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Abstract—The algebraic characterization of the singularities of
a Stewart platform is usually presented as a6 × 6 determinant,
whose rows correspond to the line coordinates of its legs, equated
to zero. This expression can be rewritten in a more amenable
way, known as thepure condition, as sums and products of4×4
determinants whose rows correspond to the point coordinates of
the legs attachments. Researchers usually rely on one of these
two expressions to find the geometric conditions associated with
the singularities of a particular Stewart platform. Although both
are equivalent, it is advantageous to use either line or point
coordinates depending on the platform topology. In this context,
an equivalent expression involving only plane coordinates, adual
expression to that using point coordinates, seems to be missing.
This paper is devoted to its derivation and to show how its
use is advantageous in many practical cases mainly because of
its surprising simplicity: it only involves the addition of 4 × 4
determinants whose rows are plane coordinates defined by sets
of three attachments.

Index Terms—Stewart platform, singularities, pure condition,
Grassman-Cayley algebra.

I. I NTRODUCTION

A Stewart platform is a type of parallel robot that incor-
porates six prismatic actuators, orlegs, all of them con-

nected simultaneously to a fixedbaseand amoving platform
through spherical joints, orattachments. It triggered the re-
search on parallel manipulators and continues to be the center
of many researches because, despite its simple geometry, its
analysis translates into challenging mathematical problems [1].
One of these problems is to determine the configurations in
which the moving platform becomes uncontrollable, that is,the
singularities. Very large joint forces can occur in the neigh-
borhood of a singularity that may even lead to the breakdown
of the robot. Although singularities are usually avoided for
obvious reasons, being close to them may be useful in some
cases. Indeed, as pointed out in [2], the large amplification
factors between the moving platform motion and the actuated
joint motion arising in a singularity may be interesting for
fine-positioning devices with a very small workspace or for
improving the sensitivity along some measurement directions
when a platform is used as a force sensor [3]. Thus, having
the geometric conditions that lead to a singularity greatly
simplifies the design phase of a Stewart platform no matter if
we want to avoid them or to take advantage of them. It is also
worth mentioning that one of the associated problems with the
characterization of the singularities of a Stewart platform is the
definition of a performance index representing the closeness to
the singularities. Unfortunately, no mathematical sound metric
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measuring this closeness exists [4]. Hence, a certain levelof
arbitrariness must be accepted in its definition which is allevi-
ated if we support it on a geometric meaningful interpretation.
This paper is about the problem of using the best formulation
for each Stewart platform instance that provides us with the
most simple and straightforward geometric interpretationof its
singularities.

Different Stewart platformtopologiesare obtained by co-
alescing, either on the base or the platform, some of the
attachments [5]. Then, a generic Stewart platform is usually
referred to as a 6-6 Stewart platform while, on the other side
of the spectrum, a 3-3 platform refers to any of the three
possible topologies in which a Stewart platform has three
attachments both in the base and in the platform. Although
coalescing attachments leads to multiple spherical jointswhose
implementation is difficult [6], studying the singularities for
all these possible topologies is of great practical relevance
because the singularities of 6-6 platforms with some particular
arrangements of attachments [7], and the singularities of some
3-legged robots can be reduced to the study of the singularities
of some of these topologies [8], [9].

From the algebraic point of view, the singularities of a
Stewart platform arise when its6× 6 inverse JacobianJ (the
matrix that maps the twist of the platform into the velocities of
the actuators) is singular, that is, when its determinant det(J)
is equal to0. Unfortunately, computing this determinant is
difficult even with symbolic computation tools [10], [11]. The
advantage of this approach is that once the expression of the
determinant is obtained, the locus of singular configurations
can be plotted in the workspace. However, the determinant
itself is usually a large expression, even for simple topologies,
that does not provide insight into the geometric conditions
associated with the singularities. Nevertheless, a betterunder-
standing of these conditions can be straightforwardly derived
from this formulation by using Line Geometry [12]. Since
the rows ofJ are the Pl̈ucker vectors of the lines supporting
the robot legs, a singularity ofJ implies a linear dependence
between these vectors [13], [14], [15], a situation that only
occurs if the lines associated with the vectors satisfy particular
geometric constraints [16]. The singularity analysis is thus
reduced to determining conditions on the pose parameters
for which these constraints are satisfied, giving geometric
information on the singularity variety [17].

Recently, the use of Grassman-Cayley algebra to study the
singularities of Stewart platforms has received a lot of attention
[18], [19], [8]. Using this algebra, the determinant of the
Jacobian equated to zero can be rewritten as an expression
known as thepure condition[20]. It is formed by 24 adding
terms of three multiplying brackets each. Each bracket is
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a 4 × 4 determinant whose rows correspond to the homo-
geneous coordinates of an attachment. Thus, each bracket
can be interpreted as the oriented volume of the tetrahedron
formed by four attachments. The pure condition is unique up
to syzygies, a term borrowed from the literature on classic
invariant theory, which refer to the three-term Grassmann-
Plücker relations (see [21] for a gentle introduction to these
relations). This means that there are different equivalentpure
conditions that vary in their number of terms which somewhat
complicates things. For those topologies for which any of
these equivalent expressions simplifies to a single term, a
straightforward geometric interpretation of the singularities is
obtained as degeneracies of three tetrahedra whose vertices
coincide with attachments. When such simplification cannot
be achieved, the geometric interpretation becomes much more
complex. The octahedral topology (one of the three possible
3-3 topologies) was analyzed in [18], where it was shown that
its pure condition cannot be simplified to a single term, but a
further analysis still using Grassmann-Cayley algebra permit-
ted to characterize its singularity condition as the intersection
of four planes. More recently, a similar result was obtainedfor
six more topologies [22]. In all these cases the singularities
could also be interpreted as degeneracies of tetrahedra with
the difference that their vertices are no longer defined by
attachments. Instead, the faces of these tetrahedra are defined
by sets of three attachments. Thus, some sort of duality seems
to surface from these results. This paper deepens on this
duality and, as a result, derives a new singularity condition for
the generic 6-6 Stewart platform in terms of the latter kind of
tetrahedra.

Certainly there have been other approaches besides the two
aforementioned ones to obtain the geometric conditions asso-
ciated with the singularities. For example, the one presented in
[23] is based on a convenient expansion of the determinant of
the Jacobian matrix into3×3 minors. The obtained singularity
condition has 20 terms, each one being the product of two
3× 3 determinants, which can be rewritten as triple products.
The resulting expression depends on two types of vectors, one
representing director vectors of the leg lines and the other
moments of these lines. Such expression is used to obtain
the analytical expression of the singularity polynomial ofthe
general Stewart platform and to show one topology for which
this expression simplifies to a single term.

This paper is organized as follows. First, Section II briefly
reviews some basic concepts on the duality of points and
planes and introduces the definitions that will be used through-
out this paper. Section III briefly reviews the primal form of
the pure condition. Section IV introduces the concept of dual
form of the pure condition and presents it for the generic 6-
6 Stewart platform. Section V discuses the pros and cons of
using the pure condition either in its primal or dual form to
obtain the geometric interpretation of the singularities of a
given topology. Section VI presents two examples. Finally,
Section VII summarizes the main results and give prospects
for further work. An important effort has been done to make
the presentation self-contained and understandable without any
previous knowledge on Grassmann-Caley algebra.

II. N OT(AT)IONS
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Fig. 1. A 6-6 Stewart platform and adopted labelling for its leg attachments.

The location of the twelve center points of the leg attach-
ments of a 6-6 Stewart platform will be represented bya, b, c,
. . . , l, as shown in Fig. 1. Non-generic Stewart platforms are
obtained by making some leg attachments coplanar, aligned,
or simply coincident. In what follows, our analysis will only
consider coincidences which can be extended to consider
colinearities and coplanarities as described in [24].

To lighten the notation, lowercase Latin letters will repre-
sent both points and their position vectors in homogeneous
coordinates in a given global reference frame, and lowercase
Greek letters, scalars.

As already mentioned in the introduction, the singularities of
a Stewart platform correspond to those configurations in which
the determinant of the Plücker coordinates of its leg lines is
zero, that is, det(J) = 0. Now, without loss of generality, let
us suppose thata = α1p + α2q. That is, the first attachment
is known to lie on the line defined byp and q. Then, due
to the multilinearity of the Jacobian determinant, det(J) =
α1det(J|a=p) + α2det(J|a=q). This property will be useful
later.

Since points will be represented by their homogeneous co-
ordinates,p = (px, py, pz, pw)T , they are considered to belong
to the projective spaceP3. Thus, a point inP3 corresponds to
a vector in the standard 4-dimensional vector space V. InP

3,
duality refers to geometric transformations that replace points
by planes and planes by points while preserving incidence
properties between the transformed objects [25]. The existence
of such transformations leads to a general principle,the duality
principle, which states that any theorem about incidences
between points and planes may be transformed into another
theorem about planes and points, by the substitution of the
appropriate words [26].

The duality between points and planes is defined by the
correspondencecxx+cyy+czz+cww = 0 ↔ (cx, cy, cz, cw).
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That is, the dual point to the plane with implicit equation
cxx + cyy + czz + cww = 0 is c = (cx, cy, cz, cw)T . Thus, a
plane can be seen as a point and viceversa.

Definition 1 (Cross-product of three vectors) The cross-
product of three vectors a, b and c is defined as:

⌊abc⌋ =

∣

∣

∣

∣

∣

∣

∣

∣

x y z w
ax ay az aw

bx by bz bw

cx cy cz cw

∣

∣

∣

∣

∣

∣

∣

∣

(1)

where x = (1, 0, 0, 0)T , y = (0, 1, 0, 0)T , z = (0, 0, 1, 0)T ,
and w = (0, 0, 0, 1)T [27].

According to this definition, the plane defined by the three
pointsa, b, andc is given by the dual to the point⌊abc⌋. Then,
we also have by duality that the intersection of the dual planes
to the pointsa, b, andc is given by⌊abc⌋ [28].

Observe that the cross-product of three vectors is anti-
symmetric and distributive over addition, that is,⌊abc⌋ =
−⌊bac⌋ = ⌊bca⌋, and⌊ab(α1c+α2d)⌋ = α1⌊abc⌋+α2⌊abd⌋.

Definition 2 (Bracket) The bracket of four vectorsa, b, c,
and d is defined as:

[abcd] = a · ⌊bcd⌋ =

∣

∣

∣

∣

∣

∣

∣

∣

ax ay az aw

bx by bz bw

cx cy cz cw

dx dy dz dw

∣

∣

∣

∣

∣

∣

∣

∣

. (2)

According to this definition, four points, saya, b, c, andd,
are coplanar if, and only if,[abcd] = 0. Then, we also have
by duality that the four planes dual to pointsa, b, c and d,
intersect in a point if, and only if,[abcd] = 0.

Now, let the set of platform attachments be partitioned in
three sets involving a couple of legs each:A = {a, b, c, d},
B = {e, f, g, h} andC = {i, j, k, l}.

Definition 3 (Stewart Bracket) The Stewart bracket
〈p, q, r〉, where p ∈ A, q ∈ B and r ∈ C, is defined as
the bracket of the dual points to the four planes defined
by the points in the setsA \ {p}, B \ {q}, C \ {r}, and
{p, q, r}. To avoid ambiguities, points will always be sorted
in lexicographic order in all operations.

For example, according to the above definition,

〈dei〉 = [⌊abc⌋⌊dei⌋⌊fgh⌋⌊jkl⌋]. (3)

Observe that the total number of Stewart brackets for the
partition of the set of attachments given byA, B andC is 64,
and the total number of possible partitions is 15.

III. T HE PRIMAL FORM OF THEPURE CONDITION

Theorem 1 (Primal Form of the Pure Condition) The de-
terminant of the geometric Jacobian of a Stewart platform with
the labelling of attachments shown in Fig. 1 can be expressed
as:

[abcd][efgi][hjkl] − [abcd][efhi][gjkl] − [abcd][efgj][hikl]

+[abcd][efhj][gikl] − [abce][dfgh][ijkl] + [abde][cfgh][ijkl]

−[abdf ][cegh][ijkl] + [abcf ][degh][ijkl] − [abce][dghi][fjkl]

+[abde][cghi][fjkl] − [abdf ][cghi][ejkl] + [abcf ][dghi][ejkl]

+[abce][dghj][fikl] − [abde][cghj][fikl] + [abdf ][cghj][eikl]

−[abcf ][dghj][eikl] + [abcg][defi][hjkl] − [abch][defi][gjkl]

−[abdg][cefi][hjkl] + [abdh][cefi][gjkl] − [abcg][defj][hikl]

+[abch][defj][gikl] + [abdg][cefj][hikl] − [abdh][cefj][gikl]

= 0. (4)

Proof: See [8].
As mentioned in the introduction, the primal form of the

pure condition is unique up to syzygies. This means that there
are different equivalent pure conditions that might vary in
their number of terms. Up to our knowledge, the 16-term pure
condition presented in [18] is the one with the lowest number
of terms. The one given above has 24 terms but, though it is
not the shortest one, it usually leads to the simplest results
when applied to platforms with coincident attachments.

IV. T HE DUAL FORM OF THEPURE CONDITION

Lemma 1 The pure condition of a Stewart platform with
topology

a e i

b d f h j l

can expressed as−[abde][aehi][fijl] + [abdf ][aehi][eijl] +
[abde][aefi][hijl]−[abdh][aefi][eijl] = 0. This condition can
be rewritten as[⌊abd⌋⌊aei⌋⌊efh⌋⌊ijl⌋] = 0 which will be
called the pure condition in dual form for the above topology.

Proof: After some algebraic manipulations, this result
follows from the analysis for this topology presented in [22].

Note that the condition in the above Lemma can be ex-
pressed, using Stewart brackets, simply as〈aei〉 = 0, after
settingc = a, g = e, andk = i.

Lemma 2 The pure condition of a Stewart platform with
topology

a e i k

b d f h j

can expressed as[abde][aehj][fijk] − [abdf ][aehj][eijk] −
[abde][aefj][hijk] + [abdh][aefj][eijk] = 0. This condition
can be rewritten as[⌊abd⌋⌊aej⌋⌊efh⌋⌊ijk⌋] = 0 which
will be called the pure condition in dual form of the above
topology.

Proof: After some algebraic manipulations, this result
follows from the analysis for this topology presented in [22].
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Using Stewart brackets, the condition in the above Lemma
can be simply expressed as〈aej〉 = 0, after settingc = a,
g = e, and l = j.

Theorem 2 (Dual Form of the Pure Condition) The deter-
minant of the geometric Jacobian of a Stewart platform with
the labelling of attachments shown in Fig. 1 can be expressed
as:

− 〈aei〉 + 〈aej〉 + 〈aek〉 − 〈ael〉 + 〈afi〉 − 〈afj〉
− 〈afk〉 + 〈afl〉 + 〈agi〉 − 〈agj〉 − 〈agk〉 + 〈agl〉
− 〈ahi〉 + 〈ahj〉 + 〈ahk〉 − 〈ahl〉 + 〈bei〉 − 〈bej〉
− 〈bek〉 + 〈bel〉 − 〈bfi〉 + 〈bfj〉 + 〈bfk〉 − 〈bfl〉
− 〈bgi〉 + 〈bgj〉 + 〈bgk〉 − 〈bgl〉 + 〈bhi〉 − 〈bhj〉
− 〈bhk〉 + 〈bhl〉 + 〈cei〉 − 〈cej〉 − 〈cek〉 + 〈cel〉
− 〈cfi〉 + 〈cfj〉 + 〈cfk〉 − 〈cfl〉 − 〈cgi〉 + 〈cgj〉
+ 〈cgk〉 − 〈cgl〉 + 〈chi〉 − 〈chj〉 − 〈chk〉 + 〈chl〉
− 〈dei〉 + 〈dej〉 + 〈dek〉 − 〈del〉 + 〈dfi〉 − 〈dfj〉
− 〈dfk〉 + 〈dfl〉 + 〈dgi〉 − 〈dgj〉 − 〈dgk〉 + 〈dgl〉
− 〈dhi〉 + 〈dhj〉 + 〈dhk〉 − 〈dhl〉 = 0 (5)

Proof: The proof of this theorem can be graphically
summarized as indicated in Fig. 2. Starting from the dual pure
conditions for the topologies in the top row, the dual pure
condition for the generic 6-6 Stewart platform is obtained.

Using Lemma 1 and 2, the dual pure conditions of the
following two topologies

a e q1

b d f h j l

a e i k

b d f h q2

are
℘1 = [⌊abd⌋⌊aeq1⌋⌊efh⌋⌊q1jl⌋] (6)

and
℘2 = [⌊abd⌋⌊aeq2⌋⌊efh⌋⌊iq2k⌋], (7)

respectively.
Now, let q1 and q2 be collinear withi and k, and with j

and l, respectively. That is,

q1 = α1i + α2k

q2 = α3j + α4l

Then,

℘1 = α2
1[⌊abd⌋⌊aei⌋⌊efh⌋⌊ijl⌋]

−α1α2[⌊abd⌋⌊aei⌋⌊efh⌋⌊jkl⌋]

+α1α2[⌊abd⌋⌊aek⌋⌊efh⌋⌊ijl⌋]

−α2
2[⌊abd⌋⌊aek⌋⌊efh⌋⌊jkl⌋]

(8)

and

℘2 = −α2
3[⌊abd⌋⌊aej⌋⌊efh⌋⌊ijk⌋]

+α3α4[⌊abd⌋⌊aej⌋⌊efh⌋⌊ikl⌋]

−α3α4[⌊abd⌋⌊ael⌋⌊efh⌋⌊ijk⌋]

+α2
4[⌊abd⌋⌊ael⌋⌊efh⌋⌊ikl⌋].

(9)
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1
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(〈aek〉 − 〈aei〉 + 〈aej〉 − 〈ael〉) 1

2
(−〈afk〉 + 〈afi〉 − 〈afj〉 + 〈afl〉)

1

4
(〈aei〉 − 〈aek〉 − 〈aej〉 + 〈ael〉

−〈agi〉 + 〈agk〉 + 〈agj〉 − 〈agl〉
−〈afi〉 + 〈afk〉 + 〈afj〉 − 〈afl〉
+〈ahi〉 − 〈ahk〉 − 〈ahj〉 + 〈ahl〉)

1

4
(〈bek〉 − 〈bei〉 + 〈bej〉 − 〈bel〉

−〈bgk〉 + 〈bgi〉 − 〈bgj〉 + 〈bgl〉
−〈bfk〉 + 〈bfi〉 − 〈bfj〉 + 〈bfl〉
+〈bhk〉 − 〈bhi〉 + 〈bhj〉 − 〈bhl〉)

Left-hand side of (5)

Fig. 2. Sequence of generalizations used to prove Theorem 2.

On the other hand, using the multilinearity property of the
Jacobian determinants for the above two topologies, we also
have that

℘1 = α2
1℘3 + α1α2℘4 − α1α2℘5 + α2

2℘6

℘2 = α2
3℘7 + α3α4℘4 + α3α4℘5 + α2

4℘8

}

(10)

where ℘3, . . . , ℘8 are the pure conditions of the following
topologies

a e

b d f h

i

j l

a e

b d f h

i k

j l

a e

b d f h

i k

j l

a e

b d f h
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j l

a e
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a e

b d f h

i k

l
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respectively. Since, according to Lemma 1 and Lemma 2,

℘3 = [⌊abd⌋⌊aei⌋⌊efh⌋⌊ijl⌋],

℘6 = −[⌊abd⌋⌊aek⌋⌊efh⌋⌊jkl⌋],

℘7 = −[⌊abd⌋⌊aej⌋⌊efh⌋⌊ijk⌋],

℘8 = [⌊abd⌋⌊ael⌋⌊efh⌋⌊ikl⌋],

then

℘1 = α2
1[⌊abd⌋⌊aei⌋⌊efh⌋⌊ijl⌋]

+α1α2℘4

−α1α2℘5

−α2
2[⌊abd⌋⌊aek⌋⌊efh⌋⌊jkl⌋]

(11)

and

℘2 = −α2
3[⌊abd⌋⌊aej⌋⌊efh⌋⌊ijk⌋]

+α3α4℘4

+α3α4℘5

+α2
4[⌊abd⌋⌊ael⌋⌊efh⌋⌊ikl⌋].

(12)

Now, equating the right hand sides of (8) and (11), we get

[⌊abd⌋⌊aek⌋⌊efh⌋⌊ijl⌋]−[⌊abd⌋⌊aei⌋⌊efh⌋⌊jkl⌋] = ℘4−℘5,

and equating the right hand sides of (9) and (12),

[⌊abd⌋⌊aej⌋⌊efh⌋⌊ikl⌋]−[⌊abd⌋⌊ael⌋⌊efh⌋⌊ijk⌋] = ℘4+℘5.

Using Stewart brackets, after settingc = a, andg = e, the
above two equations can be written as

〈aek〉 − 〈aei〉 = ℘4 − ℘5

〈aej〉 − 〈ael〉 = ℘4 + ℘5

}

This linear system, when solved for℘4 and℘5, yields

℘4 =
1

2
(〈aek〉 − 〈aei〉 + 〈aej〉 − 〈ael〉)

℘5 =
1

2
(−〈aek〉 + 〈aei〉 + 〈aej〉 − 〈ael〉)

Proceeding in a similar way from the pure conditions in dual
form of the topologies (

• • • • •

• • • • ) and (

• • • •

• • • • •), it is obtained
that of (

• • • • •

• • • • •). Likewise, the pure conditions in dual form of
(

• • • • •

• • • •¯̄ ) and (

• • • • •

• • • • •) can be used to obtain that of (

• • • • • •

• • • • • ).
The obtained expression, by simply renaming labels, also
leads to the dual pure condition of (

• • • • •

• • • • • •). Then, the pure
conditions for the last two topologies can be used to finally
obtain the general dual pure condition in equation (5).

Corollary 1 The dual pure condition is the result of equating
to zero the addition of all different Stewart brackets that can
be formed for the partition of the set of attachments given by
A, B and C. If A, B and C are chosen so that they involve
different couples of legs, a different but equivalent condition
with the same number of terms is obtained. Thus, there are 15
equivalent pure conditions in dual form with the same number
of terms.

Analogously to what happened to the pure condition in pri-
mal form, applying the dual pure condition to platforms where
some of the attachments coincide leads to simplifications. In
all cases, the appropriate pure condition must be chosen, from

all possible equivalent pure conditions, to obtain the maximum
simplification. The situation is quite complicated when dealing
with the pure condition in primal form because this involves
the use of syzygies. Nevertheless, when dealing with the pure
condition in dual form this task is simplified because the
number of equivalent conditions is 15. As a general rule,
it is advisable to minimize the number of legs sharing one
attachment that appear in different partitions of the set of
attachments.

V. CHOICE OF PRIMAL VS. DUAL

In Table I, a list of all possible topologies for the Stewart
platform with the resulting pure conditions in primal and dual
form is shown. Two main families of topologies can be drawn
from this table:

1) A family of 21 topologies whose pure conditions, either
in primal or in dual form, simplify to a single term. This
family can be subdivided in three non-disjoint sets:

a) A set of 13 topologies whose primal pure condition
simplify to a single term. For all members of this
family the geometric conditions associated with
their singularities can be expressed as the degen-
eracy of three tetrahedra. For example, a Stewart
platform with topology

a e k

db j l

is in a singularity if, and only if, any of the three
sets of points{a, b, d, e}, {a, e, k, l} or {b, d, e, j}
lie on a plane.

b) A set of 15 topologies whose dual pure condition
simplify to a single term. Observe how this family
includes the three 3-3 topologies and six of the
seven 4-3 topologies. For all members of this fam-
ily the geometric conditions associated with their
singularities can be expressed as the degeneracy
of a single tetrahedron. For example, a Stewart
platform with topology

a e i

db j l

is in a singularity if, and only if, the tetrahedron
with plane faces defined by the four sets of three
points{a, b, d}, {d, e, j}, {d, i, l} and{a, e, i} has
null volume (i.e.,the four planes are either coplanar,
or intersect in a single line, or in a point).

c) A set of 7 topologies whose pure condition, both
in pure and dual form, simplify to a single term.
For example, a Stewart platform with topology

a e i

b d l
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TABLE I
ALL STEWART PLATFORM TOPOLOGIES AND THEIR PURE CONDITIONS IN PRIMAL AND DUAL FORMS

a, c e, g i, k

b, l d, f h, j

k

b

g, i

d, h

a, c, e

f, j, l l

a, c e, g i, k

b, f d, h, j b j l

a, c e, g i, k

d, f, h

g i k

b d j, lf, h

a, c, e

[abdh][abei][dehi]
−[abeh][adei][bdhi]

[abdf ][adfg][afgk] −[abde][adei][bdil]
[abdh][adei][deil]
−[abde][adei][dhil]

[abdf ][afgj][aijk]

〈aei〉 −〈adf〉 −〈aei〉 〈aei〉 〈afj〉

replacements

j l

a, c e, g i, k

d, hb, f

i k

b h

a, c e, g

j, ld, f

g

b d l

i, ka, c, e

f, h, j

g

b d j l

i, k

f, h

a, c, e

b l

a, c e, g i, k

d, f h, j

[abde][adei][bijl]
−[abde][abei][dijl]

[abde][aehj][dijk]
+[abde][adej][hijk]
−[abdh][adej][eijk]

[abdf ][afgi][afil] −[abdf ][afgi][aijl]
[abde][aehi][dhil]
−[abdh][adei][ehil]

〈aei〉 〈aej〉 〈afi〉 〈afi〉 〈aei〉

b h j l

a, c e, g i, k

d, f

a

f l

i, k

b, d h, j

c, e, g i k

b d f h

a, c e, g

j, l

k

b d

g, i

j, lf, h

a, c, e

kb d f h j

a, c e, g i, k

−[abde][aehi][dijl]
−[abde][adei][hijl]
+[abdh][adei][eijl]

[bcfh][chil][abci]

[abde][aehj][fijk]
−[abdf ][aehj][eijk]
−[abde][aefj][hijk]
+[abdh][aefj][eijk]

[abdf ][afgj][agjk]

−[abde][aehi][fijl]
+[abdf ][aehi][eijl]
+[abde][aefi][hijl]
−[abdh][aefi][eijl]

〈aei〉 〈bci〉 〈aej〉 〈afg〉 〈aei〉
k

j l

a, c

d, hb, f

e, g, i
g i k

b d l

a, c, e

f, h, j

k

b d f h

g, i

j, l

a, c, e k

b d j l

g, i

f, h

a, c, e e g k

b d j lf, h

a, c, i

[abde][aekl][bdej] [abdf ][afgi][afkl] −[abdf ][aghj][agjk] −[abdf ][afgj][agkl] −[abdj][aefg][afkl]
1

2
(〈aek〉 − 〈ael〉 + 〈aej〉) 1

2
(〈afl〉 − 〈afk〉 − 〈afi〉) 1

2
(〈agj〉 − 〈afj〉 − 〈ahj〉) 1

2
(〈afk〉 + 〈afj〉 − 〈afl〉) 1

2
(〈afl〉 − 〈afj〉 − 〈afk〉)

k

b d f hj l

e, ga, c, i a i k

f lb, d h, j

c, e, g i k

j l

a, c e, g

d, hb, f

e k

b h

a, c g, i

j, ld, f

i k

b l

a, c e, g

d, f h, j

[abdj][aefh][aekl]
[abcf ][bchi][chkl]
−[abch][bcfi][chkl]
+[abch][bcfh][cikl]

−[abdi][aekl][bdej]
+[abdj][aekl][bdei]
+[abdk][aeij][bdel]
−[abdl][aeij][bdek]

[abde][aghj][dgjk]
−[abdg][adej][ghjk]

[abdh][aekl][dehi]
−[abdk][aehi][dehl]
+[abdl][aehi][dehk]

1

2
(〈aej〉 − 〈ael〉 + 〈aek〉)

1

2
(−〈bcl〉 + 〈bci〉

−〈bch〉 + 〈bck〉)

1

2
(−〈aej〉 + 〈aei〉
−〈aek〉 + 〈ael〉)

1

2
(−〈adj〉 + 〈agj〉
−〈ahj〉 + 〈aej〉)

1

2
(〈aei〉 + 〈aek〉

−〈ael〉 − 〈aeh〉)
i k

b f h l

a, c e, g

d, j

g i k

b d j lf, h

a, c, e ii k

b h j l

a, c e, g

d, f

e g ii k

b d j l

a, c

f, h

ii k

b d f h j l

a, c e, g

−[abdi][aekl][defh]
−[abdk][adei][efhl]
+[abdl][adei][efhk]

[abdf ][afgi][ajkl]
−[abdf ][afgj][aikl]

−[abdi][aekl][dehj]
+[abdj][aekl][dehi]
+[abdk][aeij][dehl]
−[abdl][aeij][dehk]

−[abdi][afkl][efgj]
+[abdj][afkl][efgi]
+[abdk][afij][efgl]
−[abdl][afij][efgk]

[abdi][aekl][efhj]
−[abdj][aekl][efhi]
−[abdk][aeij][efhl]
+[abdl][aeij][efhk]

1

2
(〈aei〉 − 〈aed〉
〈ael〉 + 〈aek〉)

1

2
(−〈afl〉 + 〈afk〉
−〈afi〉 + 〈afj〉)

1

2
(〈aei〉 − 〈aej〉

−〈aek〉 + 〈ael〉)

1

2
(−〈afj〉 − 〈afk, 〉
+〈afl〉 + 〈afi〉)

1

2
(〈aek〉 − 〈ael〉

+〈aej〉 − 〈aei〉)
g ii k

b d f h j l

a, c, e e g ii k

b h j l

a, c

d, f

e g ii k

b d f h j l

a, c

−[abdf ][aghi][ajkl] + [abdf ][aghj][aikl]

[abde][adgh][ijkl] + [abde][aghi][djkl]
−[abde][aghj][dikl] + [abdg][adei][hjkl]
−[abdh][adei][gjkl] − [abdg][adej][hikl]

+[abdh][adej][gikl]

[abde][afgh][ijkl] − [abdf ][aegh][ijkl]
+[abde][aghi][fjkl] − [abdf ][aghi][ejkl]
−[abde][aghj][fikl] + [abdf ][aghj][eikl]
−[abdg][aefi][hjkl] + [abdh][aefi][gjkl]
+[abdg][aefj][hikl] − [abdh][aefj][gikl]

1

4
(〈agi〉 − 〈afl〉 − 〈ahl〉 − 〈ahi〉

+〈afk〉 − 〈agj〉 + 〈agl〉 − 〈afi〉
+〈afj〉 + 〈ahj〉 − 〈agk〉 + 〈ahk〉)

1

4
(−〈agk〉 + 〈ahk〉 + 〈adk〉 + 〈adj〉
−〈agj〉 − 〈aek〉 − 〈adl〉 + 〈ael〉
+〈agi〉 + 〈agl〉 + 〈aei〉 − 〈ahl〉
−〈adi〉 + 〈ahj〉 − 〈aej〉 − 〈ahi〉)

1

4
(〈agk〉 + 〈ahi〉 + 〈ahl〉 + 〈afj〉

−〈ahj〉 − 〈ahk〉 − 〈agl〉 + 〈ael〉
−〈aek〉 + 〈agj〉 − 〈afi〉 − 〈aej〉
+〈aei〉 − 〈agi〉 − 〈afl〉 + 〈afk〉)
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is in a singularity if, and only if, any of the
three sets of points in{a, b, d, e}, {a, d, e, i} or
{b, d, i, l} lie on a plane, or if, and only if, the
tetrahedron with plane faces defined by the four
sets of three points{a, b, d}, {b, d, e}, {d, i, l} and
{a, e, i} has null volume.

2) A family of 12 topologies whose pure conditions, neither
in primal nor in dual form, simplify. This family can be
further subdivided into two sets:

a) A set of 9 topologies whose dual pure condition
contains four terms. In all these cases, two planes
are common to all four terms which simplifies the
geometric interpretation of their singularities. This
represents an important family of platforms which,
thanks to the derived pure condition in dual form,
can be treated in a unified way. The first example in
the next section analyzes one of these topologies.
The same analysis is valid for all other members
of this set.

b) A set of three topologies (those in the last row in
Table I) whose dual pure condition contains more
than four terms. While the analysis, using the pure
condition in its primal form, of these topologies
seems to require a case-by-case treatment, the
use of the dual form permits a unified analysis
which becomes evident after analyzing the set of
topologies. This is discussed at the end of the next
section.

A particular set of seven different topologies, with common
geometric interpretation for their singularities, was analyzed
in [29] using Grassmann-Cayley algebra. It can be checked
that this set is a subfamily of the 9 topologies whose pure
condition in dual form has four terms and that we have just
identified.

VI. EXAMPLES: SINGULARITY ANALYSIS OF TWO 4-6
STEWART PLATFORMS

Consider the Stewart platform in Fig. 3. It has the following
topology:

a, c e, g i k

b d f h j l

According to Table I, the primal pure condition for this
topology can be expressed as:

[abdi][aekl][efhj] − [abdj][aekl][efhi]

− [abdk][aeij][efhl] + [abdl][aeij][efhk] = 0 (13)

This topology was analyzed in [29] where it was shown that
(13), after non-trivial manipulations using syzygies, reduces
to:

[aeij][pqkl] − [aekl][pqij] = 0

wherep andq are points on the line given by the intersection
of the planesabd andefh.

a, c

b

d

e, g

f
h

i

k

j

l

l 0 -4 1
b 2

√
3 -2 0

d 2
√

3 2 0
j 0 4 1
f −2

√
3 2 0

h −2
√

3 -2 0

a′, c′ 2 0 0
e′, g′ -2 0 0

i′ 0 2 1
k′ 0 -2 1

Fig. 3. A 4-6 Stewart platform and coordinates of the base andplatform
attachments in their local reference frames. The two coincident attachments on
the moving platform can be implemented using double gimbals as explained
in [30].

This topology was also studied in [31] where the singularity
condition was expressed as the addition of four terms, each
of them being the product of two3 × 3 determinants, which
can be rewritten in terms of dot and cross products of several
vectors related with the geometry of the robot and then with
the eigenvectors of a certain matrix.

Now, as an alternative to the above formulations, we can
directly use the pure condition in dual form. According to
Table I, it can be expressed as:

(1/2)([⌊abd⌋⌊aek⌋⌊efh⌋⌊ijl⌋] + [⌊abd⌋⌊aej⌋⌊efh⌋⌊ikl⌋]

− [⌊abd⌋⌊aei⌋⌊efh⌋⌊jkl⌋]− [⌊abd⌋⌊ael⌋⌊efh⌋⌊ijk⌋]) = 0
(14)

which can be rewritten as

p1 · (⌊p2p3p4⌋ + ⌊p5p3p6⌋ − ⌊p7p3p8⌋ − ⌊p9p3p10⌋) = 0,

or, equivalently, as

p3 · (⌊p1p2p4⌋ + ⌊p1p5p6⌋ − ⌊p1p7p8⌋ − ⌊p1p9p10⌋) = 0

where

p1 = ⌊abd⌋, p2 = ⌊aek⌋, p3 = ⌊efh⌋, p4 = ⌊ijl⌋,
p5 = ⌊aej⌋, p6 = ⌊ikl⌋, p7 = ⌊aei⌋, p8 = ⌊jkl⌋,
p9 = ⌊ael⌋, p10 = ⌊ijk⌋.

(15)
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Since the sum of point/plane coordinates always correspond
to the coordinates of a point/plane, both

r1 = ⌊p2p3p4⌋ + ⌊p5p3p6⌋ − ⌊p7p3p8⌋ − ⌊p9p3p10⌋

and

r2 = ⌊p1p2p4⌋ + ⌊p1p5p6⌋ − ⌊p1p7p8⌋ − ⌊p1p9p10⌋

also represent two points/planes. Then, the analyzed platform
will be in a singularity if pointr1 lies on the plane defined
by p1 or, equivalently, if pointr2 lies on planep3. Then, the
singularity condition can be simply expressed asr1 · p1 = 0
or, equivalently, asr2 · p3 = 0. Moreover, observe that by
constructionr1 · p3 = 0 and r2 · p1 = 0. Then, it can be
concluded that the analyzed robot is in a singularity if, and
only if, both r1 andr2 lie simultaneously onp1 andp3.

Note that if any of the planes defined in (15) is degenerate,
it gives a null-vector, but equation (14) is still well-defined.
If p1 or p3 are null vectors (i.e., if a, b, andd, or d, f , and
h are aligned) the manipulator will be in a singularity. The
degeneracy of any other plane in (15) does not imply that the
condition (14) is satisfied.

p1 = ⌊abd⌋

p3 = ⌊hfe⌋

r1

r2

a

b
d

e

h

f

Fig. 4. The analyzed 4-6 Stewart platform in a singular configuration. In
this case,px = 0, py = 0.792, andpz = 5.

To get some practical insight, let us suppose that the
coordinates of the attachments for the analyzed robot, in
their local reference frames, are the ones in Fig. 3. Let us
also suppose that the orientation of the moving platform
with respect to be base is fixed to be Rot(z, π

6 )Rot(x, π
6 ). In

other words, according to the notation used in Fig. 3,aT =
Trans(px, py, pz)Rot(z, π

6 )Rot(x, π
6 )(a′)T and, similarly, for

the other platform attachments. Then, the moving platform
is only allowed to translate and

p1 =









−2 − 4pz

0
4(px −

√
3)

4
√

3(1 + 2pz)









,

p3 =









−2 + 4pz

0
−4(px +

√
3)

4
√

3(2pz − 1)









,

r1 =





















































16(px − 3.46pz + 3.46)(7.07px + 6.92pxpz−
1.73pz + 17.73 − 4pxpy − 3py)

−384p2

zpy + 221.71p2

ypz − 203.42p2

z+
110.85pxpzpy + 331.16pypz − 64pxp2

y−
221.71p2

y − 1525.1pz − 604.71pxpz+
276.84py + 144.57pxpy + 1050.4px+

126.85p2

x + 1728.6

32(−1 + 2pz)
(3.46pypz − 3.46py − 6p2

z − 5.32pz+
18.32 − pxpy + 1.73pxpz + 3.26px)

−219.71p2

z + 62.85pypz − 32.573pxpz+
141.16pz − 18.143pxpy − 62.85py+

302.56 + 248.px + 27.714p2

x





















































,

and

r2 =

















































−16(px + 3.46pz)(7.07px + 6.92pxpz

−1.73pz + 17.73 − 4pxpy − 3py)

−384p2

zpy + 221.71p2

ypz + 683.42p2

z−
110.85pxpzpy − 564.84pypz + 64.pxp2

y−
444.0pz + 383.00pxpz + 300.56py−

336.57pxpy + 302.15px − 588.0 + 1.15p2

x

−16(1 + 2pz)
(−6.92pypz + 3.92py + 12p2

z + 8.91pz−
18.91 − 2pxpy + 3.46pxpz + 0.53px)

−164.29p2

z + 158.85pypz − 78.28pxpz−
426.27pz + 82.143pxpy − 62.85py+

302.56 − 265.15px − 27.714p2

x

















































.

Now, it can be checked, using a computer algebra system,
that det(J) = 1

2 r1 · p1 = 1
2 r2 · p3 where the rows ofJ are

the Pl̈ucker coordinates of the leg lines.
As explained above,r1 andr2 lie, by construction, on planes

p3 andp1, respectively, but ifr1 also lies onp3 or, equivalently,
r2 on p1, the robot is in a singularity. This is the situation
depicted in Fig. 4.

The above analysis can be extended to the 9 topologies
whose dual pure condition contains four terms because, in all
these cases, two planes are common to all four terms.

Now, consider the Stewart platform in Fig. 5. It has the
following topology:

a, c, e g i k

b d f h j l

Here, we have chosen this topology, over the other two in
the same set of topologies identified in the previous section,
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because it corresponds to the decoupled Stewart platform.
Indeed, three prismatic actuators control the location of point
where three attachments coincide, which can be seen as the
center of the robot, and the other three control the orientation
of the moving platform. Thus, if the first three actuators are
blocked, we can regard the result as a parallel spherical robot
where two pyramid-like rigid bodies are connected together
by a spherical pair at the common apex.

a, c, e

b

d

g

f

h

i

k

j

l

Fig. 5. A decoupled Stewart platform.

The forward kinematics of this robot was first solved by
Innocenti and Parenti-Castelli [32], and Wohlhart [33]. Alici
and Shirinzadeh presented a method based on the determinant
of the Jacobian to plot the singularity locus in terms of the
moving platform orientation using Euler angles [34]. Later,
Ben-Horin and Shoham found a compact singularity condition
for this robot using Grassmann-Cayley algebra [35].

According to Table I, the dual pure condition for this
topology can be expressed as:

− [⌊abd⌋⌊afl⌋⌊agh⌋⌊ijk⌋] − [⌊abd⌋⌊afi⌋⌊agh⌋⌊jkl⌋]

+ [⌊abd⌋⌊afh⌋⌊agi⌋⌊jkl⌋] + [⌊abd⌋⌊afk⌋⌊agh⌋⌊ijl⌋]

− [⌊abd⌋⌊afh⌋⌊agk⌋⌊ijl⌋] + [⌊abd⌋⌊afg⌋⌊ahj⌋⌊ikl⌋]

+ [⌊abd⌋⌊afg⌋⌊ahk⌋⌊ijl⌋] − [⌊abd⌋⌊afg⌋⌊ahl⌋⌊ijk⌋]

+ [⌊abd⌋⌊afh⌋⌊agl⌋⌊ijk⌋] − [⌊abd⌋⌊afh⌋⌊agj⌋⌊ikl⌋]

+ [⌊abd⌋⌊afj⌋⌊agh⌋⌊ikl⌋] − [⌊abd⌋⌊afg⌋⌊ahi⌋⌊jkl⌋] = 0

which can be rewritten as:

p1·(−⌊p2p3p4⌋ − ⌊p5p3p6⌋ + ⌊p7p8p6⌋ (16)

+ ⌊p9p3p10⌋ − ⌊p7p11p10⌋ + ⌊p12p13p14⌋

+ ⌊p12p15p10⌋ − ⌊p12p16p4⌋ + ⌊p7p17p4⌋

− ⌊p7p18p14⌋ + ⌊p19p3p14⌋ − ⌊p12p20p6⌋) = 0

where

p1 = ⌊abd⌋, p2 = ⌊afl⌋, p3 = ⌊agh⌋, p4 = ⌊ijk⌋,
p5 = ⌊afi⌋, p6 = ⌊jkl⌋, p7 = ⌊afh⌋, p8 = ⌊agi⌋,
p9 = ⌊afk⌋, p10 = ⌊ijl⌋, p11 = ⌊agk⌋, p12 = ⌊afg⌋,
p13 = ⌊ahj⌋, p14 = ⌊ikl⌋, p15 = ⌊ahk⌋, p16 = ⌊ahl⌋,
p17 = ⌊agl⌋, p18 = ⌊agj⌋, p19 = ⌊afj⌋, p20 = ⌊ahi⌋.

Then, although this dual pure condition have more than four
terms, they all have one plane as a common factor. Thus, the
singularities of this robot can also be geometrically interpreted
as the incidence of a point with a plane. This point is the result
of dualizing a plane resulting from adding 12 planes defined
by sets of three attachments, instead of only four planes as in
the previous example.

Alternatively, according to Table I, the primal pure condition
for this topology can be expressed as:

−[abdf ][aghi][ajkl] + [abdf ][aghj][aikl]

= [abdf ] ([aghj][aikl] − [aghi][ajkl]) = 0

This condition is more compact and easier to interpret
geometrically than (16) because it factors into two terms that
can be analized independently. Observe that the condition
[abdf ] = 0 corresponds to the singularities of the translational
part of the robot. The other term can be simplified using
Grassman-Cayley algebra (see [35] for details) but, using the
concepts introduced in this paper as an alternative, we can
rewrite it as:

− [jagh][iakl] + [iagh][jakl]

= (−j · ⌊agh⌋)(i · ⌊akl⌋) + (i · ⌊agh⌋)(j · ⌊akl⌋) = 0.

Since(u× v) · (w× s) = (u ·w)(v · s)− (u · s)(v ·w), then
this singularity condition can be finally expressed as:

(i × j) · (⌊agh⌋ × ⌊akl⌋) = 0.

This condition constitutes a new convenient alternative to
the one derived in [35] as it can be readily interpreted geo-
metrically using no other tools than standard vector algebra.
Then, although the singularity analysis of the topologies in the
last row of Table I can be unified using the dual pure condition,
its case-by-case treatment based on the primal pure condition
still seems advantageous mainly when it is combined with the
concepts introduced in this paper.

VII. C ONCLUSION

We have presented a new singularity condition for the
generic 6-6 Stewart platform as a linear combination of4× 4
determinants involving plane coordinates, which has been
called pure condition in dual form. This expression has been
proved to be of interest to obtain geometric interpretations of
the singularity conditions.

Finally, it is worth realizing that the pure condition, either in
its primal or dual forms, can be applied to any parallel manip-
ulator with line-based singularities, a type of manipulators first
characterized in [36]. This fact has been used in [9] to analyze
lower mobility platforms with three legs, first by using screw
algebra to obtain the governing lines, and then applying the
pure condition in its primal form to the result. The interestof
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using the dual form of the pure condition instead is certainly a
point that deserves further attention. In our opinion, thismight
lead to a generalization of the results presented in [37].
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