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Abstract— We present a novel method for the robotized
probing of plant leaves using Time-of-Flight (ToF) sensors.
Plant images are segmented into surface patches by combining
a segmentation of the infrared intensity image, provided by
the ToF camera, with quadratic surface fitting using ToF
depth data. Leaf models are fitted to the boundaries of the
segments and used to determine probing points and to evaluate
the suitability of leaves for being sampled. The robustness of
the approach is evaluated by repeatedly placing an especially
adapted, robot-mounted spad meter on the probing points
which are extracted in an automatic manner. The number of
successful chlorophyll measurements is counted, and the total
time for processing the visual data and probing the plant with
the robot is measured for each trial. In case of failure, the
underlying causes are determined and reported, allowing a
better assessment of the applicability of the method in real
scenarios.

I. INTRODUCTION

The automatic monitoring and maintenance of large
botanic experimentation fields, e.g., for plant phenotyping,
is a new research topic in agricultural robotics with many
potential applications. For evaluating the state of a plant dur-
ing growth, measurements and samples from leaves must be
regularly taken and some pruning may need to be performed
[1], [2]. Automation of these tasks with robots is however
highly challenging due to the complex and deformable nature
of plants, which pose problems for (i) recognition and local-
ization of targets, i.e., leaves, given the varying appearances
of plants, and (ii) the probing and handling of the plant
under weakly constrained conditions in natural environments,
among others.

Along this line, the European project GARNICS
(Gardening with a Cognitive System) aims at 3D sensing
of plant growth and building perceptual representations for
learning the links to actions of a robot gardener. The project
encompasses both the long-term learning of treatments to
achieve specific goals (maximum leaf growth, homogeneous
plant growth) as well as the short-term robot interaction with
plants (for leaf surface measurement, addressing occlusion,
probing). Since actions performed on plants (like watering
or nutrient delivery) have strongly delayed effects, long-term
learning is being addressed by extracting relevant cause-
effects from weakly correlated inputs and outputs. In this
paper we focus on the short-term robot activity required to
collect such outputs (leaf measurements) along the experi-
mentation period.
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More precisely, we address in this work the problem of
accurately placing a probing tool, i.e., a spad meter, on a
leaf in order to measure the chlorophyll content. Challenges
arise from the fact that leaves have to be segmented and rec-
ognized in a robust manner. Furthermore depth information
needs to be acquired for placing the tool on the target. Our
experimental platform consists of a robot arm equipped with
a ToF sensor [3] and a spad meter, which are both mounted
on the end-effector of the arm. The emphasis of this work is
on sensing-for-action methods developed to segment leaves,
fit quadratic surfaces to them, determine best candidates for
probing, move the cameras to get a closer view, determine
a suitable sampling point on the chosen leaf, and finally
reach this point with a robot mounted tool. Intensity-based
segmentation is complemented with depth data supplied by
a ToF camera to delimit and fit surface patches to the leaves.

In this paper, the main focus is on the probing of the leaf.
A next-best view algorithm for the system has been described
in detail in [4].

II. RELATED WORK

The problem of leaf segmentation has been addressed
before by Quan et al. (2006), who proposed an image-based
plant modeling system based on structure from motion, but
which requires user interaction in the segmentation procedure
to delineate some leaves [5]. In another related work, leaves
were segmented from combined color images and stereo
depth, and subsequently classified using the normalized cen-
troid contour distance [6]. Different from these approaches,
we extract leaves from ToF data and infrared-intensity im-
ages. Segmentation is fully automatic and based on a novel
depth-segmentation algorithm which can be applied to sparse
or noisy depth data and cope with curved surfaces. Another
difference is that leaf models are fitted explicitly which
allows localizing grasping points.

The proposed system for automated plant probing is
related to vision-based robotic systems for fruit and vegetable
picking, which have been proposed in the past for the
automation of harvesting tasks [7], [8] (for a review and
complete list of publications, see [9]). Commonly these
systems first process and segment the data in order to identify
and represent the target. Based on this representation, a robot
action, i.e., cutting or grasping, is executed. Often the image
processing task is eased by fixing the environment in a
specific manner. For example, in a fruit-detachment system
developed by Feng et al. (2008) strawberries were grown on
a uniformly colored surface to simplify image segmentation
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Fig. 1. A. WAM arm used in the experiments holding the ToF sensor and
spad meter to measure the chlorophyll content of leaves. B. Probing of a
Pothus leaf.

[7]. In our system the environment is less constrained, and
the proposed computer-vision system is thus more complex.

III. OVERVIEW OF THE METHOD

Leaf probing is conducted following a two-stage approach
(see Fig. 2). From a general view of the plant, the depth and
infrared images are acquired with a ToF camera (Section IV),
and are segmented into their composite surfaces as described
in Section V. Leaf-model contours are fitted to the extracted
segments, the validity of the fit and the graspability of the leaf
are measured, and the segments are ranked (see Section VI).
A target leaf is selected and the robot moves the camera to a
closer, fronto-parallel view of it. If the leaf is still considered
to be suitable for being sampled based on these criteria, the
probing tool is placed onto the leaf following a two step path.
If the target is considered to be non-suitable for probing,
another target leaf (from the general view) is selected and
the procedure is repeated.

IV. 3D IMAGE ACQUISITION

Depth measurements are acquired by a ToF camera. This
type of sensor has the main advantage of providing registered
depth and infrared-intensity images of a scene at a high
frame-rate. ToF cameras use the well-known time-of-flight
principle to compute depth. The camera emits modulated

Move to initial far position and acquire
depth/IR images

Extract and evaluate
potential target leaves

Select target
leaf

Move robot to close, frontal view of
target leaf and acquire depth/IR images

Extract target leaf and grasping points

( Sample leaf in two-step path }

Fig. 2. Flow diagram of the suggested probing procedure (see Section III).
In this paper, the main focus is on the probing procedure of the method.

infra-red light in order to measure the travelling time between
the known emitted waves and the ones reflected back over
the objects in the scene.

ToF cameras have two main drawbacks: low resolution
(e.g. 200x200 pixels for a PMD CamCube 3.0 camera)
and noisy depth measurements due to systematic and non-
systematic errors [10]. On one hand, low resolution can be a
big problem for large environment applications, but it does
not have such a negative impact when the camera is used at
close ranges as it is our case. On the other hand, noisy depth
measurements due to non-systematic errors get amplified by
working in such a short range. Mainly the ones due to multi-
ple light reception and light scattering. Systematic errors get
highly reduced by calibration procedures and non-systematic
ones can be reduced using filtering techniques [11].

Here we apply two filters to remove undesired wrongly
estimated point depths and noise: a jump edge filter and an
averaging filter [12]. Sometimes these false measurements
are indicative of possible model misinterpretation or object
occlusion and, therefore, their detection and 3D localization
in the scene may provide valuable information for computing
the next-best-view that can help to disambiguate or improve
occluded leaf visibility and pose estimation [13].

V. DEPTH SEGMENTATION

In this section we describe an algorithm for segmenting
the sparse and noisy depth data measured by the ToF camera



into surface patches in order to extract task relevant image
regions, i.e., leaves. The method consists of the following
steps:

1 Infrared-intensity segmentation. The infrared-intensity
image (to which we will from now on refer as intensity
image) is segmented into regions using a standard
segmentation algorithm, yielding segments s;. Details
can be found in [14]. Segmentations are obtained for
parameters £ = 150, o = 0.5 and min = 100.

2 Model fitting. For a given segment s; we perform a
minimization of the mean square distance

Ei=1/NY (2 — 2jm)’ (1)
J

of measured depth points z;,, from the
estimated model depth z; = fi(x;,y;), where
filzj,y;) = ax} + by + cxj + dy; + e is the
data-model function and NNV is the number of measured
depth points in the area of segment s;. Surfaces are
described by five parameters a, b, ¢, d, and e.

3 Building a segment graph. For each image segment,
the boundary points are extracted. Two segments
are considered neighbors if some of the respective
boundary points are less than d3p = 5 cm apart. The
segments define the nodes V' of the segment graph
(V,e). We further assign a weight to each edge of
the graph by measuring the pairwise dissimilarity eq
between the neighboring segments.

4 Segment dissimilarity. We define a dissimilarity mea-
sure between two segments s; and s; by computing the
fitting errors

Eijy=1/n: > [fil,y) = 2(z,9) (2)
pPES;
and
Ejji=1/n; Y [filz,y) — 2(2, ) 3)
pES;

where z(x,y) is the measured depth at (x,y), f;(z,y)
and f;(x,y) are the estimated depth value using surface
models at (z,y), and n; and n; are the number of
points in segment s; and s;, respectively. The smaller
error is selected and defines the edge dissimilarity eq
between the neighbors.

5 Graph based clustering. The pairwise dissimilarities
between segments are used to sort the graph edges e;;
in order of increasing dissimilarity. Two segments are
merged if their edge dissimilarity eq < dmerge, Where
dmerge = 15 cm? is a parameter. After a merge, the
edge dissimilarities and surface models for all neigh-
bors of the affected segments are updated. Working
consecutively along the ordered list, preference is given
to merges of segments with large similarity, similar to

Kruskal’s algorithm for finding the minimum spanning
tree of a graph [15].

The whole method requires currently about ~ 2 s to
segment an image, to fit surface models, and to computed
probing points using an implementation integrated in ROS.

VI. EXTRACTION OF GRASPING POINTS

We assume that the procedure described above delivers
segments that correspond to leaves of the plant. This assump-
tion may not always hold, but it is a good enough working
hypothesis. The grasping point should lie within the part of
the leaf that points away from the stem of the plant. This
way, the risk of collisions with the stem and other leaf parts
can be reduced. We further want to approach the leaf from
the side to maximize the touched leaf area. For this purpose,
a leaf-specific contour needs to be fitted to the leaf segment
boundary in order to map leaf-specific grasping points along
the segment boundary.

We extract the outer 2D boundary C; of segment 4,
consisting of a set of points {z,y, z}. For each plant type,
we have extracted the leaf boundary which is characteristic
for the specific plant. We smooth the boundary points with
a Gaussian function. The resulting values provide a set of
weighted boundary points {z,y,w},,, defining our model
boundary C,,. The z-value is constant and can be ignored,
since the viewing direction of the camera is assumed to be
aligned with the z-axis. The distance of the transformed
boundary to a model boundary for a set of four transfor-
mation parameters (scaling, rotation, translation) provides a
minimization criteria. Using a Nelder-Mead simplex search,
the transformation parameters are determined.

Once the segment contour has been fitted to the model
contour, we can identify grasping points. We assume that
predefined grasping points are provided together with the leaf
contour model, as illustrated in Figure 3, lower panel. For
each model grasping point, we find the point on the segment
contour CI™ that has the smallest distance to the model
grasping point. Together with the resulting grasping point
Xy = (4,Yg, Z¢)i» We also provide the validity measure of
the fit v;.

We further compute the surface normal of the leaf using a
principal components analysis. From this, the orientation of
the tool relative to the leaf both for moving to a close view
and for aligning the tool is determined.

VII. EXPERIMENTAL SETUP

The experimental setup includes a PMD CamBoard Time-
of-Flight camera rigidly attached to the last link of a Barrett
WAM arm (Fig. 1). As can be observed, the camera is
displaced from the robot end-effector position to leave room
for a spad meter we have adapted to take samples of some
selected leaves.

We have opted for a configuration where the tool is outside
the field of view of the camera. This implies that, during the
robot motion from the close view of the leaf to the placement
of the tool, the leaf is not in the camera field of view, and
the motion is then performed in open loop. Implicitly we are
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Fig. 3. Schematic of the leaf-extraction algorithm. ToF data (depth

and infrared intensity) are acquired and the infrared-intensity image is
segmented and surface models are fitted to the segments. A segment graph
is constructed and a graph-based segment merging procedure is employed
having the goal of finding the segments and surface models which fit the
data best. Final segment contours are fitted to predefined model contours
and grasping points are determined.

assuming that the leaf will not move and that the robot has
enough precision along this small motion.

The robot and plant initial relative configuration assures
that the plant’s region of interest is reachable by the robot’s
tool. In the same way that plant position is guaranteed to be
inside the field of view of the camera’s initial pose. In the
close view, the camera is placed in a frontal configuration at
30 centimeters of the localized leaf.

Since the camera system is attached to the end-effector
of the robot, the current position of the camera and, con-
sequently, its measurements can be determined from the
robot configuration. We use an implementation of the inverse

Fig. 4. Robot motion. Transformations involved in the computation of the
desired robot position Hpro from the current position Hpgq, the hand-eye
calibration H¢, the observed leaf position from the camera Hp,; and the
desired target position Hr,o.

kinematics of the manipulator using the KDL library to
obtain the cartesian position of the tool center point (TCP)
Hpg; in the space of the robot. The hand-eye calibration of
the camera with respect to the TCP Hc has been computed
off-line. By concatenating transformation matrices, we can
express every point cloud in the robot’s coordinate frame.
Hence, once the plant leaves have been segmented and
properly localized, the robot tool can be correctly placed over
the desired leaf to be sampled. We use the same approach to
compute the desired position of the robot in the two different
tasks: next view and probing. For illustration, see Fig. 4.

We have found that the best orientation for next view
sensing is to place the camera system perpendicular to the
leaf surface. Additionally, with this position we aim to
minimize the difference in depth of the point cloud, as ToF
cameras exhibit a depth error that depends on the current
distance [16].

VIII. LEAF PROBING AND CHLOROPHYLL
MEASUREMENTS

The main focus of this work is the assessment of the
robustness of the probing procedure. For this we assume
that the robot has been moved such that the camera is in
a fronto-parallel position and at a distance of 30 cm with
respect to the target leaf surface. Moving to a closer, fronto-
parallel view of a leaf allows better verification of suitable
leaves for probing and thus also a better determination of
grasping points. For this purpose the validity of selected
target segments for different view points using both a model
leaf (cut from paper board) and real leaf was evaluated.
We observed that the validity decreases with increasing
angle, i.e., the further we move away from the fronto-
parallel position, the more difficult it becomes to recognize
the leaf due to view-dependent shape distortions and other
visibility impairments (see Fig. 5). This also implies that
the grasping point cannot be accurately determined past
some angle, because the model-leaf contour together with
the associated grasping point will fit the segment boundary
only very poorly. A close view for probing is desirable since
it increases the amount of data that can be gathered about a
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Fig. 5. Combined validity results for the artificial (red square) and the real
leaf (black circle). Line fitting to the data points suggests an average error
of the measured validity of ~ 40.1 for a nearly planar leaf. The validity
measures the correlation between the measured and transformed 2D contour
of a segment and a 2D model-leaf contour.

leaf (the resolution).

Once the robot arm is brought into the desired position,
the reliability of the probing procedure, including target
selection, probing point extraction, and path planning can
be evaluated. This is done by automatically measuring the
chlorophyll level of the target leaf at the probing point
repeatedly with a spad meter mounted on the robot arm.
Three plants are investigated: Anthurium White, Anthurium
Red, and Pothus.

First, a target leaf is found from the ToF data and the
infrared-intensity image in the close view. The poses of the
robot, the camera, the tool, and the target leaf are computed
for path planning. In Fig. 6 examples of the computed
poses in the robot model (left panels), the PMD infrared
intensity images (middle panels), and the segmented target
leaves (right panels) are shown for the different plants.
Because the camera is already in the close, fronto-parallel
view with respect to the leaf, the segmentation problem is
eased compared to the far view (not shown). For the selected
target leaf, a grasping point is extracted and the probing
movement is executed (see video at www.iri.upc.edu/
groups/perception/LeafProbing). If the probing
is successful, the measured chlorophyll level of the leaf is
reported. The time for computing the probing point and exe-
cution of the probing is measured. The results of experiments
conducted for the different plants are summarized in the
tables 1-3. The most common failure reason are errors in
the leaf-model fitting, leading to a wrong estimation of the
grasping point (failure reason 1). Other less frequent reasons
are bad normal estimation (failure reason 2), probing a point
of a leaf patch with low chlorophyll content (failure reason
3), or an overly long path chosen by the kinematics (failure
reason 4).

Probing succeeded in 90% of the cases for Anthurium

)

Fig. 6. Left to right. Robot model, PMD intensity image, and the segmented
target leaves for Anthurium White (A-C), Anthurium Red (D-F), and Pothos
(G-D).

White, 85% of the cases for Anthurium Red, and 70% of the
cases for Pothus. For the Pothus plant, the worst result was
obtained. This might be due to the small size of the leaves,
posing limits to the depth estimation and thus probing point
estimation. Overall, experiments were successful in 82% of
the cases.

IX. CONCLUSIONS

We presented a method for modeling, monitoring, and
sampling plant leaves using infrared-intensity images and
depth maps acquired with a time-of-flight (ToF) camera.
Since quadratic surface models are used to guide the seg-
mentation of the infrared-intensity image, sparse or noisy
depth data can be used, which often poses a problem to
approaches working in the depth space directly. Target leaves
are selected using leaf models, and this way a probing point
for chlorophyll measurements with a robot-mounted spad
meter can be selected. We tested the approach with a real
robot arm equipped with the spad meter and the ToF camera.
We tested the robustness of the method by repeatedly probing
a leaf. This was done for several plants. On average, probing
succeeded in 82% of the cases. The most frequent failure
reason was a wrong estimation of the probing point, caused
by poor model fitting or segmentation errors.
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Anthurium Andreanum (White)

Exp. | Success | Time [s] | Chlorophyll | Failure Reason
1 Y 21.05 442 X
2 N 26.44 - 1
3 Y 24.04 43.8 X
4 Y 25.06 43.7 X
5 Y 21.48 44.3 X
6 N 24.62 - 1
7 Y 24.32 444 X
8 Y 25.60 43.9 X
9 Y 23.45 444 X
10 Y 23.23 44.6 X
11 Y 2491 439 X
12 Y 25.87 442 X
13 Y 22.53 43.8 X
14 Y 21.71 44.4 X
15 Y 25.03 435 X
16 Y 27.95 43.8 X
17 Y 21.76 435 X
18 Y 22.04 43.1 X
19 Y 23.95 44.0 X
20 Y 22.64 44.6 X

TABLE I
Anthurium Andreanum (Red)

Exp. | Success | Time [s] | Chlorophyll | Failure Reason
1 Y 18.87 49.6 X
2 Y 19.31 49.0 X
3 Y 19.54 50.2 X
4 Y 20.88 49.6 X
5 Y 21.18 49.1 X
6 Y 20.77 50.2 X
7 N 18.68 - 2
8 Y 19.59 48.3 X
9 Y 19,22 49.9 X
10 Y 18.77 48.3 X
11 Y 21.15 49.9 X
12 Y 19.35 50.3 X
13 N 21.11 - 1
14 Y 18.97 49.5 X
15 N 19.29 - 1
16 Y 18.11 32.8 1
17 Y 18.67 50.1 X
18 Y 19.64 48.6 X
19 Y 19.98 46.6 X
20 Y 18.48 49.3 X

TABLE II
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