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Abstract—This work presents a probabilistic model for learn- means of a joint probability distributioP(x, ). Then, a

ing robot tasks from human demonstrations using kinesthet probabilistic model of the dynamics of the task is obtained,
teaching. The difference with respect to previous works ishat

a complete state of the robot is used to obtain a consistent & ~ P(|x). Q)
representation of the dynamics of the task. The learning frane- N
work is based on hidden Markov models and Gaussian mixture Where a target velocity for the system can be derived given
regression, used for coding and reproducing the skills. Begfits the current position of the robot end-effector Specifically,
of the proposed approach are shown in the execution of a simgl P(x,) is encoded in an HMM, which defines the task as a
self-crossing trajectory by a 7-DoF manipulator. sequence ofV, “high-level states” (HMM-states).

[. INTRODUCTION When using Eg. (1) as control command, instantaneous

changes in velocities are requested irrespective of theigur

Learning by demonstration endows robots with Capabiliti?{%locity of the system, generating undesired robot beavio

to acquire §k|lls tagght by a human teacher from klnestheg%d forcing the use of high low-level gains trying to minimiz
demonstrations. This work focuses on robot learning of mot ajectory divergences. This was also addressed in [6] by

skills, i.e., encoding the dynamics of a robotic task. Ndiat t roposing a complementary GMR, where the roles of the
learning approaches to encode robot motions are propo‘g(g1 ables (input/output) were swapéd
.C ’

either from a dynamic systems perspective (e.g., dynami
motion primitives [1], [2]) or by means of probabilistic meld & ~ P(x|x), (2)
(e.g., Gaussian mixture models [3]).
In particular, probabilistic approaches have been extehsi
used for learning trajectory-following tasks [4] and reitgn .
acceleration commands.

force-based skills [5]. Nevertheless, a gap in the encoding o .
the tasks is evident in these works, where the dynamics of ttheThese approaches have poor generalization performance in

robot during the execution of the skills is not modeled. lis th ask_s Wh?re the same p95|t|on IS visited along the motian, (€.
. . otion with crossing points), given that the controller man
context, a learning framework based on Hidden Markov mode

(HMM ) and Gaussian mixture regressi@®\MR) is presented correctly discriminate between states. This problem can be
in [6] for the encoding and reproduction of the dynamics gprercome by using high-level information of the task [6Rtth

IS encapsulated in the sequence of HMM-states. In contrast t

a robotic mqtlon. In such vyork the GMR process perforr‘r}lflis approach, this work focuses on the adequate modeling of
as a dynamical system. This feature allows to reproduce tth% task dynamics

task without the explicit dependency of time, which is a key
issue for generalization. However, it is worth noting tHa¢t 1ll. EXTENDED STATE FORHMM-M OTION ENCODING

GMR process is not a dynamical system by itself, and careere we propose to tackle the problem of modeling the
need to be taken when selecting the type of variables that gigamics of a robotic motion task using an appropriate repre
being modeled and the input/output regression used in ord@hation of the task state. Let us defineas the state of the

to obtain a dynamically consistent behavior. In this ale$tra,ack at instant.. The dynamics of the motion is then given by
we propose a redefinition of the state used for codification in

[6]. This new approach allows to model tasks with ambigasitie sk+1 = f(sk), )

results are shown on a 7-DoFs manipulator completing a roR@ticy, is a homogeneous system, i.e., no independent input is
trajectory with crossing points. presented. Given that functighcaptures the evolution of the

Il. BACKGROUND task, the output of Eq.(3) can be used as refere_nce for a low-
level control system that decides the control actiep, (usu-

Ry forces) to be applied to the robot, i.e, = & .
sitons £ € R?® and velocitiesz € R3, collected during y ) PP Pk (8, 84+1)

d . h , ¢ , K Thus, given that a motion is being modeled, the state must
emonstrations, to capture the motion of a given tas l?ﬁ(clude both the position and velocity of the system, namely

This research is partially supported pRALP (FP7-288233) and IntellAct Sk = [zk, Zk]". Moreover, in order to Cfipture its dyqamlps,
(FP7-269959) projects. the HMM should also encode the evolution of the motion (i.e.,

to compute a target positiah given the current velocity. Egs.
(1) and (2) are then combined in an attractor to generate

The approach in [6] uses the robot operational space
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Fig. 1. HMM encoding.Left: HMM-States distribution on the position spagg. Right: HMM-States distribution on the velocity space.

the state ak + 1). The resulting joint probability distribution is provided, the magnitude of the error and the correspandin
is given by control actions increase over time.
P&, Thy Thot 1, Thot1)- 4) A straightforward consequence of this adequate modeling

] o _of the task dynamics is that skills with ambiguities can be
Using an extended state and its increment for the generationg,neqd.

the probability density function leads to a multi-output &M

such that
0.4r b
Tit1, Ty1 ~ P(@h1, Trpa|Bh, ). (%) oal |
Eq. (5) represents the actual dynamics of the task and the <
output of this system can be directly used in an attractoilaim or ) |
to the one in [6], but using dynamically consistent values, oo e ~
Ty = K, (g1 —xr) + Kv(ﬁzk+1 — &k). (6) 05 04 03 %3 01 0 -0.1
The attractor imposes the dynamics of the error between the (a) Standard state representation
desired behavior, proposed by the GMR, and the actual state T
of the robot. Thus, gaing’, and K, can be selected to 0.4 o T ]
determine response time and stability for error regulation 0 N S |
IV. EXPERIMENTS AND RESULTS - ol /»/”’t'\/\/\\ , 1
For demonstration, a 2D motion task using the 7-DoFs S \\/j;><’:\
WAM robot is presented. Fig. 1 shows the motion captured by % L Tmmmee T ‘ ]
an HMM from the teacher demonstrations, including posgion 05 04 03 92 0.1 0 -0.1

and velocities. Note that the “ampersand-shape” has two

crossing points. This skill is learned using both, the stadd

and extended frameworks. The corresponding HMM-statég. 2. GMR output corresponding to the “ampersand-shapetionRed

are plotted on the input space (see Fig. 1). Note that tR&Ws show the direction of the movement.
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