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The workspace of a Stewart platform is a complex six-
dimensional volume embedded in the Cartesian space de-
fined by six pose parameters. Because of its large dimen-
sion and complex shape, this volume is difficult to compute
and represent, and comprehension on its structure is being
gained by studying its three-dimensional slices. While suc-
cessful methods have been given to determine the constant-
orientation slice, the computation and appropriate visualiza-
tion of the constant-position slice (also known as the orien-
tation workspace) has proved to be a challenging task. This
paper presents a unified method for computing both of such
slices, and any other ones defined by fixing three pose pa-
rameters, on general Stewart platforms possibly involving
mechanical limits on the active and passive joints. Advan-
tages over existing methods include, in addition to the previ-
ous, the ability to determine all connected components of the
workspace, and any motion barriers present in its interior.

1 Introduction
Due to their advantages in terms of dynamic properties,

load-carrying capacity, high accuracy, and stiffness, parallel
manipulators are widely used as flight simulators [1], high-
precision positioning devices [2, 3], vibration isolators[4],
machining centers [5, 6], or surgical robots [7]. The assem-
bly constraints imposed by their kinematic design, however,
substantially reduce the set of poses that such manipulators
can attain, leading to highly-constrained workspaces in most
of the cases. The availability of proper tools to accurately
compute and represent such workspaces is thus of utmost
importance, not only to assist the robot designer during the
conception of the platform, but also to be able to implement
trajectory planners more efficiently [8], once an adequate de-
sign has been chosen for a particular application.

The workspace of the Stewart platform, in particular, is
hard to compute and visualize [9]. Its large dimension and
complex shape, which may encompass several connected
components, difficult any attempt of computing it exhaus-
tively. In many situations, fortunately, the platform either
operates with a fixed orientation or rotates about a fixed
point, so that it can be assumed that three of the six pose

parameters are held constant, leading to three-dimensional
workspaces that are easier to obtain and represent. The
constant-orientationworkspace, in particular, is clearly un-
derstood, and fast geometric algorithms exist for comput-
ing its boundary [10], even in the presence of joint limits
in the passive joints, or potential link-link interferences [11].
Interval analysis methods have also been given to compute
the interior of such workspace [12]. Theconstant-position
workspace, also known as theorientation workspace [13],
has also been studied, but its computation and visualization
turn out to be more problematic, due to the complexity of
the intervening equations, and to the difficulty of represent-
ing orientations in an intuitive way. Previous methods ei-
ther assume one of the orientation angles held fixed [14,15],
thus producing two-dimensional sections of the workspace
only, or let the three angles vary [13, 16–19], but all meth-
ods rely on some sort of discretization, which leads to in-
complete or less accurate output in some situations. The
most recent of such methods is fast, and provides appeal-
ing visualizations of the orientation workspace [19], but me-
chanical limits in the passive joints are neglected, so thatthe
computed workspace is, actually, an overestimation of the
real workspace. Another limitation of this method, as well
as of those in [16, 18], is that it only allows obtaining the
workspace component that is achievable from a known con-
figuration, which provides only a partial picture of the whole
motion range of the manipulator.

Despite the literature on the topic is rich, three impor-
tant requirements are not fully met by previous approaches.
First of all, a method should ideally becomplete, i.e., it
should be able to obtain all connected components of the
workspace, rather than just one achievable from a given con-
figuration. Such ability is useful to the robot designer, to
choose the appropriate component on which to assemble the
manipulator, according to the operational volume desired,or
to motion restrictions imposed by the application environ-
ment. Moreover, the method should beaccurate, not only
providing a precise representation of the workspace volume,
but also of any motion barriers interior to the volume. Such
barriers constitute true obstacles within the workspace, and
may be encountered on Stewart platforms of special geom-



etry, as shown in the paper. Finally, the method should be
asgeneralas possible, allowing to determine the constant-
orientation and constant-position workspaces, and any other
of the twenty workspaces that can be defined by fixing three
of the six pose parameters of the platform, in order to under-
stand the motion capability of the platform under any of the
corresponding working modes.

The continuation approach in [16, 20] and references
therein is perhaps the closest to satisfy the previous require-
ments simultaneously. This approach uses ray-shooting tech-
niques in conjunction with continuation methods to track the
configurations for which the moving platform loses some of
its instantaneous degrees of freedom, which yield the bound-
ary of the workspace and its interior barriers when properly
analyzed. However, while this approach is general and accu-
rate in favorable cases, it loses boundary segments in several
situations, as mentioned in [21, 22], and therefore it is not
complete.

A method satisfying the three previous requirements is
given in this paper, valid for Stewart platforms of arbitrary
geometry, involving mechanical limits both on the active and
passive joints. The approach is similar to the one given
in [22] for general structure manipulators, but specificities
of the Stewart platform are herein exploited to achieve a
much faster computation of the workspace. The method en-
tails formulating a system of equations defining the bound-
ary of the workspace (Section 2), and then using an itera-
tive procedure based on linear relaxations [23, 24] to isolate
slices of the boundary exhaustively at the required resolu-
tion (Section 3). It is worth noting that while no consen-
sus has been reached as to how should platform orientations
be parameterized in order to yield intuitive workspace repre-
sentations, the method we propose here does not adopt any
particular choice on this respect, and can obtain the orienta-
tion workspace under any possible parameterization, includ-
ing those based on conventional Euler angles [19], tilt-and-
torsion angles [13, 25], or Euler-Rodrigues parameters [17].
The approach has been implemented and validated succes-
fully on several test cases (Section 4) and possible applica-
tions and extensions have been identified (Section 5).

2 Formulation
A Stewart platform consists of a body (the platform)

linked to the ground (the base) by means of six legs, where
each leg is a universal-prismatic-spherical chain (Fig. 1). The
most general version of such platform follows the so-called
6-6 UPS design, where the leg anchor points are all differ-
ent, though not necessarily coplanar [26]. The six prismatic
joints are active, i.e. actuated, allowing to control the six de-
grees of freedom of the platform, and the remaining joints
are passive.

Let OXYZandPX′Y′Z′ be fixed and moving reference
frames, respectively attached to the base and the platform
(Fig. 1). Any pose of the platform can be uniquely repre-
sented by a 3×3 rotation matrixR that provides the orien-
tation ofPX′Y′Z′ relative toOXYZ, and the position vector
p = [x,y,z]T of point P in the fixed frame. Not all values
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Fig. 1. A Stewart platform. The base and platform joints are meant

to be universal and spherical, respectively.

for R andp are allowed, however, because the mechanical
limits present in the active and passive joints constrain the
possible poses of the platform. We next define the equations
modelling these constraints, so as to obtain a system of equa-
tions describing the workspaceW of the manipulator (Sec-
tion 2.1). This system is then extended with an additional
constraint, in order to select the points that lie on the bound-
ary ofW only (Section 2.2).

2.1 Workspace Equations
Let ai andbi denote the position vectors of the anchor

pointsAi andBi of the ith leg, respectively expressed in the
fixed and moving reference frames. The squared leg lengths
can then be written as

l2
i = |qi |2, (1)

for i = 1, . . . ,6, whereqi = p+Rbi − ai is a vector aligned
with the ith leg, expressed in the fixed reference frame.

Although the entries ofR are here assumed to be vari-
ables, they are not independent, since they must define an
orthogonal matrix of positive determinant. Such a constraint
can be defined in a variety of ways, e.g. by establishing ap-
propriate dot- and cross-product equations on the columns
of R, but more intuitive representations of the orientation are
obtained when three-parameter expressions forR are intro-
duced. For ease of comparison with [19], we will here adopt
the parameterization provided by roll (φ), pitch (θ), and yaw
(ψ) angles, for which

R = RZ(ψ)RY(θ)RX(φ),



or, in columnwise form,
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

 , (4)

but the presented method is applicable to other parameteriza-
tions as well, including those based on tilt-and-torsion angles
or Euler-Rodrigues parameters.

To see the constraints introduced by the mechanical lim-
its on all joints, note first that the prismatic joints usually
have a range of actuation that force the lengthsl i to take val-
ues within some intervals[lmin

i , lmax
i ]. These constraints can

be modelled as equalities by definingmi = (lmax
i + lmin

i )/2
andhi = (lmax

i − lmin
i )/2, and imposing

(l i −mi)
2+d2

i = h2
i , (5)

for i = 1, . . . ,6, where thedi are newly-defined auxiliary vari-
ables. Observe that, in this way, the values ofl i are certainly
constrained to the desired interval, becausemi andhi are the
mid-point and half-range of the interval, and Eq. (5) defines
a circle of centermi and radiushi (Fig. 2).

The passive joints on the base and on the platform also
have mechanical limits constraining the allowable positions
of each leg. To describe these constraints, letjAi be a unit
vector given in the fixed frame, aligned with the fixed axis of
the universal joint atAi (Fig. 3). Following [13], we assume
that the mechanical design of such joint restricts the maxi-
mum allowed misalignment betweenjAi and theqi vector to
be of angleαi , which means that, for the platform pose to be
valid, it must be

jAi qi ≥ l i cosαi , i = 1, . . . ,6.

di

hi

l i

mi lmax
ilmin

i

Fig. 2. Circle constraint of an active-joint limit.
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Fig. 3. Elements of a passive joint-limit constraint.

These inequalities can be transformed into equalities by in-
troducing a new variableti for each leg, and writing

jAi qi − l i cosαi = t2
i . (6)

Note thatjAi qi ≥ l i cosαi is satisfied if, and only if, Eq. (6)
is satisfied for some value ofti . Similarly, for each passive
joint on the platform we define a new variablegi and impose

jBi (R
Tqi)− l i cosβi = g2

i , (7)

wherejBi is a unit vector along the axis of symmetry of the
joint atBi , expressed in the moving frame, andβi is the max-
imum allowed misalignment in this joint.

In conclusion, the workspaceW of the platform is the
set of all possible tuples

(x,y,z,φ,θ,ψ)

that satisfy Eqs. (1)-(7) for some value of

(l1, . . . , l6, r1,x, . . . , r3,z,d1, . . . ,d6, t1, . . . , t6,g1, . . . ,g6).

Since Eqs. (1)-(7) form a system of 33 equations in 39 vari-
ables,W will be a six-dimensional set in general, which is
in agreement with the fact that the Stewart platform has six
degrees of freedom.



2.2 Boundary equations
We could now try to findW by solving Eqs. (1)-(7) di-

rectly, but it is preferable to compute the boundary ofW

instead, because such boundary is a more informative set of
lower dimension. A point lies on the boundary ofW when-
ever any of the active or passive joints reaches a mechanical
limit of the joint.

In order to select only the points on the boundary, note
that theith leg reaches its maximal or minimal length, or a
limit angle on its passive joints, wheneverdi , ti , or gi vanish
for somei. Thus, a solution to Eqs. (1)-(7) corresponds to a
boundary point if, and only if,

6

∏
i=1

ditigi = 0. (8)

In summary, the boundary ofW is formed by the
points(x,y,z,φ,θ,ψ) that satisfy Eqs. (1)-(8) for some value
of the remaining variables. Such points will form a five-
dimensional set in general, because just one equation and
no extra variable have been added to Eqs. (1)-(7). Despite
the boundary ofW has one dimension less thanW , it is
still hard to compute it exhaustively. However, by setting
three pose variables to a constant value, one can obtain two-
dimensional slices of the boundary whose computation is af-
fordable, as shown below, and yet provide useful represen-
tations. Note that, while previous methods concentrate on
the constant-orientation or the constant-position slices, any
other slice defined by fixing any three of the six pose pa-
rameters should also be available to the designer. In our
case, such slices are simply characterized by the system of
equations formed by Eqs. (1)-(8) with the corresponding
three pose variables held constant. The case of the planar-
mode workspace, where the platform moves on a plane and
is only free to rotate about an axis orthogonal to the plane,
as well as the constant-orientation and the constant-position
workspaces, will be given later as examples of such slices.

3 Boundary isolation
A numerical method able to solve the system of equa-

tions just described is next provided, adapting the linear re-
laxation paradigm proposed in [23, 24]. The approach en-
tails algebraizing the equations into a quadratic form (Sec-
tion 3.1), then computing an initial box that bounds the loca-
tion of all solutions (Section 3.2), and finally using a branch-
and-prune method exploiting the quadratic form of the equa-
tions, to iteratively isolate all boundary points at the desired
resolution (Section 3.3).

3.1 Equation algebraization
In order to algebraize the system of equations, two dif-

ferent changes of variables need to be introduced. First, all
trigonometric terms of Eqs. (2)-(4) are eliminated by intro-

ducing the changes of variables

cτ = cosτ,
sτ = sinτ,

for τ ∈ {φ,θ,ψ}. Since the new variablescτ andsτ represent
the cosine and sine ofτ, they must obey the circle equations

c2
τ +s2

τ = 1, (9)

which hence need to be introduced into the system, for
τ ∈ {φ,θ,ψ}.

After applying such changes, note that the system
formed by Eqs. (1)-(9) is already polynomial. Lety be a
vector containing all of the variables of this system, and let
yi andy j refer to any two of the components ofy. A second
change of variables

pk = y2
i , (10)

bk = yiy j , (11)

is introduced for allyiy j andy2
i monomials intervening in the

equations, in order to allow transforming the system into the
expanded form

ΛΛΛ(x) = 0
ΩΩΩ(x) = 0

}

, (12)

wherex is annx-dimensional vector including the originaly
variables and the newly-introducedpk andbk ones,ΛΛΛ(x) = 0
is a collection of linear equations inx, andΩΩΩ(x) = 0 is a
collection of quadratic equations, each of which adopts one
of the two forms

xk = x2
i ,

xk = xix j ,

which correspond to the changes of variable in Eqs. (10)
and (11), respectively. Note that in some cases, as in Eq. (8),
the change relative to Eq. (11) needs to be applied recursively
in order to arrive at the form assumed in Eq. (12).

3.2 Initial bounding box
We next show that each variablexi of x can only take val-

ues within a limited interval, so that from the Cartesian prod-
uct of all such intervals one can define annx-dimensional box
B ⊂ R

nx that initially bounds all solutions of Eq. (12).
Since the feasibility intervals for thepk andbk variables

can be readily obtained by propagating the intervals of the
y variables through Eqs. (10) and (11), we only need to see
how to define proper intervals for they variables. To this



end, note that the lengths of the legs are directly bound by
their maximal and minimal values, i.e.,

l i ∈ [lmin
i , lmax

i ],

for i = 1, . . . ,6. Moreover, since the columns ofR are or-
thonormal vectors, the entries ofR must satisfy

r j,x, r j,y, r j,z ∈ [−1,1],

for j = 1,2,3. Similarly, it must be

cτ,sτ ∈ [−1,1],

for τ ∈ {φ,θ,ψ}, since these variables refer to the cosine and
sine ofτ.

For the variablesdi we note that Eq. (5) simply con-
strains such variables to take values in[−hi ,hi ]. Similarly,
Eqs. (6) and (7) constrain the left-hand side of the equa-
tion and theti andgi variables to take values on a parabola
of vertical axis with its minimum point at the origin. Note
that, in any case, the maximum value that the left-hand
side of these equations can achieve islmax

i − lmax
i cosαi or

lmax
i − lmax

i cosβi , respectively. In sum, we obtain the follow-
ing bounds fori = 1, . . . ,6:

di ∈ [−hi ,hi ],

ti ∈
[

−
√

lmax
i − lmax

i cosαi ,
√

lmax
i − lmax

i cosαi

]

,

gi ∈
[

−
√

lmax
i − lmax

i cosβi ,
√

lmax
i − lmax

i cosβi

]

.

Finally, it only remains to find the ranges for thex, y, and
zcomponents ofp. While tight bounds could be computed to
accurately confine these variables, this is not necessary un-
der the presented approach. The method is not significantly
sensitive to the volume of the initial box because parts with
no solution are rapidly discarded by the numerical procedure.
Thus, we can use any easy-to-compute upper bound to estab-
lish the ranges of these position variables. Here, we shall use
the fact that, for any valid configuration of the platform, point
P will always lie inside a sphere of radiuslmax

i + |bi | centered
atAi , which is valid for any legi = 1, . . . ,6. By choosing any
leg, for instance leg one, we can take the ranges of the small-
est box containing the sphere, that is

x∈ [a1,x− lmax
1 −|b1|,a1,x+ lmax

1 + |b1|] ,
y∈ [a1,y− lmax

1 −|b1|,a1,y+ lmax
1 + |b1|] ,

z∈ [a1,z− lmax
1 −|b1|,a1,z+ lmax

1 + |b1|] .

3.3 Numerical solution
The algorithm for solving Eq. (12) recursively applies

two operations onB : box shrinkingand boxsplitting. Us-
ing box shrinking, portions ofB containing no solution are

(a)

(b)
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Fig. 4. Polytope bounds within box Bc.

eliminated by narrowing some of its defining intervals. This
process is repeated until either the box is reduced to an empty
set, in which case it contains no solution, or the box is “suffi-
ciently” small, in which case it is considered asolutionbox,
or the box cannot be “significantly” reduced, in which case
it is bisected into two sub-boxes via box splitting (which
simply bisects its largest interval). To converge to all so-
lutions, the whole process is recursively applied to the new
sub-boxes, until one obtains a collection of solution boxes
whose side lengths are below a given thresholdσ.

The crucial operation in this scheme is box shrinking,
which is implemented as follows. Note first that the solutions
falling in some sub-boxBc ⊆ B must lie in the linear variety
defined byΛΛΛ(x) = 0. Thus, we may shrinkBc to the small-
est possible box bounding this variety insideBc. The limits
of the shrunk box along, say, dimensionxi can be found by
solving the two linear programs

LP1: Minimizexi ,

subject to:ΛΛΛ(x) = 0,x ∈ Bc,

LP2: Maximizexi ,

subject to:ΛΛΛ(x) = 0,x ∈ Bc.

However, observe thatBc can be further reduced, because the
solutions must also satisfy all equationsxk = x2

i andxk = xix j

in ΩΩΩ(x) = 0. These equations can be taken into account by
noting that, if[vi ,ui ] denotes the interval ofBc along dimen-
sionxi , then:



1. The portion of the parabolaxk = x2
i lying insideBc is

bound by the triangleA1A2A3, whereA1 andA2 are the
points where the parabola intercepts the linesxi = vi and
xi = ui , andA3 is the point where the tangent lines atA1

andA2 meet (Fig. 4a).
2. The portion of the hyperbolic paraboloidxk = xix j ly-

ing insideBc is bound by the tetrahedronB1B2B3B4,
where the pointsB1, . . . ,B4 are obtained by lifting the
corners of the rectangle[vi ,ui ]× [v j ,u j ] vertically to the
paraboloid (Fig. 4b).

Thus, linear inequalities corresponding to these bounds can
be added to the previous linear programs LP1 and LP2,
which usually produces a much larger reduction ofBc or, if
one of the linear programs is found unfeasible, its complete
elimination.

As it turns out, the previous algorithm explores a binary
tree of boxes whose internal nodes correspond to boxes that
have been split at some time, and whose leaves are either so-
lution or empty boxes. The collectionB of all solution boxes,
which is returned as output upon termination, is said to form
a box approximationof the solution set of Eq. (12), because
the boxes inB form a discrete envelope of such set, whose ac-
curacy can be adjusted through theσ parameter. Notice that
the algorithm is complete, in the sense that it will succeed in
isolating all solution points of Eq. (12) accurately, provided
that a small-enough value forσ is used. Detailed properties
of the algorithm, including an analysis of its completeness,
correctness, and convergence order, are given in [24].

4 Illustrative examples
We next illustrate the performance of the method by

computing the boundaries of several workspaces of the Stew-
art platform. To emphasize the generality of the method,
we first obtain the boundaries corresponding to the constant-
orientation, constant-position and planar-mode workspaces
of a standard platform. We then analyze a special platform
to show that the method performs well on situations that hin-
der the application of previous methods. The method is able
to completely determine the boundaries of the workspace in
all situations.

The geometric parameters of the analyzed platforms are
indicated in Table 1, and the ranges forl i are assumed to be
[1.2,1.8] for all legs. All results reported have been obtained
by using a parallelized version of the method, implemented
in C using previous software libraries developed in [23, 24],
and executed on a grid computer with four PC units equipped
with two Intel Quadcore Xeon E5310 processors and 4 Gb of
RAM each one. Table 2 provides, for each experiment, the
amount of CPU time required to solve it (ts) and the number
of solution boxes returned (ns) usingσ = 0.1.

4.1 A standard platform
The standard platform analyzed here corresponds to the

one studied in [19], where the authors compute the constant-
position workspace obtained by fixingp to a constant value,
but neglecting the mechanical limits on the passive joints.

Table 1. Stewart platform parameters.

i 1 2 3 4 5 6

S
ta

nd
ar

d

ai,x 0 0 0.7598 0.7598 −0.7598 −0.7598

ai,y 0 0 1.3161 1.3161 1.3161 1.3161

ai,z 0 0 0 0 0 0

bi,x −0.4559 0.4559 0.4599 0 0 −0.4559

bi,y −0.2632 −0.2632 −0.2632 0.5264 0.5264 −0.2632

bi,z 0 0 0 0 0 0

S
pe

ci
al

ai,x 0.8165 −0.4082 −0.4082 0.8165 −0.4082 −0.4082

ai,y 0 0.7071 −0.7071 0 0.7071 −0.7071

ai,z 0 0 0 0 0 0

bi,x 0 0 0 0.8165 −0.4082 −0.4082

bi,y 0 0 0 0 0.7071 −0.7071

bi,z 0 0 0 0.5774 0.5774 0.5774

φ
θ

ψ

π
2

− 3π
2

π
2

− π
2

3π
2

− π
2

Fig. 5. Boundaries of the constant-position workspace of the stan-

dard platform, without taking passive joint limits into account.

To see that such limits really reduce the workspace, we have
computed the workspace twice: first neglecting the limits
on the passive joints, and then taking them into account.
Fig. 5 shows the obtained results for the roll-pitch-yaw an-

gles, assumingp = [0, 2
3

4
√

3, 5
4]

T

as in [19]. As it can be
seen, the workspace contains three different connected com-
ponents, while in [19] the authors are only able to describe
the one accessible from the origin (the lower-right compo-
nent in Fig. 5). Detecting all connected components is neces-
sary though, to let the designer choose the most appropriate
assembly mode for the platform, depending on the specific
task to be performed.

By taking into account the limit anglesαi = βi = 50◦

on all passive joints, some of the components in Fig. 5 are
no longer accessible, and the workspace reduces to just one
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Fig. 6. Only the lower-right component in Fig. 5 (left) is partially achievable after taking passive-joint limits into account (right).
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Fig. 7. Boundaries of the constant-orientation workspace of the standard platform for z> 0.

connected component that corresponds to the one around the
origin in Fig. 5. For comparison, Fig. 6 shows such compo-
nent before and after the consideration of passive-joint-limit
constraints.

Instead of fixingp, we can fix the orientation of the plat-
form, and hence obtain the constant-orientation workspace.
Settingφ = θ = ψ = 0, which is equivalent to lettingR = I3,
we obtain the workspace shown in Fig. 7. The figure
compares the resulting workspaces when taking into ac-
count only active-joint-limit constraints (left) or active- and
passive-joint-limit constraints simultaneously (right), with

αi = βi = 47.16◦. As before, the enclosed volume is smaller
in the second case, meaning that the attainable positions of
the platform are reduced because some of the passive joints
achieve their mechanical limits. It is worth adding, also,
that in both cases the workspace has an additional connected
component symmetric to the one shown, which corresponds
to the assembly mode of the platform where P sweeps a sim-
ilar volume forz< 0.

In general, previous methods in the literature only com-
pute discretized versions of the constant-position or the
constant-orientation slices of the complete six-dimensional
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Fig. 8. Boundaries of the planar-mode workspace of the standard

platform before and after the consideration of passive-joint limits.

workspace, i.e., those shown so far in Figs. 5-7. But the
method herein described can also be used to derive any other
slice. As an example, Fig. 8 presents the slices obtained
when fixingz= 5

4 andφ = θ = 0, before and after the con-
sideration of passive joint limits withαi = βi = 41.41◦. Note
that in this case the platform is equivalent to a planar posi-
tioning device, whereP moves on thez= 5

4 plane, and only
rotation about theZ′ axis is allowed.

4.2 A special platform
We next show results on computing the constant-

position workspace of a special platform that yields interior
barriers in such workspace. Its geometric parameters are
shown in Table 1 and correspond to a design where three
of the legs are anchored at a same pointP on the platform,
with the base joints coincident in pairs. This design may
seem difficult to construct, but ifP is the point we keep fixed
when computing the constant-position workspace, then the
platform is equivalent to the 3-UPS/S manipulator shown in
Fig. 9, which allows orientational capability only, and is in
fact kinematically equivalent to theAgile Eyeplatform [25].

While on general platforms the constant-position
workspace has a two-dimensional boundary, such boundary
degenerates into a one-dimensional set in this case, as shown

P

Ai

Bi

l i

Fig. 9. A 3-UPS/S platform. (Figure adapted from [25].)

in Fig. 10, and this set is impossible to obtain by previous
numerical methods. The method in [16], for example, would
proceed by intersecting the boundaries through planes, and
then computing the portion of the boundaries lying in such
planes using randomized ray-shooting techniques combined
with numerical path-following methods. However, note that
the planes would only contain isolated points in this case,
which would almost never be hit by rays shot in random
directions. Also, the method in [19] would perform a dis-
cretization on angleθ and then on angleφ in order to find
the boundary points corresponding to such angles. Never-
theless, the portion of a slice lying on a constant-θ plane is
again formed by isolated points, and a discretization on angle
φ would almost never encounter such points. So far, actually,
slices of the boundary curves in Fig. 10 could only be ob-
tained by analytical methods tailored to such platforms [25],
because other methods based on discretization exhibit simi-
lar drawbacks [13, 15, 17]. The presented technique, on the
contrary, is robust to such situations. The results shown in
Fig. 10 were obtained by solving the same equations con-
sidered for the standard platform, by changing the platform
parameters only. As noted from the results, the workspace of
this manipulator is the whole range of the roll-pitch-yaw an-
gles, but the shown curves represent motion impediments to
be avoided by the platform. In other words, the manipulator
will be able to reach any possible orientation, but it will be
unable to traverseacrossthe curves.

5 Conclusions
This paper has introduced a new approach for computing

three-dimensional slices of the workspace on Stewart plat-
forms of arbitrary geometry. A distinguishing feature of the
approach is that it allows, using a single method, the obten-
tion of any possible slice of the workspace, while previous
approaches mostly concentrate on particular slices, like the
constant-position or the constant-orientation slice. In fact, a
total of twenty slices can be obtained by fixing three pose
parameters, and computing any of them might be necessary
depending on the specific task to be performed with the plat-
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Fig. 10. Degenerate boundaries of the constant-position workspace

of the special platform.

Table 2. Performance data at σ = 0.1.

Platform Workspace Joint limits ns ts (sec)

Standard

Const. position
Active 6526 66

Active and passive 3196 69

Const. orientation
Active 1306 4

Active and passive 1621 21

Planar mode
Active 1849 6

Active and passive 1391 14

Special Const. position Active 8448 252

form. Additional advantages of the method have been dis-
cussed and illustrated with examples, like the ability to com-
pute all connected components of a slice, to detect motion
barriers present in its interior, and the possibility to take pas-
sive joint limits into account.

Clearly, the primary application of the method is in the
context of robot design, because it allows studying the mo-
tion capability of a particular platform before its actual con-
struction. However, the method might also be helpful in the
context of collision-free trajectory planning, where a main
issue is how to sample the workspace efficiently and with
good coverage, in order to compute proper roadmaps of the

workspace in short times [8]. While fast in favorable situa-
tions, current planners draw samples from conservative es-
timates of the workspace, which makes them less efficient
on highly-constrained situations. The performance of such
planners would notably increase if samples were drawn from
accurate representations like those provided by the proposed
method.

Finally, it is worth noting that, as shown in [27, 28], a
similar approach can be applied to also compute the forward
singularities contained in the workspace of the platform, and
that the presented method also shows some potential of be-
ing able to cope with leg-leg collision constraints. The latter
constraints could in principle be formulated in the form re-
quired by the numerical method, but further work needs to be
done in order to achieve a mild formulation involving as few
equations and variables as possible, leading to an acceptable
computational burden.
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