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Abstract— This paper presents a method to estimate external
forces exerted on a manipulator during motion, avoiding the
use of a sensor. The method is based on task-oriented dynamics
model learning and a robust disturbance state observer. The
combination of both leads to an efficient torque observer that
can be incorporated to any control scheme. The use of a
learning-based approach avoids the need of analytical models
of joints’ friction or Coriolis dynamics effects.

I. INTRODUCTION

Nowadays robots adequately perform diverse manipulation
tasks with high degree of autonomy and precision. Nev-
ertheless, tasks requiring interaction with humans impose
safety restrictions that still need to be addressed. The robotics
research community is actively working on generating solu-
tions to realize robotics abilities to support daily life domestic
tasks [1] [2], such as manipulating cloth (see Fig. 1).

Robots able to safely interact with their surroundings
should have structural features like lightweight links and
coupled joints actuators mechanisms [3] enabling them to
perform compliant motions. Besides these, their low-level
control architecture should avoid excessive stiffness, usually
imposed by accuracy demands.

Another major ingredient for the achievement of compliant
robot behaviors is the need to supervise the external forces
(and torques) generated along the robot motions. External
forces may play diverse roles during the planning and
execution of compliant robot motions. For instance, in force
control schemes, the external manipulator wrench fe ∈ R6

is compared to a reference signal in order to have a desired
end-effector interaction with the environment. Other schemes
such as compliant control, impedance control or hybrid
control also use the external wrench data to compute the
corresponding system action [4].

For the purpose of making available the external wrench
felt by a robot manipulator, expensive sensors are often used.
In order to avoid the use of such devices, recent works [5] [6]
present approaches for estimating the wrench or, at least, the
joint torques due to an external action during manipulation.

However, most of the current approaches are based on
the availability of an accurate analytical model of the robot
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Fig. 1. 7-dof WAM robot holding none, one and two cloth garments. A
proper external force estimation would help the robot to know how many
garments have been picked after an action.

dynamics, which may lead to inaccuracy due to modeling
errors. This is specially true in modern robotics systems
which are highly non-linear and can no longer be accurately
modeled using the rigid body dynamics. In the specific
case of the Barrett WAM [3], the analytical dynamic model
becomes harder and much more complex to obtain for
structural reasons, given that several spinning drives, some
of them coupled, are in different references frames from the
actuated joint while only one can be measured, resulting in
effects such as reflective inertias.

Moreover, in a lightweight robot, any small error in the
dynamic parameters like the link masses represents a large
percentage error for the model accuracy. Interestingly, those
structural features that allow a robot to be compliant make
it harder to model and, therefore, estimation of contact
forces using state-of-the-art methods is more difficult, which
conversely imposes restrictions to the exploitation of the
physical compliance capability of the robot.

This document presents an approach based on machine
learning techniques and disturbance state observers for the
estimation of external forces/torques felt by the robot during
common motion tasks. The presented method is based on the
state-of-the-art on external forces estimation but extending
it to those cases where an analytical model of the robot
dynamics is not available/feasible. Moreover, we take into
consideration the well-known issue that the use of accel-
erations is undesirable due to the error introduced by the
numerical differentiation, to elaborate a better contact force



Fig. 2. The proposed scheme can be run parallel to any controller.

estimator, which will be built parallel to the controller as
shown in Fig. 2.

The paper is organized as follows: in Section II we define
the inverse dynamic models and learning techniques used for
our observers, to be used later in Section III, where we define
our external force estimator, which is tested in Section IV.

II. LEARNING ROBOT INVERSE DYNAMICS

Modern methods for wrench estimation are based on the
use of state space observers [5][6]. Intuition behind this
idea is that the robot is experimenting external forces that
produce changes in its state, therefore, by estimating the
internal state of the system and assuming that certain part
of the total inputs is known, an estimation of perturbations
(external inputs/forces) can be completed. As described in
Section III, such observers are based on the availability of
the analytical model of the manipulator dynamics. Here we
assume that such model is not available and therefore we
discuss this issue providing the required elements for the
proposed wrench estimator.

The dynamics of a serial robot, as described in [4], is given
by:

M(q)q̈ + C(q, q̇)q̇ + G(q) + Ff (q, q̇) = uT, (1)

where q, q̇, q̈ ∈ Rn denote joint angles, velocities and
acceleration of the robot with n degrees of freedom (DoF),
M(q) represents the inertia matrix, and C(q, q̇),G(q) and
Ff (q) are the Coriolis and centripetal, gravity and friction
forces acting on the robot. Finally, vector uT ∈ Rn is the
vector of total input forces to the joints. We assume that such
forces may proceed from applied torque commands uc and
from certain external torque ue. Thus,

uT = uc − ue.

At the same time, the inverse model of the robot dynamics
is a function mapping the robot state to the actions that would
generate it, which in the absence of external forces would
be given by

uc = g(q, q̇, q̈). (2)

To obtain this function g, model learning is a very
active research field in robot control [7] where methods
are developed allowing the approximation of (2) using in-
put/output data. The-state-of-the-art in online model learning

includes methods like Locally Weighted Projection Regres-
sion (LWPR) [8] and Local Gaussian Process (LGP) [7].
These approaches allow to improve the model even when the
system is in operation. Here we used the LWPR open access
library [9] in order to approximate the inverse dynamics of
the robot.

Assuming that the function g has been learned, it can be
stated that, given a dynamic state produced by both control
and external torques, the inverse model would provide,

uT = uc − ue = g(q, q̇, q̈),

and as the vector uc is assumed to be known, the estimation
of the external torque would be straightforward.

However, there is a set of practical considerations that
points towards the use of a state observer for the external
wrench estimation.

A. Local learning vs. Global learning

In the case of a 7-dof robot such as the WAM robot,
learning a function that maps a joint position, velocity and
acceleration to a torque vector means a dimension 21 input
and a dimension 7 output. This high dimensionality makes
global learning difficult to achieve, as it would generate a
large number of kernel functions to evaluate when using the
model, and so a slow computation rate. In addition, various
unmodelled friction factors such as static/dynamic friction,
motor cogging and others cause different residual friction at
a same position, depending on the trajectory followed. For
this reason, global inverse dynamics learning is left for future
research.

B. Learning with accelerations

Measurements obtained for the WAM arm are joint posi-
tions, velocities (obtained by differentiating positions), and
accelerations (as a second derivative). These derivatives are
very sensitive to noise, making the simple approximation
unsuitable.

A very small noise on a joint position measurement results
in a very large noise in acceleration measures. Even with
the use of heavy filters, such as Parks-McClellan filters [10],
which minimizes error in pass-and-stop bands and used here
to damp frequencies repesenting high acceleration on joints,
the noise could not be completely mitigated to have a good
dataset for learning a task. In order to overcome this problem,
we decided to use the desired trajectory q, q̇, q̈ of the robot
when learning a task and, instead of learning the whole
dynamic system, we propose to learn the function:

uc −M(qd)q̈d = C(q, q̇)q̇ + G(q) + Ff (q, q̇),

that is, assuming that the only parameter of the robot to be
known is the inertia matrix M(·),

uc −M(qd)q̈d = n(q, q̇).

This function, n(q, q̇), only depends on the joint positions
and velocities which allows an accurate learning. Figure 3
presents an example of the data used to learn this relation.
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Fig. 3. Data used for learning a trajectory, using position and velocity as
inputs and torque as output.

III. EXTERNAL WRENCH ESTIMATION

In this section we describe how this proposed function
approximation can be used to estimate the external wrench
when present. Equation (1) can be rewritten as

ẋ1 = x2

ẋ2 = Γ(uc,x)−M−1(x1)ue
, (3)

where x = [x1 x2]
T , with x1 = q and x2 = q̇. Here,

accelerations due to external forces have been separated from
those produced by gravity, Coriolis, internal friction and
torque commands, which have been gathered in the term,

Γ(uc,x) = M−1(x1)[uc −C(x1,x2)x2 − Ff (x1,x2)
−G(x1)] = M−1(x1)[uc − n(x1,x2)],

(4)
where Γ can be evaluated with the measurements of uc and
the learned function n.

In [6] a force estimator is presented, which basically
computes a state observer with gain K and deduces that
the position error from the observer is due to an external
force that can be computed as the missing force to make the
observer perfectly track the state:

∆2ë1 + ∆1ė1 + ∆0e1 = ue, (5)

where e1 is the position estimation error, ∆2 the inertia
matrix, ∆1 various coriolis and friction terms, and ∆0 =
−K, thus at stationary response,

fe = −JT †(x1)Ke1.

This observer does not assume a measurement of the joint
velocities. However, it has the following drawbacks:
• It needs to compute the Coriolis matrix for different

input values, and also the friction effects separately.
• It assumes a perfect model of the manipulator.
• No hints on the observer gains, K, are given.
• Eq. (5) is not necessarily stable as defined. This equa-

tion is analysed in [11], where the restrictions for its

convergence are given. Nevertheless, its convergence ra-
dius depends directly on the eigenvalues of the unknown
matrix Ff .

• A good value of the external force is only guaranteed
at steady state, when ė1 ' 0 and ë1 ' 0. Otherwise,
as the term ∆1 in equation (5) is very hard to learn or
measure for learning purposes, the force estimation may
have a large error. This results in a very slow response
to external force steps, which can be seen in [6].

A. Proposed Observer

Keeping in mind the issues in [6], we thought to treat
the external force as a disturbance of the dynamic system,
and use a disturbance observer. To this purpose, in [12] a
state observer for dynamic systems is proposed that also
estimates external unmodelled disturbances. To follow this
we can rewrite equation (3) as:

ẋ = Ax + B(x)d + Γ∗(uc,x), (6)

with d = −ue, A =

[
0 I
0 0

]
, B =

[
0

M−1(x1)

]
, and

Γ∗(uc,x) =

[
0

Γ(uc,x)

]
.

And then, define a state observer (using a hat to denote
estimated or learned values):

˙̂x = Ax̂ + Bd̂ + K(x− x̂) + Γ̂∗(uc, x̂), (7)

which can be written as:[
˙̂x1

˙̂x2

]
=

[
0 I
0 0

] [
x̂1

x̂2

]
+

[
0

M−1(x1)

]
d̂+[

K11 K12

K21 K22

] [
x1 − x̂1

x2 − x̂2

]
+

[
0

Γ̂(uc,x)

]
,

Or, separating the two equations:

˙̂x1 = x̂2 +K11(x1 − x̂1) +K12(x2 − x̂2)
˙̂x2 = M−1(x1)d̂ +K21(x1 − x̂1) +K22(x2 − x̂2)+

+Γ̂(uc,x),

where Γ̂(uc, x̂) is the estimation of Γ(uc,x), computed as
defined in Eq. (4), with the observed value of x:

Γ̂(x1, x̂2) = M−1(x1)[uc − n(x1, x̂2)]. (8)

From now on, we will use Γ̂ = Γ̂(uc, x̂) and Γ = Γ(uc,x).
We must remark that in [12], this last term in (8) is

assumed to be known. However, using its learned value will
not affect the error dynamics. In fact, if the state estimation
error is e = x̂ − x and the disturbance estimation error
ed = d̂−d, the error dynamics, subtracting (6) from (7), is:

ė = (A−K)e + Bed + Γ̂∗ − Γ∗ (9)

Where, if we define (following the steps in [12]):

d̂ = F1x + F2ẋ + G1x̂ + G2
˙̂x + G3Γ

∗ (10)

then, as F2B− I 6= 0 ∀F2, [12] proposes to take:



G1 = −(F1 + B†A)
G2 = −(F2 −B†)

G3 = −B†,

thus

d̂ = F1x+F2ẋ−(F1+B†A)x̂−(F2−B†) ˙̂x−B†Γ̂∗. (11)

From (6), we can isolate d as B is full column rank, using
its pseudoinverse B†:

d = B†ẋ−B†Ax−B†Γ∗, (12)

and, with (11) and (12), knowing that, in the case of study,
B†A = 0:

ed = d̂− d = (B† − F2)ė− F1e + B†(Γ̂∗ − Γ∗), (13)

where B†(Γ̂∗−Γ∗) = n(q, x̂2)− n̂(q, x̂2) is the error with
the learned model of the function n defined before. This
means that, as one could expect, the force estimation error
will depend on:
• The model estimation error.
• The estimated joint acceleration error.
• The estimated joint velocity error.

Thus, our objective will be to have a small-as-possible
estimation error for the state space, to reduce the force
estimation error ed.

Substituting (13) into (9), the Γ’s cancell out and we
obtain the position estimation error dynamics equation:

(I + BF2 −BB†)ė = (A−K−BF1)e.

Now, as we intend not to use acceleration measures
in Eq. (12), we need F2 =

[
0 0

]
, and with F1 =[

0 M(x1)Σ
]
, Σ being another gain, we obtain:[

I 0
0 0

]
ė =

[
−K11 I −K12

−K21 −Σ−K22

]
e, (14)

which can be operated to obtain the system:

ė1 = −K11e1 + (I −K12)e2

e2 = −(Σ +K22)
−1K21e1

,

thus e2 can be substituted in the first equation to obtain e1’s
dynamics, the dynamics of the position estimation error:

ė1 = −
[
K11 + (I −K12)(Σ +K22)

−1K21

]
e1, (15)

which converges for any values of Kij and Σ for which
(15)’s matrix in brackets is positive definite.

In addition, we have a dependency between e2’s dynamics
and e1’s, meaning that if the position estimation converges,
so does the velocity estimation. Also, if (14) has an asymp-
totically stable equilibrium point at e = 0, from (9) we have
(at steady state)

ed = B†
(
Γ̂∗ − Γ∗

)
= n̂− n,

which is the error of modelling the dynamics.

Moreover, from (14) we have:

˙̂x1 = x̂2 +K11(x1 − x̂1) +K12(x2 − x̂2)
0 = K21(x1 − x̂1) + (Σ +K22)(x2 − x̂2)

,

which can be operated to get a linear dynamic equation for
x1, x2:
˙̂x1 =

[
K11 + (I −K12)(Σ +K22)

−1K21)
]
(x1 − x̂1) + x2

x̂2 = (Σ +K22)
−1K21(x1 − x̂1) + x2

,

seeing x1, x2 as inputs of the observer, this results in a
dynamic system on x̂1, being x̂2 an output.

Finally, the external torque estimation (using equation (10)
and our proposed values) is:

d̂ = M(x̂1)
(

˙̂x2 + Σ(x2 − x̂2)
)
+ n̂(x̂1, x̂2)− uc. (16)

This latter method is the first approach at applying [12]
to a robotic manipulator, but it should be noted that:
• The approximate value of Γ in Eq. (11) would turn into

noise on the observer, but as it is cancelled out in (16),
it is not supposed to affect the convergence of the state
observer, although it indeed includes error in the contact
force estimation.

• Criteria on the tuning of K are given.
• We require the use of the true joint velocities, x2.

This is not a problem, as these can be measured by
differentiating joint positions.

• No assumptions on the disturbance behaviour or model
are taken, except that n depends only on position
and acceleration variables. Here it must be pointed
that most disturbance observers in literature assume
the disturbances have a Lipschitz behaviour [13], or a
known model [14]. Also, no steady-state requirements
are needed, although the model may have more error.

• This estimation is independent of the control scheme
used. It can be run online and parallel to any controller,
even at a different frequency. However, as we will
see later, it does become control dependent in certain
situations due to unmodelled static friction and other
unlearnable effects.

As a conclusion, the estimation of the disturbance, which
is the external force, can be done with guarantees of conver-
gence.

IV. EXPERIMENTATION

To test the observer proposed in Sec. III, we implemented
the previous equations on a 7-dof WAM robot. As a control
law, we used a computed torque control scheme [7] [15],
with uc = M(x1)ẋ

d
2 + n̂(xd

1 ,x
d
2) + uPD, n̂(xd

1 ,x
d
2) being

the learned model using the desired trajectory, instead of real
measurement, and uPD a PD control action on the joint state
that compensates modelling error and any external force.
Using it in Eq. (1) we obtain:

M(x1)ẋ2+n(x1,x2) = M(x1)ẋ
d
2+n̂(xd

1 ,x
d
2)+uPD−ue,

and, isolating ue, the real disturbance value is:

ue = uPD + M(x1)
(
ẋd
2 − ẋ2

)
+ n̂(xd

1 ,x
d
2)− n(x1,x2).



However, with Eq. (16), we can substitute the control
action uc to obtain the estimated external perturbation:

ûe = −d̂ = uPD + M(x1)
(
Σ(x̂2 − x2) + ẋd

2 − ˙̂x2

)
+

+n̂(xd
1 ,x

d
2)− n̂(x1, x̂2),

where the real acceleration ẋ2 is not used, but the estimated
˙̂x2 and desired ẋd

2 ones are instead.
This system was discretised, and then the state observer

system was run at 500Hz, while the LWPR system run at
50Hz with a zero order hold to attach it to the other 500Hz
system. However, although simulation showed excellent re-
sults, after implementing the algorithms in a real robot, we
found 3 factors that had to be mitigated in order to have better
results. They are described in the following three subsections.

A. Noise

The joints position signal presented little noise, but dif-
ferentiating in order to get the velocity increased noise.
Moreover, when derivating x̂2 in order to get the estimated
acceleration, a very noisy signal was obtained. In order to
reduce this noise, which would directly affect the external
torque result, we added a Parks-McClellan Filter [10] at the
readings of the joint state and velocity. With this filter, the
estimated acceleration was less noisy than the obtained by
directly differentiating the position readings twice.

B. Friction

The WAM robot is driven by cables in an architecture
designed to reduce friction. However, when working with
small controller gains and small velocities, the motor cogging
and static friction become very evident. Static friction causes
unpredicted stationary errors when the robot stops, and
motor cogging adds a variable hystheresis on friction that
makes model estimation difficult and causes a discontinuous
tracking with the lowest inertia joints. As these friction
cannot be learned, our work has focused on compensating
the error they cause.

C. Error

The residual error, higher than expected, caused by un-
learned static friction, results in a large PD action, where it
should be small. The PD action, multiplied by the error, may
give fake external torques in Eq. (16) if its constants are not
small, i.e., large controller gains give larger force estimation
errors for the same position error.

To minimize these false torques, we propose to modify the
PD controller, to make its gain linearly depend on the error
(with upper and lower saturation limits to ensure trajectory
tracking and avoid too stiff controllers). This ensures that,
when the error is large, a strong action is applied to reduce
it, while for a small error, the low controller gain results in
a negligible residual torque.

D. Experimental Setup and Results

To evaluate the behaviour of the estimator, we trained a
10 seconds trajectory to a WAM robot, hanging different
loads at its end-effector. The loads were of 0, 0.5, 1, 1.5 and

2 kg. To analyse the results, we compared the outputs of
the vertical force estimated (Fz) at each trajectory, and the
results are shown in Fig. 4, where we see that the estimation
has low error, but accumulates slight error for large weights.
This is because, as commented, a heavier load results in more
error at stationary state, which implies a larger gain of the
controller, thus more uncertainty at the estimation.
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Fig. 4. Experimental results when hanging weights from the robot’s end-
effector. Horizontal lines represent the real weight. At time=10s, the robot
ended its trajectory. At time=5s, joint 1 changes its direction with a step
on the desired acceleration, thus creating a transient in force estimation.

In Fig. 5 we can see the estimated torques along the
trajectory, while in Fig. 6 we plot the resulting wrench
estimations. There we can observe unexpected peaks due
to joint 1 (with the most inertia) changing its direction.
Static friction appears in that moment, causing the observed
behaviour. This results in an unexpected transient estimated
force, that rapidly decreases to zero afterwards. In addition,
unmodelled frictions compensate part of the weight, thus the
force estimation is slightly lower than the true weights on
the end-effector.

The results show that unmodelled friction reduces the
precision of our external force estimator. However, despite
the uncertainties around unmodelled forces, the results in
Fig. 4 and Fig. 6 are accurate, showing the potential use for
any robot.

V. CONCLUSIONS

Estimating the external force applied on a robot without
having an expensive force sensor at its end-effector is a
step forward for control and manipulation purposes. For this
reason, this is a state-of-the-art topic with a high potential.
Some works have good results at simulation, but rely on the
availability of analytical models of the robot, the possibility
of having the true values of friction or Coriolis forces
or they assume almost-stationary situations, meaning the
estimations are not available while the robot moves. In
addition, their algorithms are tested with simple robots such
a 2R manipulator.
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Fig. 5. Estimated external torques for a load of 1kg. Along the executed
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Fig. 6. Estimated external wrenches for a load of 0.5kg. Acceleration dis-
continuities when changing direction or stopping cause transient behaviour
at time=5s and 10s.

In this work, we propose an algorithm that, despite its es-
timation may have a small delay caused by the filters applied
and can carry errors due to unknown friction, outperforms
the previous works based on state observers, with a rigorous
deduction of equations and proof of its convergence, making
no assumptions on the external torque applied, nor requiring
stationary situations.

The results, in Section IV, with a 7-dof robot capable of
performing various manipulation tasks, show that good force
estimations can be obtained while the robot is still in motion.
These vertical force results are being used to know how
many cloth garments have been picked by a robot. Another
advantage of this proposal is that it can be implemented on
any control scheme (see Fig. 2).

As future work, some research to reduce the effects
of uncertainties on the dynamic behaviour of the robot,

which generate error, needs to be carried out. Other possible
improvements are to globalize the inverse model to the
whole workspace, instead of tailoring it to trajectories, and to
optimize the robot controller in order to reduce the residual
torques observed, or model friction apart so as to gain
precision.
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