform for Z > O.

connected component that corresponds to the one arounddhe- 3; = 47.16°. As before, the enclosed volume is smaller
origin in Fig. 5. For comparison, Fig. 6 shows such compan the second case, meaning that the attainable positions of
nent before and after the consideration of passive-jainit-l the platform are reduced because some of the passive joints
constraints. achieve their mechanical limits. It is worth adding, also,
Instead of fixingp, we can fix the orientation of the plat- that in both cases thg workspace has an add?tional connected
form, and hence obtain the constant-orientation Workspa(?é)mponent symmetric to the one shown, which correspoqu
Settingp— 6 — Y — 0, which is equivalent to letting — I3, f[o the assembly mode of the platform where P sweeps a sim-
we obtain the workspace shown in Fig. 7. The figurléar volume forz < 0.
compares the resulting workspaces when taking into ac- In general, previous methods in the literature only com-
count only active-joint-limit constraints (left) or acivand pute discretized versions of the constant-position or the
passive-joint-limit constraints simultaneously (rightyith constant-orientation slices of the complete six-dimemaio



Fig. 9. A 3-UPS/S platform. (Figure adapted from [25].)

in Fig. 10, and this set is impossible to obtain by previous
numerical methods. The method in [16], for example, would
proceed by intersecting the boundaries through planes, and
then computing the portion of the boundaries lying in such
planes using randomized ray-shooting techniques combined
with numerical path-following methods. However, note that
the planes would only contain isolated points in this case,
which would almost never be hit by rays shot in random
directions. Also, the method in [19] would perform a dis-
cretization on angl® and then on angle in order to find

the boundary points corresponding to such angles. Never-
theless, the portion of a slice lying on a const@ndlane is

Fig. 8. Boundaries of the planar-mode workspace of the standard  again formed by isolated points, and a discretization omeang
platform before and after the consideration of passive-joint limits. ¢@would almost never encounter such points. So far, actually,
slices of the boundary curves in Fig. 10 could only be ob-

workspace, i.e., those shown so far in Figs. 5-7. But tiémed by analytical methods tailored to such platformg,[25

method herein described can also be used to derive any o %(r:ause other methods based on discretization exhibi simi
: . ) Y O yrawbacks [13,15,17]. The presented technique, on the
slice. As an example, Fig. 8 presents the slices obtained : I .
. 5 contrary, is robust to such situations. The results shown in
when fixingz= 3 and@ = 6 = 0, before and after the con-

sideration of passive joint limits with; = 3 = 41.41°. Note Fig. 10 were obtained by solving the same equations con-

that in this case the platform is equivalent to a planar Ossli_dered for the standard platform, by changing the platform
L . b q 5 b b parameters only. As noted from the results, the workspace of
tioning device, wher® moves on the = 3 plane, and only

rotation about th@' axis is allowed this manipulator is the whole range of the .roII-_pitch—yaw an
' gles, but the shown curves represent motion impediments to
be avoided by the platform. In other words, the manipulator
4.2 A special platform will be able to reach any possible orientation, but it will be
We next show results on computing the constantmable to traversacrossthe curves.
position workspace of a special platform that yields irtteri
barriers in such workspace. Its geometric parameters are
shown in Table 1 and correspond to a design where thrée Conclusions
of the legs are anchored at a same pé&iran the platform, This paper has introduced a new approach for computing
with the base joints coincident in pairs. This design matphree-dimensional slices of the workspace on Stewart plat-
seem difficult to construct, but B is the point we keep fixed forms of arbitrary geometry. A distinguishing feature of th
when computing the constant-position workspace, then thpproach is that it allows, using a single method, the obten-
platform is equivalent to the 3-UPS/S manipulator shown ition of any possible slice of the workspace, while previous
Fig. 9, which allows orientational capability only, and is i approaches mostly concentrate on particular slices, fike t
fact kinematically equivalent to thigile Eyeplatform [25]. constant-position or the constant-orientation slice.alet,fa
While on general platforms the constant-positiototal of twenty slices can be obtained by fixing three pose
workspace has a two-dimensional boundary, such boundagrameters, and computing any of them might be necessary
degenerates into a one-dimensional set in this case, asishaepending on the specific task to be performed with the plat-
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Fig. 10. Degenerate boundaries of the constant-position workspace
of the special platform.

Table 2. Performance dataat 0 = 0.1.

Platform Workspace Joint limits Ng ts (sec)
» Active 6526 66
Const. position
Active and passive 3196 69
) ) Active 1306 4
Standard Const. orientation
Active and passive 1621 21
Active 1849 6
Planar mode
Active and passive 1391 14
Special Const. position Active 8448 252

workspace in short times [8]. While fast in favorable situa-
tions, current planners draw samples from conservative es-
timates of the workspace, which makes them less efficient
on highly-constrained situations. The performance of such
planners would notably increase if samples were drawn from
accurate representations like those provided by the peabos
method.

Finally, it is worth noting that, as shown in [27, 28], a
similar approach can be applied to also compute the forward
singularities contained in the workspace of the platformnad a
that the presented method also shows some potential of be-
ing able to cope with leg-leg collision constraints. Thedat
constraints could in principle be formulated in the form re-
quired by the numerical method, but further work needs to be
done in order to achieve a mild formulation involving as few
equations and variables as possible, leading to an acdeptab
computational burden.
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