
A novel real-time edge-preserving smoothing filter
An approach to color based prefiltering for efficient real-time image

segmentation

Simon Reich1, Alexey Abramov1, Jeremie Papon1, Florentin Wörgötter1 and Babette Dellen2

1Third Institute of Physics - Biophysics, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077
Göttingen, Germany

2Institut de Robotica i Informatica Industrial (CSIC-UPC), Llorens i Artigas 4-6, 08028 Barcelona, Spain
{sreich, abramov, jpapon, worgott}@physik3.gwdg.de, bdellen@iri.upc.edu

Keywords:
Texture filter, image segmentation, GPU, real-time, edge-preserving

Abstract:
The segmentation of textured and noisy areas in images is a very challenging task due to the
large variety of objects and materials in natural environments, which cannot be solved by a single
similarity measure. In this paper, we address this problem by proposing a novel edge-preserving
texture filter, which smudges the color values inside uniformly textured areas, thus making the
processed image more workable for color-based image segmentation. Due to the highly parallel
structure of the method, the implementation on a GPU runs in real-time, allowing us to process
standard images within tens of milliseconds. By preprocessing images with this novel filter before
applying a recent real-time color-based image segmentation method, we obtain significant improve-
ments in performance for images from the Berkeley dataset, outperforming an alternative version
using a standard bilateral filter for preprocessing. We further show that our combined approach
leads to better segmentations in terms of a standard performance measure than graph-based and
mean-shift segmentation for the Berkeley image dataset.

1 INTRODUCTION

The segmentation of image areas into perceptu-
ally uniform parts continues to be a challenging
computer-vision problem due to the large vari-
ety of textures and materials in our natural en-
vironment. Another important issue is the per-
formance of the methods in terms of computa-
tion time. Many applications would profit largely
from a real-time segmentation method that is able
to handle a broad spectrum of different images.

When grouping image areas into segments a
similarity criterion needs to be defined. How-
ever, similarities can exist on different scales, i.e.,
between adjacent pixels, or groups of pixels, as
it is the case for texture. Segmentation algo-
rithms thus need to take into account similari-
ties occurring at these different scales, which can
be rather costly. Graph-based segmentation al-
gorithms solve this problem through the defini-
tion of an adaptive similarity measure, which de-

pends on the average pixel-to-pixel similarity in-
side growing regions (Felzenszwalb and Hutten-
locher, 2004). The mean-shift segmentation algo-
rithm by (Comaniciu and Meer, 2002) performs
a non-parametric analysis in the feature space
(Paris and Durand, 2007) by iteratively comput-
ing average values of pixels inside a Gaussian
neighborhood. Through this process, feature val-
ues of pixels are successively moved towards the
mean value of a local neighborhood. Upon con-
vergence of the procedure, the feature values are
grouped using a clustering method. While provid-
ing quite satisfactory results, both methods have
the disadvantage that they are based on a sequen-
tial process, and thus are not readily parallizable,
limiting their performance.

Alternatively, the image can be pre-processed
using a smoothing filter for homogenizing tex-
tured areas and making them this way workable
for standard segmentation and clustering meth-
ods. During the past two decades many types

of smoothing filters have been proposed. Most
filters are based on two basic steps: first detect-
ing noise and second removing it. In noise detec-
tion, noise and noise-free areas are distinguished
using a threshold. These thresholds can be ei-
ther learned using a training set of images, as
in support vector machines (Yang et al., 2010)
and neural networks (Muneyasu et al., 1995), or
the threshold may be computed from the sur-
rounding pixel values, as in (Du et al., 2011).
(Lev et al., 1977) identified similar pixels by de-
tecting edges and iteratively replacing the inten-
sity of the pixel by the mean of all pixels in a
small environment. Another approach was pro-
posed by (Tomasi and Manduchi, 1998). The
bilateral filter blurs neighboring pixels depend-
ing on their combined color and spatial distance.
Hence, only texture which has a small deviation
from the mean can be blurred without affecting
boundaries. This leads to a trade-off for highly
textures area: Large blurring factors are needed
to smooth out texture, having the consequence
that edges are not preserved anymore.

In the current work, we present a novel
smoothing filter which is not limited by these
constraints. The basic idea can be described as
follows: Given a measurement window, the fea-
ture values of the pixel values inside the window
are smoothed with a smoothing factor dependent
on the window size. If smoothing decreased the
distance from the average value below a certain
threshold, all pixels in the window are replaced by
their smoothed value and a component that de-
pends on the average value. If smoothing does not
decrease the distance from the mean sufficiently,
it is assumed that a true boundary is located in-
side the window, and the original feature values
are kept. This procedure is repeated for many
different window locations and sizes (optional).
Since the procedures for each window are inde-
pendent from each other, the algorithm can be
easily parallelized. We show in this paper that
the proposed filter leads to improved segmenta-
tions in conjunction with a recent real-time seg-
mentation algorithm based on the superparam-
agnetic clustering of data (Abramov et al., 2012),
and outperforms the bilateral filter on the Berke-
ley database. Importantly, the filter runs in real
time on a GPU, providing a powerful add-on to
the existing segmentation technique, which can
also be applied to video segmentation. We fur-
ther compare our results to the graph-based and
the mean-shift segmentation on the Berkeley seg-
mentation dataset and benchmark (Martin et al.,

2001).

While these segmentation algorithms are color-
based, partitioning could also base on e.g. an ob-
ject classification library as in (Farmer and Jain,
2005) or depth information as in (Cigla and Ay-
din Alatan, 2008). These algorithms need either a
training phase, a set of fixed parameters or other
pre-set information. Other than segmentation
and image smoothing, texture and noise filters
are found in many other applications including
denoising (Elad, 2002; Jiang et al., 2003), tone
management (Farbman et al., 2008; Durand and
Dorsey, 2002), demosaicking (R. and W., 2003;
Farsiu et al., 2006) or optical flow estimation
(Xiao et al., 2006; Sun et al., 2010).

The paper is organized as follows. In section
2 we introduce the proposed filter and describe
the processing flow. In section 3 we present ob-
tained segmentation results and evaluate the per-
formance of the method quantitatively. In section
4 we conclude our work.

2 APPROACH

2.1 Proposed Filter

A diagram of the proposed filter is given in figure
1. First the image Φ is divided into subwindows
Ψ of the size N = k · l. Each subwindow is shifted
by one pixel relative to the last one, such that
there are as many subwindows as there are pixels
in the image. Then, the pixels inside each sub-
window are smoothed. A distance δi,j for each
pixel inside the subwindow and a mean distance
δm are computed in the color domain to obtain
a measurement for noise, as described below. A
user selected value τ defines a threshold between
noise or texture and a color edge. If noise is de-
tected, a weight ωi,j is calculated which moves
the color values of the respective pixel towards
the mean color of the subwindow.

1. Smoothing and division into subwin-
dows. The image Φ holds the RGB color vec-
tors ϕi,j = (ϕr

i,j ϕ
g
i,j ϕ

b
i,j)

T . Beginning in the
upper left corner, the pixels ϕi,j to ϕi+k,j+l are
copied into a subwindow Ψ of size k × l holding
the color vectors ψr,s. (i j)T is in the range of the
image size, while (r s)T is in the range of the sub-
window size k × l. Each subwindow is smoothed

input image Φ filter segmentation symbol-like
descriptors

1. smoothing
and dividing into
subwindows Ψi,j

2. compute distance
matrix ∆i,j and δmi,j

3. apply threshold τ
4. accept smoothed

values or com-
pute weight ωi,j

1. smoothing
and dividing into
subwindows Ψi,j

2. compute distance
matrix ∆i,j and δmi,j

3. apply threshold τ
4. accept smoothed

values or com-
pute weight ωi,j

Figure 1: Schematic of the proposed filter.

using a Gaussian filter function to remove outliers
which would distort the calculation of the mean
as described below.

2. Computation of the distance matrix.
The arithmetic mean of Ψ is calculated as

ψm =
1

N

(∑
r,s

ψr
r,s

∑
r,s

ψg
r,s

∑
r,s

ψb
r,s

)T

(1)

where N = k ·l denotes the size of the subwindow.
The pixelwise distances

δr,s = |ψr,s −ψm|2, (2)

as well as the resulting mean pixelwise distance
for each subwindow Ψ, is computed to

δm =
1

N

∑
r,s

δr,s. (3)

3. Thresholding. δr,s is now used for low level
noise detection. Small scaled color variations will
result in a low variance δr,s values since all color
values are close to the mean color value. In case of
a sharp color edge a large δr,s is obtained. There-
fore, we can use a threshold τ to identify noisy
pixels, yielding

ψr,s =

{
1 δr,s ≤ τ and δm ≤ τ,
0 else,

(4)

where 1 stands for a noisy or textured pixel.

4. Computation and updating of RGB val-
ues. At every iteration a global, image wide
weight ωi,j is computed for normalization. A sub-
window wide weight, consisting of the squared
distance of the user based threshold τ and the
pixelwise distance δr,s, is used for updating pixel
values within one subwindow. Please note that
due to the sliding subwindows each pixel gets up-
dated N = k · l times. The global weight ωi,j is
initialized with zeros and updated according to

ωi,j ←− ωi,j + ψr,s · (τ − δr,s)2 , (5)

where the ωi,j define the matrix Ω. For the up-
dated pixel values a third image frame Θ of the
size of the original image is needed. Θ is initalized
with zeros and updated according to

θi,j ←− θi,j + ψr,s · (τ − δr,s)2 ·ψm. (6)

Again, every pixel value is updated N times.
When the algorithm has reached the last itera-
tion, all updated pixels Θ are added to the orig-
inal image Φ and normalized using Ω. Even
though it is highly improbable that any entry in
Ω equals zero, 1 is added to every entry. As in
general ωi,j � 0 and specifically ωi,j ≥ 0 is true,
this does not change the outcome significantly.
This way the output is moved to the mean color
value ψm. Two examples for subwindow arrays
can be seen in figure 2(a) and 2(b) (grayscaled
input subwindow on the left side, output subwin-
dow on the right side). In figure 2(d) an example
for noisy pixels in a subwindow is shown, which
corresponds to the image in 2(a). The pixelwise
distance as well as the mean pixelwise distance
are below the threshold τ , and the pixel color val-
ues are shifted towards the mean color values. In
figure 2(e) a noisy step function is shown, which
relates to image 2(b). Here τ is smaller than the
distances and the pixels are not updated to the
mean value. Since we use sliding subwindows, the
small scaled noise in pixels 0 to 4 and 5 to 9 will
be corrected but the edge will be preserved.

2.2 Formulation of the proposed
filter in the continuous domain

Let f(x) define the smoothed input image, h(x)
the output image, c(ζ, x) measures the geomet-
ric closeness and s(f(ζ), f(x)) the photomet-
ric similarity. As we want to address specifically
color images, bold letters refer to RGB-vectors.
In this section | · | also refers to per-element-
multiplication instead of vector multiplication. In
our approach we first want to detect noise and
texture based on a user defined parameter τ . If
noise or texture is detected, we want to remove it,
and in case of a color edge, we want to preserve

(a) (b)

threshold τ
pixel color value ψr,s

mean pixel color value
pixelwise color distance δr,s

mean pixelwise color distance δm
Output Values

0
5

10
15
20
25
30

0 1 2 3 4 5 6 7 8 9

gr
ay
sc
al
e
va
lu
e

pixel number

(d)

0
20
40
60
80

100

0 1 2 3 4 5 6 7 8 9

gr
ay
sc
al
e
va
lu
e

pixel number

(e)
Figure 2: 2(a) Low level white noise (left) in 10 pixels is used as input for filtering. The right bar shows the
same 10 pixels after filtering. The computational steps involved in this image can be seen in figure 2(d). 2(b) A
noisy step function is used for input. After filtering input and output are indentical to preserve the edge. The
computational steps are shown in figure 2(e). 2(d) The pixelwise and mean pixelwise distance are both below
the threshold τ . The output is filtered according to (4) and moved to the mean color. 2(e) The pixelwise and
mean pixelwise distance are above the threshold and the output is not filtered. The edge is therefore preserved.

the edge. Therefore, we define a mean value

m(x) = k−1m (x)

∫ ∞
−∞

∫ ∞
−∞

f (ζ) · c (ζ, x) dζ

km(x) =

∫ ∞
−∞

∫ ∞
−∞

c (ζ, x) dζ (7)

and a distance function

d (f (x) , m (x)) = |f (x)−m (x)| , (8)

which results in the pixelwise distance. The mean
value m(x) now holds the average color value
inside a spatial neighborhood of x and d holds
the color distance from the pixel to the average
m(x). If the spatial neighborhood holds only
small scaled noise or texture we expect a low pix-
elwise distance d, as well as a low average pixel-
wise distance in the spatial neighborhood c:

p (x) = k−1p

∫∫ ∞
−∞

d (f(ζ), m(x)) c (ζ, x)dζ

kp(x) =

∫∫ ∞
−∞

c (ζ, x)dζ. (9)

Therefore, we can make a binary decision us-
ing a threshold τ as

h(x) = k−1R (x) ·{∫∫∞
−∞ f (ζ) · c (ζ, x) · s (ζ, x) dζ p, d ≤ τ∫∫∞
−∞ f (ζ) · c (ζ, x) dζ else,

(10)

where kR is the respective normalization. We
used a 2D step function

c (ζ, x) =

{
1 x− a ≤ ζ ≤ x+ b

0 else
, (11)

using the conditions a, b, e ∈ R2
≥0|a+ b = e with

a fixed e. This generates a rectangle of the size
e around x. As this definition is not feasable in
the continuous domain as it generates a nonfinite
number of subwindows to calculte, in the discrete
case however every pixel is checked and updated
according to its neighborhood e. As a measure
for similarity we used a squared distance

s (x) = (τ − d(f(x), m(x)))2|m(x)| (12)

and the euclidian norm. In case of texture de-
tection the output is moved to the mean. The
maximum size of the step can be adjusted via the
threshold τ .

2.3 Real-time Implementation

Real time can only be achieved by running the
proposed technique on parallel hardware, because
the computation of multiple subwindows is very
intensive on traditional CPUs. Once the image Φ
is read, values for the subwindows Ψ can be com-
puted independently. For accelaration we use a
graphics processor unit (GPU) and an example

10 15 20 25 301 5

10

15

1

5

(a) (b)
Figure 3: 3(a) Example for parallelization on a GPU. One block loads 32 × 16 px into shared memory where
each subwindow, shown in red, is computed by one thread. The next block would start at pixel 26. For the
green pixels the weight ω will be updated. 3(b) We used periodic mirrored boundary conditions as it leads to a
good representation of the average noise at the border.

implementation can be seen in figure 3(a). One
block on the GPU starts 32×16, and each of them
loads one pixel into shared memory. Each thread
calculates the pixelwise distances for one subwin-
dow Ψ (marked red for two example threads). As
shown in white several threads remain idle after
copying. Since we are interested in the average
noise, we chose periodic mirrored boundary con-
ditions, which is illustrated in figure 3(b).

In our approach the images are filtered twice
using subwindows of size k = 8, l = 4 and k = 4,
l = 8. Two runs are used for symmetry purposes
and better filter results. As ∆ and δm are cal-
culated over each subwindow, this also sets the
maximum size of texture that is detected. We
tested two implementations of the algorithm: The
CPU measurement refers to a single-threaded im-
plementation using an AMD Phenom 9550 quad-
core processor at 2,2GHz using one core and 4GB
RAM. The GPU version is executed on an Nvidia
GTX580 graphics card using 512 cores and 1.5GB
device memory.

3 EXPERIMENTAL RESULTS

3.1 Filter Results

In figure 5 a visual comparison of different thresh-
old levels is shown. Above a threshold of τ = 35
the output does not change much, which is easily
understood when looking at equation 4. Above a
certain threshold level every pixel is identified as
either noise or texture and smoothed out. There-
fore, it is not necessary to adapt the user based
threshold τ to different noise levels. As shown
below, there is a best value for τ for non-artificial
images.

Also in this work noise and texture is treated
equally. But contrary to a denoising filter we do
not want to restore a noisy image, but fill out
large areas with small color variations using the
mean color. This includes that noise, but also
larger structures like texture, are smoothed out.
As we are interested in the perception-action loop
of robots and improvement of color-based seg-
mentation results, the latter one is more impor-
tant to the results.

In figure 4(a) we compare the proposed fil-
ter to a bilateral filter (Tomasi and Manduchi,
1998). As a bilateral filter only smoothes the im-
age based on the spatial and color distance, it
either does not preserve the edge, but smoothes
the texture, or preserves the edge and does not
filter the texture.

3.2 Segmentation Results

We filtered all images from the Berkeley Segmen-
tation Dataset and Benchmark (Martin et al.,
2001) using a large variety of different thresholds.
Afterwards the filtered images were segmented
and compared with the ground truth images from
the database. The performance was evaluated
using the precision and recall method following
(Martin et al., 2004). Given an original image
Φ, its machine segmentation S′, and the corre-
sponding ground truth S, precision is defined as
the fraction of boundary pixels in the segmented
image S′ that also occur in the ground truth S
over the total number of boundary pixels in S′.
It is therefore sensitive to over-segmentation. Re-
call measures the fraction of boundary pixels in
S which are also found in S′. It is sensitive to
under-segmentation. The results shown are the
arithmetic means of all values computed.

(a) (b) (c)

0

100

200

0 100 200 300 400

co
lo
r
va
lu
e

pixel nr

r
g
b

(d)

0

100

200

0 100 200 300 400

co
lo
r
va
lu
e

pixel nr

r
g
b

(e)

0

100

200

0 100 200 300 400

co
lo
r
va
lu
e

pixel nr

r
g
b

(f)
Figure 4: 4(a) Artificial input image with three features: a green color edge, texture is simulated using red
squares 7 px wide, and white noise is added. A cross section is shown in white and can be seen in figure 4(d).
4(b) Bilateral Filter. For an arbitrary large kernel of 20 px in the space domain and using σc = 200 for the color
domain all texture and noise is filtered. The color edge now has a width of 18 px. A cross section can be seen in
figure 4(e). 4(c) Proposed texture filter. The edge remains sharp and all texture, as well as noise is smoothed
out. A cross section can be seen in figure 4(f). 4(d) Cross section of original image. A green color step, as well as
texture and noise can be seen. 4(e) Cross section of the bilateral filter. The color edge is not preserved, texture
is removed, but some noise remains. 4(f) Cross section of proposed filter. The green color edge is preserved and
texture, as well as all noise is removed.

Figure 6(a) shows the precision and recall val-
ues for the Metropolis algorithm using constant
segmentation parameters for various threshold
values τ . Above a threshold of τ = 35 the values
remain steady. The weighted mean of precision
and recall indicate that best results are obtained
for a threshold of τ = 30. This behavior was
also observed using different segmentation param-
eters and may also be seen in the filtered images
shown in figure 5. Also note that precision is
considerably lower than recall. While the ideal
value would be 1 for both, the segmented images
are extremely rich on texture, resulting in over-
segmentation. The threshold is computed using
the Berkeley Segmentation Dataset and Bench-
mark which offers a wide range of heavily tex-
tured natural images. However, our experiments
show that τ = 30 may be considered a good value
for all scenes offering good color contrast. As in
low contrast scenes the color segmentation will
most likely fail, we do not take it into further
consideration.

In figure 6(b) we show the segmentations for
different values of the parameter α1 using the

Metropolis algorithm. The parameter α1 is a sys-
tem parameter used to increase or decrease the
coupling strength in the clustering model. Thus,
it influences the total number of segments. Other
parameters were taken from (Abramov et al.,
2012). Best results in the trade-off between over-
and under-segmentation were achieved for α1 =
1.0.

Next, we compare our method with the graph-
based segmentation, mean-shift algorithm and an
alternative version of the Metropolis algorithm
using the standard bilateral filter for smooth-
ing (see figure 6(c)). While the Metropolis al-
gorithm without filter performs better than the
graph-based and mean shift segmentation, preci-
sion is improved when using the proposed filter.
Results are shown for different α1 values for the
Metropolis algorithm. The value for α1 = 1.0
is marked with a circle. For graph-based seg-
mentation we used the combination of parame-
ters recommended by the authors for segmenta-
tion of arbitrary images, see (Felzenszwalb and
Huttenlocher, 2004). The mean shift algorithm
of (Paris and Durand, 2007) uses three input pa-

Figure 5: Effect of different thresholds. For low thresholds the image is more blurred, after τ = 30 it does not
change much. From top left to bottom right: τ = 5, 20, 30, 40, 60, 80.

0,2

0,4

0,6

0,8

1

0 20 40 60 80

p
re
ci
si
on

/
re
ca
ll

Threshold τ

precision
recall

(a)

0,4

0,5

0,6

0,7

0,8

0,9

1

0,28 0,32 0,36 0,4

re
ca
ll

precision

α1 = 0.8

α1 = 0.9

α1 = 1.0

α1 = 1.1

α1 = 1.2

α1 = 2.0

(b)

0,5

0,6

0,7

0,8

0,9

1

0,2 0,25 0,3 0,35 0,4

re
ca
ll

precision

metropolis without filter
metropolis with bilateral filter
metropolis with proposed filter

graph-based
mean shift

(c)
Figure 6: 6(a) Metropolis algorithm performance with fixed parameters using filtered images for various thresh-
olds. 6(b) Estimating best segmentation parameters for a fixed threshold τ = 30 using filtered images. 6(c)
Comparison between graph-based, mean shift and Metropolis algorithm. Metropolis segmentation using α1 = 1.0
is marked with a circle.

rameters: the Gaussian parameters σc and σs
for color and spatial domain respectively and the
persistent threshold τp. We determined experi-
mentally the combination σc = 2, σs = 8 and
τp = 1 for best results. On purpose, we did not
combine the mean-shift and the graph-based al-
gorithm with the proposed filter, because both
algorithms already perform their own preprocess-
ing.

A visual comparison can be seen in figure 7.
The proposed filter greatly reduces noise and tex-
ture and achieves a good trade-off between over-
and under-segmentation as compared to the other
methods. A comparison for a video sequence us-
ing the metropolis algorithm may be seen in figure
8. Labels are kept during the sequence and are
encoded using different colors: both mean-shift
and graph based segmentation do not use fixed
label numbers for objects. The filter reduces the
over-segmentation in textured areas, e.g. the suit-
cases, the pad, or the plant.

For robotic applications it is very important
that the labels of image segments do not change
throughout a video stream. Currently only very
few segmentation algorithms running in real-time
do achieve this (Abramov, 2012), among them the
Metropolis algorithm.

3.3 Time Performance Results

We computed the average frame rates for images
of different sizes in table 1. For comparison pur-
poses, images from the Berkeley Segmentation
Dataset and Benchmark were used (Martin et al.,
2001). As shown in section 2 the complexity is
independent of the threshold used. You can see
that the GPU version is roughly 30 times faster
than the CPU approach, independent of the im-
age size. For images of size 480×320 px real-time
processing of movies is achieved.

4 CONCLUSION

In this paper, we presented a novel real-time edge
preserving smoothing filter, which replaces noisy
and textured areas by uniformly colored patches.
The performance of a recent image segmentation
method could be significantly improved using the
filtered images. The time performance makes the
filter applicable to video streams, as shown in fig-
ure 8, and hence can be used in the future as

Image Size CPU GPU
[px] [Hz] [s] [Hz] [ms]

240× 180 3.03 0.33 80.38 12.4
320× 240 1.66 0.60 48.00 20.8
480× 320 0.80 1.25 23.81 42.0
640× 480 0.40 2.50 12.35 81.0
800× 600 0.24 4.17 7.65 130.7
1024× 768 0.15 6.67 4.24 235.9

Table 1: Time performance for images of different
sizes. The test image was taken from the training
set of the Berkeley Segmentation Dataset and Bench-
mark (Martin et al., 2001) and is also used in figure
3(b). 100 measurements were taken and averaged.

a component inside the perception-action loop of
robotic applications. The proposed method im-
proves the precision and recall trade-off of ob-
tained segmentations. Furthermore, the detected
features could be used for classification purposes
in other applications.

5 Acknowledgement

The research leading to these results has received
funding from the European Community’s Seventh
Framework Programme FP7/2007-2013 (Specific
Programme Cooperation, Theme 3, Information
and Communication Technologies) under grant
agreement no. 269959, Intellact. B. Dellen ac-
knowledges support from the Spanish Ministry of
Science and Innovation through a Ramon y Cajal
program.

REFERENCES

Abramov, A. (2012). Compression of the visual
data into symbol-like descriptors in terms of the
cognitive real-time vision system. PhD thesis,
Georg-August-Universität Göttingen.

Abramov, A., Pauwels, K., Papon, J., Wörgötter, F.,
and Dellen, B. (2012). Real-time segmentation
of stereo videos on a portable system with a mo-
bile gpu. IEEE Transactions on Circuits and
Systems for Video Technology.

Cigla, C. and Aydin Alatan, A. (2008). Depth as-
sisted object segmentation in multi-view video.
In 3DTV Conference: The True Vision - Cap-
ture, Transmission and Display of 3D Video,
2008, pages 185 –188.

Comaniciu, D. and Meer, P. (2002). Mean shift: a
robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 24(5):603 –619.

(a) (b) (c) (d)
Figure 7: Visual comparison of several threshold levels. 7(a) Original image. 7(b) Graph based segmentation.
7(c) Mean-shift segmentation. 7(d) Proposed filter in connection with metropolis algorithm.

(a) (b) (c) (d)
Figure 8: Visual comparison of a short video sequence. 8(a) Original frames from sequence. 8(b) Filtered frames
from sequence using the proposed filter. 8(c) Segmentation using the Metropolis algorithm without filter. 8(d)
Segmentation using the Metropolis algorithm and the proposed filter. There is significant less over-segmentation
in textured areas (e.g. suitcase, pad).

Du, W., Tian, X., and Sun, Y. (2011). A dynamic
threshold edge-preserving smoothing segmenta-
tion algorithm for anterior chamber oct images
based on modified histogram. In 4th Interna-
tional Congress on Image and Signal Processing
(CISP), volume 2, pages 1123 –1126.

Durand, F. and Dorsey, J. (2002). Fast bilateral fil-
tering for the display of high-dynamic-range im-
ages. ACM Trans. Graph., 21(3):257–266.

Elad, M. (2002). On the origin of the bilateral filter
and ways to improve it. IEEE Transactions on
Image Processing, 11(10):1141 – 1151.

Farbman, Z., Fattal, R., Lischinski, D., and Szeliski,
R. (2008). Edge-preserving decompositions for
multi-scale tone and detail manipulation. ACM
Trans. Graph., 27(3):67:1–67:10.

Farmer, M. and Jain, A. (2005). A wrapper-based
approach to image segmentation and classifica-
tion. IEEE Transactions on Image Processing,
14(12):2060 –2072.

Farsiu, S., Elad, M., and Milanfar, P. (2006). Multi-
frame demosaicing and super-resolution of color
images. IEEE Transactions on Image Process-
ing, 15(1):141 –159.

Felzenszwalb, P. and Huttenlocher, D. (2004). Effi-
cient graph-based image segmentation. Interna-
tional Journal of Computer Vision, 59:167–181.

Jiang, W., Baker, M. L., Wu, Q., Bajaj, C., and Chiu,
W. (2003). Applications of a bilateral denoising
filter in biological electron microscopy. Journal
of Structural Biology, 144(1–2):114 – 122.

Lev, A., Zucker, S. W., and Rosenfeld, A. (1977).
Iterative enhancemnent of noisy images. IEEE
Transactions on Systems, Man and Cybernetics,
7(6):435 –442.

Martin, D., Fowlkes, C., and Malik, J. (2004). Learn-
ing to detect natural image boundaries using lo-
cal brightness, color, and texture cues. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 26(5):530 –549.

Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001).
A database of human segmented natural images
and its application to evaluating segmentation
algorithms and measuring ecological statistics.
In Proc. 8th Int’l Conf. Computer Vision, vol-
ume 2, pages 416–423.

Muneyasu, M., Maeda, T., Yako, T., and Hinamoto,
T. (1995). A realization of edge-preserving
smoothing filters using layered neural networks.
In IEEE International Conference on Neural
Networks, Proceedings., volume 4, pages 1903 –
1906 vol.4.

Paris, S. and Durand, F. (2007). A topological ap-
proach to hierarchical segmentation using mean
shift. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1 –8.

R., R. and W., S. (2003). Adaptive demosaicking. J.
Electron. Imaging, 12(12):633.

Sun, D., Roth, S., and Black, M. (2010). Secrets
of optical flow estimation and their principles.

In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2432 –2439.

Tomasi, C. and Manduchi, R. (1998). Bilateral fil-
tering for gray and color images. In Sixth Inter-
national Conference on Computer Vision, pages
839 –846.

Xiao, J., Cheng, H., Sawhney, H., Rao, C., and Is-
nardi, M. (2006). Bilateral filtering-based opti-
cal flow estimation with occlusion detection. In
Leonardis, A., Bischof, H., and Pinz, A., editors,
Computer Vision – ECCV 2006, volume 3951 of
Lecture Notes in Computer Science, pages 211–
224. Springer Berlin / Heidelberg.

Yang, Q., Wang, S., and Ahuja, N. (2010). Svm
for edge-preserving filtering. In IEEE Confer-
ence on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1775 –1782.

