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Abstract—This work presents a probabilistic model for learn-
ing robot tasks from human demonstrations using kinesthetic
teaching. The difference with respect to previous works is that
a complete state of the robot is used to obtain a consistent
representation of the dynamics of the task. The learning frame-
work is based on hidden Markov models and Gaussian mixture
regression, used for coding and reproducing the skills. Benefits
of the proposed approach are shown in the execution of a simple
self-crossing trajectory by a 7-DoF manipulator.

I. I NTRODUCTION

Learning by demonstration endows robots with capabilities
to acquire skills taught by a human teacher from kinesthetic
demonstrations. This work focuses on robot learning of motor
skills, i.e., encoding the dynamics of a robotic task. Note that
learning approaches to encode robot motions are proposed
either from a dynamic systems perspective (e.g., dynamic
motion primitives [1], [2]) or by means of probabilistic models
(e.g., Gaussian mixture models [3]).

In particular, probabilistic approaches have been extensively
used for learning trajectory-following tasks [4] and recently
force-based skills [5]. Nevertheless, a gap in the encodingof
the tasks is evident in these works, where the dynamics of the
robot during the execution of the skills is not modeled. In this
context, a learning framework based on Hidden Markov model
(HMM ) and Gaussian mixture regression (GMR ) is presented
in [6] for the encoding and reproduction of the dynamics of
a robotic motion. In such work the GMR process performs
as a dynamical system. This feature allows to reproduce the
task without the explicit dependency of time, which is a key
issue for generalization. However, it is worth noting that the
GMR process is not a dynamical system by itself, and care
need to be taken when selecting the type of variables that are
being modeled and the input/output regression used in order
to obtain a dynamically consistent behavior. In this abstract
we propose a redefinition of the state used for codification in
[6]. This new approach allows to model tasks with ambiguities,
results are shown on a 7-DoFs manipulator completing a robot
trajectory with crossing points.

II. BACKGROUND

The approach in [6] uses the robot operational space po-
sitions x ∈ R

3 and velocitiesẋ ∈ R
3, collected during

demonstrations, to capture the motion of a given task by
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means of a joint probability distributionP(x, ẋ). Then, a
probabilistic model of the dynamics of the task is obtained,

ˆ̇x ∼ P(ẋ|x). (1)

where a target velocitẏ̂x for the system can be derived given
the current position of the robot end-effectorx. Specifically,
P(x, ẋ) is encoded in an HMM, which defines the task as a
sequence ofNs “high-level states” (HMM-states).

When using Eq. (1) as control command, instantaneous
changes in velocities are requested irrespective of the current
velocity of the system, generating undesired robot behavior
and forcing the use of high low-level gains trying to minimize
trajectory divergences. This was also addressed in [6] by
proposing a complementary GMR, where the roles of the
variables (input/output) were swaped,

x̂ ∼ P(x|ẋ), (2)

to compute a target position̂x given the current velocity. Eqs.
(1) and (2) are then combined in an attractor to generate
acceleration commands.

These approaches have poor generalization performance in
tasks where the same position is visited along the motion (e.g.,
motion with crossing points), given that the controller cannot
correctly discriminate between states. This problem can be
overcome by using high-level information of the task [6], that
is encapsulated in the sequence of HMM-states. In contrast to
this approach, this work focuses on the adequate modeling of
the task dynamics.

III. E XTENDED STATE FOR HMM-M OTION ENCODING

Here we propose to tackle the problem of modeling the
dynamics of a robotic motion task using an appropriate repre-
sentation of the task state. Let us definesk as the state of the
task at instantk. The dynamics of the motion is then given by

sk+1 = f(sk), (3)

which is a homogeneous system, i.e., no independent input is
presented. Given that functionf captures the evolution of the
task, the output of Eq.(3) can be used as reference for a low-
level control system that decides the control action,uk, (usu-
ally forces) to be applied to the robot, i.e.,uk = h(sk, sk+1).

Thus, given that a motion is being modeled, the state must
include both the position and velocity of the system, namely
sk = [xk, ẋk]

⊤. Moreover, in order to capture its dynamics,
the HMM should also encode the evolution of the motion (i.e.,
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Fig. 1. HMM encoding.Left: HMM-States distribution on the position spacexk. Right: HMM-States distribution on the velocity spacevk

the state atk+ 1). The resulting joint probability distribution
is given by

P(ẋk,xk, ẋk+1,xk+1). (4)

Using an extended state and its increment for the generationof
the probability density function leads to a multi-output GMR
such that

ˆ̇xk+1, x̂k+1 ∼ P(ẋk+1,xk+1|ẋk,xk). (5)

Eq. (5) represents the actual dynamics of the task and the
output of this system can be directly used in an attractor similar
to the one in [6], but using dynamically consistent values,

ˆ̈xk+1 = Kp(x̂k+1 − xk) +Kv(ˆ̇xk+1 − ẋk). (6)

The attractor imposes the dynamics of the error between the
desired behavior, proposed by the GMR, and the actual state
of the robot. Thus, gainsKp and Kv can be selected to
determine response time and stability for error regulation.

IV. EXPERIMENTS AND RESULTS

For demonstration, a 2D motion task using the 7-DoFs
WAM robot is presented. Fig. 1 shows the motion captured by
an HMM from the teacher demonstrations, including positions
and velocities. Note that the “ampersand-shape” has two
crossing points. This skill is learned using both, the standard
and extended frameworks. The corresponding HMM-states
are plotted on the input space (see Fig. 1). Note that the
projection of the HMM onto the position subspace is similar
for both approaches and that the HMM-states are overlapped,
nevertheless the extended framework includes the velocityas
input, allowing to discriminate among HMM-states of the skill.
The performance of both models is presented in Fig. 2. The
initial state of the task is provided and the model reproduces
the captured dynamics. It can be seen that the extended model
completes the skill, adequately resolving the ambiguity.

A video of the experimental results is available at
http://www.iri.upc.edu/groups/perception/RobotMotionLearning

V. CONCLUSIONS ANDFUTURE WORK

Compliant motions emerge when a model of the dynamics
of the task is used as reference. The target of the motion
is the very next state and, in case of human interaction,
errors are compensated irrespective of the time evolution.Con-
versely, when a predefined and time-dependent set of points

is provided, the magnitude of the error and the corresponding
control actions increase over time.

A straightforward consequence of this adequate modeling
of the task dynamics is that skills with ambiguities can be
learned.
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(a) Standard state representation
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(b) Extended state representation

Fig. 2. GMR output corresponding to the “ampersand-shape” motion.Red
arrows show the direction of the movement.
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