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Abstract— Grasping highly deformable objects, like textiles,
is an emerging area of research that involves both percep-
tion and manipulation abilities. As new techniques appear,
it becomes essential to design strategies to compare them.
However, this is not an easy task, since the large state-space
of textile objects explodes when coupled with the variability
of grippers, robotic hands and robot arms performing the
manipulation task. This high variability makes it very difficult
to design experiments to evaluate the performance of a system
in a repeatable way and compare it to others. We propose
a framework to allow the comparison of different grasping
methods for textile objects.

Instead of measuring each component separately, we there-
fore propose a methodology to explicitly measure the vision-
manipulation correlation by taking into account the throughput
of the actions. Perceptions of deformable objects should be
grouped into different clusters, and the different grasping
actions available should be tested for each perception type to
obtain the action-perception success ratio. This characterization
potentially allows to compare very different systems in terms
of specialized actions, perceptions or widely useful actions, along
with the cost of performing each action. We will also show
that this categorization is useful in manipulation planning of
deformable objects.

I. INTRODUCTION

Currently, one of the most exciting emerging topics in
robotics research is general object manipulation in unpre-
pared scenarios. During the latest years, many works have
presented impressive advancements, like going to the fridge
and bringing back a bottle of beer [1], folding a pile of
towels [2], or even tasks involving multiple steps and coor-
dination between various agents, like preparing pancakes [3].

As new methods to perform manipulation tasks appear, it
becomes a critical scientific issue to find a solid methodol-
ogy to compare them and assess their progress. However,
the fact that manipulation tasks involve at the same time
skills related to perception and action makes this systematic
evaluation very hard. Furthermore, in a real system there
is a high interdependency between actions and perceptions
which prevents evaluating each one independently and, on
top of that, initial conditions may be difficult to replicate
between experiments, not to mention between different re-
search groups with different hardware.

Initial conditions when only rigid objects are considered
are rather easy to establish. Contrarily, except for some
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Fig. 1: A manipulator robot grasping several pieces of cloth
using different gripper configurations and perceptions. (Left)
Visualization of the robot, some selected interest points and
the selected grasping point. (Right) Two grasping examples.

straightforward configurations, replicating initial conditions
in experiments using non-rigid objects is very difficult, e.g.
a scene including wrinkled textiles (see Fig. 1), as the pose
of a textile is in general very difficult to fully characterize.

Textile manipulation experiments involve also uncertainty
in the result of a grasping operation. Depending on the task,
a failed grasp can be defined as grasping no objects or more
than one (which is sometimes not obvious to observe by the
robot).

In such scenario, decision-making frameworks that explic-
itly take into account uncertainty are naturally well suited.
Among others we can cite two main families, Markov
Decision Processes (MDPs) and its generalization to Par-
tially Observable Markov Decision Process (POMDP) [4],
and Bayesian Network Planning (BNP) and its extensions
like PRADA [5]. All these methods have in common that
planning is based on a finite list of actions along with their
probabilities of success.

In this paper a method to characterize non-rigid manipu-
lation approaches is proposed. It is based on identifying the
perception-manipulation actions that a robotic system can
perform and, for each couple, computing the success ratio.
The advantages of the framework we propose are two-fold:
we show that the aforementioned planning algorithms can
be benchmarked with real and well established metrics, and
different robotic systems can be compared by evaluating in
a common framework the skills they have. The experimental
section provides examples of both.



II. PREVIOUS WORK

Intrinsically linked to the idea of experiment replication
there is the idea of system benchmarking. This is a core
element in technological development, since it allows to
objectively evaluate key system properties, and compare
them with alternative solutions. It is also a requirement
for most project funding grants to evaluate the developed
methods with the standard benchmarks in the field.

Furthermore, providing benchmarks or benchmarking
guidelines helps focus the research efforts on the solutions
and concentrate on addressing the most pressing problems.
Competitions can be organized around benchmarks to foster
development. Examples of competitions in the field of object
perception and manipulation for robotics are the “Solutions
in Perception Challenge” [9] where participants must detect
objects using a perception system mounted on a mobile
robot, the “Robocup@Home”, which involves perception
and manipulation of rigid objects, or the “Sushi restaurant
challenge” '.

For purely perception tasks, such as image classification or
human action recognition, creating benchmarks to compare
different methods is usually straightforward, as it suffices to
manually annotate the occurrences of the objects/events of
interest in the images/videos. Examples are the Pascal Visual
Object Challenge [6], ImageNet [7] and the Hollywood-2
dataset [8]. More robotics-oriented datasets are for example
the “Solutions in Perception Challenge” dataset [9] and the
RGB-D object dataset [10]. Again, evaluating the perfor-
mance of a system can be done offline.

For tasks that couple perception and action, providing
benchmarks that can be used offline is more difficult, and
solutions usually resort to approximations or simulation. For
rigid object grasping, it is commonplace to use simulators
such as Grasplt! [11] to evaluate the quality of grasp points
selected by an algorithm.

In [12] the authors construct a large database of sensor
measurements, labeled as graspable or not after attempt-
ing about a hundred simulated grasps automatically using
Grasplt!. Then, a new candidate grasp is compared to
the constructed database, and its graspability is determined
depending on the labels assigned to its nearest neighbors.

In [13], a dataset with thousands of synthetic objects and
hundreds of thousands of simulated possible grasps with
various robotic hands is evaluated with Grasplt!. Data in
this dataset can be used to evaluate grasping algorithms by
comparing the proposed grasps with the ones in the dataset.

Ciocarlie et al. [14] propose a dataset of 3D models
of everyday objects graspable by a parallel jaw gripper.
Acceptable grasp points for the objects have been annotated
by testing them with a simulator. Additionally, the authors
provide a dataset of robot sensor recordings collected while
attempting 490 grasps of the objects, with ground truth
information of object type and pose. This information is then
used in the paper to empirically assess how well the quality

'http://mobilemanipulationchallenge.org/

metric given by Grasplt! works in practice, and it can be
used in general to evaluate grasp planning and execution.

Ulbrich et al. [15] discuss the lack of standardized bench-
marks for grasping related tasks in the robotics community
and the fragmentation existent in grasping research in terms
of environments, robots and software. As a solution they
propose the OpenGRASP Benchmarking Suite for compar-
ative evaluation of grasping algorithms (for rigid objects) in
a simulated environment.

In the case of perception for manipulation of highly de-
formable objects such as textiles, simulation becomes much
more complex, given the increase in degrees of freedom of
the state space, and therefore there are no databases similar
to those for rigid objects.

Consequently, state-of-the-art methods that deal with tex-
tile object manipulation [16], [2] evaluate their methods
experimentally in a limited number of trials.

Note that we are not including in the previous group,
work in perception of textile objects as those of Miller et
al. [17] or Ramisa et al. [18] since, although their domain of
application is similar, the task addressed does not directly in-
volve manipulation, but just perception, and therefore can be
easily evaluated offline in a similar way as other perception
algorithms. A somewhat mixed case is that of Willimon et
al. [19], where the authors propose a method for interactive
classification of clothes perceived when hanging from the
manipulator, which can interactively rotate the cloth to help
its classification. However, to evaluate this work rotations are
simulated by making available to the classification module
additional, pre-acquired, pictures of the object of interest at
different angles.

III. CHARACTERIZATION OF COMPLEX SYSTEMS FOR
TEXTILE MANIPULATION

It is accepted that new approaches involving manipulation
skills should contain exhaustive experimentation [20], and
this becomes specially true when reliable simulation is
difficult. To make an experiment replicable, there is a lot
of data that should be recorded in the set-up, (e.g. camera
intrinsic parameters, in-focus range, allowed precisions of
robot controls, gripper close force thresholds, camera-base
and tcp-hand calibration matrices, planner rules and rewards)
and during the experiment (e.g. acquired images, actions to
be performed at each execution step, list of positions sent
to manipulator controller, success of action/failure detection,
time-stamps)

This paper deals with perceptions for manipulation, i.e.
perceptions that are designed to serve in manipulation op-
erations. In such case, a manipulation action has to be
necessarily performed to validate the perception. In the
context with deformable clothes this raises the problem that
the initial cloth configuration cannot be exactly replicated for
each experiment.

On top of that, the processes that are taken into account
are often non-deterministic due to the uncertainty in the
perceptions and the actions carried out as a result of those



perceptions. Consequently, trying to replicate one unique
execution is unlikely to reproduce previous results.

Instead, we propose to statistically model the behaviour
of the robot. The idea is to clearly identify the perception-
action couples that constitute the skills of the robot, and find
a behaviour table that includes the ratio of success when
performing such perception-action.

In this paper the global task is the manipulation of textiles,
and the skills that we will use to exemplify our approach
consist on perception-actions that grasp a different number
of objects located onto a flat surface.

To build such behaviour table we can use a brute force
approach, performing several experiments for each skill, or
use a guided or incremental method. There are a number of
considerations that must be taken into account:

1) Initial conditions: the set-up used must be represen-
tative of the conditions at test time. Concerning the
textiles, initial conditions like position, occlusions or
type of wrinkles are very important. For example, if
the experiment assumes that a human will manipulate
the textiles prior to the robot operation, the probability
of success of the skill has to be computed accordingly,
using humans to set-up the initial conditions, or assur-
ing that the robot after grasping will throw the textile
onto the table with similar distributions as humans do.

2) Perceptions: the perception necessary for the associ-
ated action should be possible to compute for any
scene. If this constraint cannot be satisfied, the proce-
dure to handle a missing perception has to be clearly
stated (e.g. repeat the experiment, use the most similar
feature in the image).

3) Actions: in our framework the output of an experiment
is defined as the number of textiles grasped depending
on the number of textiles in the table. However, when
actions are likely to fail for other reasons (e.g. out of
working space, collision...) its influence on the success
ratio for the outputs has to be specified (e.g. repeat the
experiment, count as a failure).

Potentially this method for building a behavior table
also enables the comparison between two different systems
composed by distinct robots, actuators and perceptions. The
comparison should be based on the skills the system is able to
do and its performance when some perceptions are possible.
The replication is then accomplished by building a system
that mimics some of the required skills.

IV. EXPERIMENTS

In order to give a proof of concept for the proposed method
to compare cloth manipulation systems, the action-perception
tables have been computed for two different robot systems.
The first one uses 2 different perceptions based on height and
a wrinkledness measure defined below (Fig 2), and 5 actions
using a 3-finger hand in different configurations (Fig. 3).
The second one uses 2 actions that are performed by a
simple gripper (Fig. 4) and 5 different perceptions (Fig. 6)
based on local descriptors that capture the distribution of
the normals in a region around a central point, and are

Fig. 2: Perception: wrinkledness detector delivers a heat map
indicating most wrinkled parts that are good candidates as
grasping points.

(a) straight

(b) isometric (c) palm

Fig. 3: Different grasp configurations for System 1 that are to
be combined with different grasping point selection methods.

compared to centroids previously learned using k-Means.
In both experiments we use a Kinect camera as perception
device. As a consequence, the vision system can use color
information, as is common, but also can be combined with
depth. In both systems depth is used to determine the final
3D position corresponding to the selected grasping point.
System 1: Perceptions for this approach use as grasp point
selection that takes advantage of depth information:

1) The highest point of the cloth object, as typically done
in related work [19], [2].

2) A wrinkledness measure [21] which is estimated for
a point as the entropy of the distributions of the
orientations of the normal vectors around each point in
the input point cloud. The intuition is that a wrinkled
area will have a mostly flat distribution, while that of a
flat area will be very peaky, as all normals are parallel.
In Figure 2 an example activation map of this measure
can be seen.

Actions are performed with a 3-fingered hand located at
different distances from the textile surface, being deep when
the actual grasping is done 3cm below the selected grasping
point and shallow when it is done Scm over the selected
point. The 3 fingers have been placed in the 3 different
configurations shown in Fig. 3, and in 2 different pregrasping
positions: completely open and half closed. The list of the 5
different grasping configurations we considered is:

1) deep/straight/pre-closed

2) deep/isometric/open

3) deep/palm

4) shallow/straight/pre-closed

5) shallow/isometric/pre-closed
System 2: Perceptions use a feature descriptor that captures
the distribution of the orientations of the normals within
an area around the pixel of interest. The descriptor used



(a) orientation 90 (b) orientation 0

Fig. 4: Different grasp configurations for System 2.

-

Fig. 5: Perception: The descriptor used for our second “proof
of concept” system. In the first image the selected region,
with the spatial subdivisions can be seen, and in the second
image, there is a representation of the 2D angle histograms
for each spatial subdivision (Best viewed in color).

is reminiscent of SIFT [22]: the normals of all the points
inside the region of interest are quantized according to their
orientation in spherical coordinates in a 2D angle histogram
for each of the spatial subdivisions, and all the histograms
are concatenated in a final descriptor. We used 16 spatial
subdivisions and 16 bins in the angle histograms, therefore
the dimension of our descriptors is 256. Figure 5 shows a
representation of one feature descriptor. From a database of
training descriptors, we ran k-Means with k£ = 50. Then we
hand-picked one of the centroids, and we used it to rank
the descriptors of a new perception. The descriptor closest
to the selected centroid was selected as the grasping point.
Note that we have chosen this simple method to select a
grasping point for the purpose of constructing a proof of
concept system, and we do not claim it to be better than any
other given the perception information and features we are
using.

The list of centroids considered (as seen in Figure 6), as
well as their topographical interpretation, is:

1) Planar: Region with normals uniformly towards —,
and a pronounced elevation angle.

2) Lower-right: The upper-left part corresponds to a flat
slope oriented towards —7 and an inclination of about
0.27 radians, while the lower-right is a wrinkled area.

3) Upper: The lower part corresponds to a flat slope, ori-
ented towards 7, and the upper part to a more wrinkled
region, that in general has the opposite orientation.

4) Upper-left: Like Lower-right but swapping the slope
and the wrinkled areas.

5) Diagonal: The top-left and the bottom-right parts cor-
respond to flat slopes with an azimuth of approximately

Id Hand Objects Objects present
configuration | grasped 1 2 3 4
Perception: height
0 0.10 0.10 0.10 0.10
deep 1 090 0.60 0.60 0.75
1.1 straight 2 030 0.20 0.10
pre-closed 3 0.10  0.05
0 0.10 0.10 0.10 0.15
deep 1 090 025 0.15 0.05
1.2 isometric 2 0.65 0.70 0.60
open 3 0.05 0.20
0 080 045 0.60 045
deep 1 020 045 025 040
1.3 palm 2 0.10 0.10 0.10
open 3 0.05 0.05
0 050 0.70 045 040
shallow 1 0.50 020 040 045
1.4 straight 2 0.10 0.10 0.10
pre-closed 3 0.05 0.05
0 040 055 045 045
shallow 1 0.60 035 040 040
1.5 isometric 2 0.10 0.10 0.10
pre-closed 3 0.05 0.05
Perception: wrinkle
0 020 020 030 0.30
deep 1 0.80 0.50 030 045
1.6 straight 2 030 030 0.20
pre-closed 3 0.10 0.05
0 0.10 0.05 0.20 0.30
deep 1 090 030 0.00 0.40
1.7 isometric 2 0.65 0.60 0.10
open 3 0.20  0.20
0 090 0.80 0.60 0.30
deep 1 0.10 0.15 030 045
1.8 palm 2 0.05 0.05 0.05
open 3 0.05 0.05
0 020 030 0.20 0.35
shallow 1 080 0.60 0.40 040
1.9 straight 2 0.10 035 0.20
pre-closed 3 0.05 0.05
0 020 020 020 050
shallow 1 080 0.60 0.60 0.40
1.10 isometric 2 020 020 0.10
pre-closed 3 0.00  0.00

TABLE I: Computed probability distribution of success in
grasping pieces of cloth in presence of different number of
clothes for System 1.

—m and 0.75m, respectively, and a ridge crosses diag-
onally the descriptor area.

The grasping actions are executed using a simple custom-
made gripper (see Fig. 4). In contrast to the 3-fingered
hand, in this case there is not much flexibility to choose
different grasping strategies. As the perception descriptors
are not invariant to rotations, it makes sense to have different
orientations of the gripper. In this experiment, the distance
is constant at the deep position. The list of grasping config-
urations is:

1) deep/orientation 0
2) deep/orientation 90

A. Comparing the two robotic systems

We have executed several grasping experiments in each
of the two systems. Each one represents a solution to the
same problem of grasping pieces of cloth, but they are
very different in nature. The first one uses rather simple
perceptions (height and wrinkle) combined with complex



(c) upper wrinkle

(d) upper-left wrinkle

(e) diagonal wrinkle

Fig. 6: Perception: representation of the five centroids used in the experiments.

(a) planar (b) lower-right wrinkle
Id Perception | Objects Objects present
grasped
Action: orientation 90
0 0.60 0.15 0.05
1 0.40 0.70 0.95
2.1 planar 2 0.15  0.00
3 0.00
0 0.60 0.10 0.00
1 0.40 090 0.90
22 lower-right 2 0.00 0.10
3 0.00
0 0.70  0.10 0.20
1 030 0.70 0.70
2.3 upper 2 0.20 0.10
3 0.00
0 030 0.10 0.10
1 0.70  0.80 0.80
24 upper-left 2 0.10 0.10
3 0.00
0 0.10 005 0.25
1 090 090 0.70
2.5 diagonal 2 0.05 0.05
3 0.00
Action: orientation 0
0 0.70  0.05 0.05
1 030 0.80 0.85
2.6 planar 2 0.15 0.10
3 0.00
0 020 040 0.10
1 0.80 0.50 0.90
2.7 lower-right 2 0.10  0.00
3 0.00
0 0.60 020 0.00
1 040 0.70 0.90
2.8 upper 2 0.10  0.10
3 0.00
0 0.40 030 0.10
1 0.60 0.70 0.80
2.9 upper-left 2 0.00 0.10
3 0.00
0 020 0.10 0.25
1 0.80 090 0.75
2.10 diagonal 2 0.00  0.00
3 0.00

TABLE II: Computed probability distribution of success in
grasping pieces of cloth in presence of different number of
cloth for System 2

grasping strategies (different finger positions and grasping
distances). Conversely, the second one uses a more complex
perception algorithm (with region descriptors) and a simple
grasping strategy (oriented gripper).

The interest here is to build a model by measuring the
success of each combination of perception-action when a
different number of textiles is present on the table. The exact

number of pieces is known when building the models. The
output is defined as the number of textiles grasped, because
the task to solve with each system can be very different e.g.
to grasp only one piece of cloth at each action, or grasp as
many pieces as possible.

Regarding System 1, Table I presents the result of the
different perception-action couples. As can be observed,
actions 1.1, 1.2, an 1.7 are specialized in grasping one object
when one object is present, but actions 1.2 and 1.7 fail to
grasp only one object when two are present. At the same
time they are the best actions to grasp two objects when two
or more objects are present. It could seem that using action
1.1 to grasp one object is the best choice, but observe that
this action has a high probability of grasping more than one
object. Depending on how failures are defined in the task,
i.e. if grasping two objects is penalized, another action is
preferable, like 1.3, 1.4, 1.5 or better 1.8 that can fail at
grasping one object but have lower probability of grasping
several. Note that, as perception is noisy and occlusions
easily appear, the exact number of pieces on the table can
be unknown when performing real experiments.

System 2 is described in Table II. It shows that action
2.5 is very specialized at taking only one object, and that
grasping two objects with the proposed grasps is difficult
but possible mainly with actions 2.1, 2.6 and 2.7. Observe
that grasping three or more objects is improbable with these
perception-action couples.

For an easy comparison we are considering that all
perception-action couples are always possible, e.g. the high-
est point, or the most wrinkled point can be always com-
puted. In a general system this does not have to be true,
as some perceptions, e.g. a diagonal wrinkle, are dependent
on the scene and may not appear. Here, for a given scene,
we computed all the descriptors and used the one with the
minimum distance to the selected centroid to execute one
action, but this criterion can be different and has to be clearly
described.

B. Application to decision making

As has been shown in the previous section, perception
and actions in textile manipulation scenarios are intrinsically
uncertain in both perception and manipulation outcomes, and
additionally both are interdependent. Probabilistic planning
is a useful tool that naturally suits this context as uncertainty
is taken explicitly into account.



3 objects Goal Total Variability Actions to
reached actions  in actions  first removal
POMDP partial 90% 12.1 36% 3.8
MDP partial 80% 7.8 32% 2.9
POMDP occluded 70% 15.3 41% 5.0
MDP occluded 20% 6.0 32% 3.0

TABLE III: Comparison of two different methods to solve
the same task. POMDP behaves better as uncertainty is better
modelled. Partially reproduced from [23].

Monso et. al [23] used the characterization of System 1 to
train two different decision-making algorithms to solve the
task of removing one by one an unknown number of textiles
from a pile. They used some of the presented actions to move
pieces of cloth from one pile to another with the objective
of isolating one piece. When uncertainty about having one
piece isolated was low enough, the textile was moved to a
basket. Two different approaches are compared, one using an
MDP algorithm and the other using a POMDP. Perception
for planning was the number of objects in each pile. The
main difference is that MDP considers perceptions to be
certain while POMDP does not (it considers uncertainty also
in perceptions).

The experiments involved 3 pieces of cloth in two different
configurations: partially occluded when all were visible, and
occluded when there was a complete occlusion between
cloth. Table IIT shows the results of both approaches. Here
the comparison is fair as both decision making algorithms
used perception-action skills with the same success ratio.

V. CONCLUSIONS

Accurately replicating textile manipulation experiments
requires storing a huge number of parameters and may even
be impossible due to the difficulty of establishing exact initial
conditions. Simulation-based benchmarking, widely used in
solid object grasping research, is of limited applicability
given the difficulty of reliably simulating something with as
many degrees of freedom as a textile object.

In this work we have introduced a method to characterize
different textile grasping systems at the level of perception-
action couples and skills. The method is based on construct-
ing tables linking perceptions and actions through success
probability.

Elements of the mentioned tables can be used to reason
about the practical possibilities of the grasping system.
This potentially allows comparison between different robotic
systems. This method abstracts the underlying hardware
and propose the idea that experiments are replicable in the
measure that perception-action tables can be reproduced.
The major drawback is that computing such tables can be
time consuming and that initial conditions and perception
assumptions need be clearly identified.

Furthermore, this ability to reason about the practical
possibilities of the system enables the training of decision-
making algorithms that take advantage of explicitly mod-
elling the underlying uncertainty on perceptions and actions.
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