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Stochastic Exploration of Ambiguities for
Non-Rigid Shape Recovery

Francesc Moreno-Noguer and Pascal Fua, IEEE Fellow

Abstract—Recovering the 3D shape of deformable surfaces from single images is known to be a highly ambiguous problem because
many different shapes may have very similar projections. This is commonly addressed by restricting the set of possible shapes to linear
combinations of deformation modes and by imposing additional geometric constraints. Unfortunately, because image measurements
are noisy, such constraints do not always guarantee that the correct shape will be recovered. To overcome this limitation, we introduce
a stochastic sampling approach to efficiently explore the set of solutions of an objective function based on point correspondences. This
allows to propose a small set of ambiguous candidate 3D shapes and then use additional image information to choose the best one. As
a proof of concept, we use either motion or shading cues to this end and show that we can handle a complex objective function without
having to solve a difficult non-linear minimization problem. The advantages of our method are demonstrated on a variety of problems
including both real and synthetic data.

Index Terms—Deformable surfaces, Monocular shape estimation.

✦

1 INTRODUCTION

FOr the purpose of single view deformable 3D shape
reconstruction, approaches that rely on purely geo-

metric constraints can return incorrect answers because
there are often many different shapes that obey, or nearly
obey these constraints, while producing very similar
projections.

For example, it has been shown that non-rigid 3D
shape could be recovered from even single images pro-
vided that enough correspondences can be established
between that image and one in which the surface’s shape
is already known [25], [27], [37]. Yet, while effective,
these techniques return one single reconstruction with-
out accounting for the fact that several plausible shapes
could produce virtually the same projection and there-
fore be indistinguishable on the basis of correspondences
and geometry alone. In practice, as shown in Fig. 1,
disambiguation is only possible using additional image
information.

In this paper, we propose a generic approach to explor-
ing the space of feasible solutions, which is grounded
on the theory of uncertainty propagation and stochastic
search. More specifically, we represent shape deforma-
tions as a weighted sum of deformation modes and relate
uncertainties on the location of point correspondences to
uncertainties on the modal weights. This lets us explore
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the space of modes using a stochastic sampling strat-
egy and select a small number of ambiguous solutions,
which correspond to 3D non-rigid shapes such as those
shown in Fig. 1. As a proof of concept, we then propose
two different approaches to disambiguation:

- Exploiting shading information. The best 3D shape
is chosen among the candidates generated in this
manner using shading information, both when the
light sources are distant and when they are nearby.
The latter is particularly significant because exploit-
ing nearby light sources would involve solving a
difficult non-linear minimization problem if we did
not have a reliable way to generate 3D shape hy-
potheses. In our examples, this is all the more true
since the lighting parameters are initially unknown
and must be estimated from the images.

- Enforcing temporal consistency. Assuming that a
video sequence is available, we will exploit three-
frame sequences to pick the set of candidate 3D
shapes that provides the most temporally consistent
motion. Note that in contrast to traditional tracking
and non-rigid shape from motion approaches [5],
[24], [31], [35], we do not enforce temporal consis-
tency across the whole sequence and, therefore, do
not require points to be tracked across many images.

We show that both these approaches outperform state-
of-the-art non-rigid shape recovery methods [23], [28],
and allow disambiguating 3D shapes without having to
learn complex mappings or tracking a large number of
frames.

In short, the contribution of this paper, which extends
an earlier conference paper [22], is an approach to avoid-
ing being trapped in the local minima of a potentially
complicated objective function by efficiently exploring
the solution space of a simpler one. As a result, we only
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First Row:
Fig. 1. Handling 3D shape ambiguities. First Row: Image of a surface lit by a nearby light source and the
corresponding ground truth surface. Three other Rows: In each one, a different candidate surface proposed by
our algorithm is shown in color. The corresponding projection and synthesized image given automatically estimated
lighting parameters are shown in the middle columns. As can be seen, its projection is very similar, even though its
shape may be very different from the original one. In other words, the candidates cannot be distinguished based on
reprojection error alone. However, when comparing the true and synthesized images, it becomes clear that the correct
shape is the one at the second row.

need to evaluate the full objective function for a few
selected configurations, which implies we could use a
very discriminating and expensive one if necessary.

2 RELATED WORK

Single-view 3D reconstruction of non-rigid surfaces has
been extensively studied over the years. It is known to
be a highly under-constrained problem that cannot be
solved without a priori knowledge.

A typical approach to introducing such knowledge is
to use deformation models, either physically inspired
ones [7], [20], [21], [32] or learned from training data [3],
[4], [5], [8], [29]. Surface deformations are then expressed
as weighted sums of modes and retrieving shape entails
estimating the modal weights by minimizing an image-
based objective function. However, since such functions
usually have many local minima, a good initialization is
required.

There have also been recent attempts at recovering the
shape of inextensible surfaces without explicitly using
a deformation model. Some approaches are specifically
designed for applicable surfaces such as sheets of pa-
per [12], [17]. Others make use of local inextensibility
constraints [11], [25], and are applicable to many ma-
terials that do not perceptibly shrink or stretch as they

deform. However, while these are attractive approaches,
using only inextensibility constraints is only effective for
relatively small deformations.

Other methods use local rigidity constraints in con-
junction with deformation models and achieve shape-
recovery either in closed form [28] or by solving a convex
optimization problem [27], and thus, eliminate the need
for an initialization. To this end, they require 2D point
correspondences between the image in which one wishes
to compute the shape and one in which it is already
known. However, as will be shown in the following
sections, small inaccuracies in the correspondences can
still result in erroneous reconstructions.

The method proposed in this paper builds on the
formalism introduced in [28] to return not a single
solution but a representative set of all possible solutions
and then uses additional information to decide which
one is best. In this paper, we use shading and motion
but any image cue could have been used instead.

Of course, some of the core elements of our approach
have appeared before in the literature. For instance,
a large number of recent methods, such as [1], [10],
[33], [34], have been proposed to merge geometric and
shading cues into a common framework. However, these
techniques, unlike ours, involve multiple iterative pro-
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Shape # 1 Shape # 2 Shape # 3
Reconst. Error (mm) 0.82 4.25 5.35
Reproj. Error (pix) 1.92 1.87 1.93
Inextens. Error (mm) 4.00 4.27 3.97

TABLE 1
Mean reconstruction, reprojection and inextensibility
errors for the candidate shapes of Fig. 1. Note that,
although Shape #1 violates edge-length constraints

slightly more than Shape #3, it still is the reconstruction
closest to the ground truth by far.

cesses that require reasonable good initial estimates. An
exception is the algorithm of [23] that solves for shape in
closed form but is only applicable to Lambertian surfaces
lit by a distant point light source. In addition, shape
ambiguities have also been discussed before, but mostly
in the context of rigid surface estimation [6], [26], [30].
In the non-rigid case, [11] is the only paper we know
of that discusses shape ambiguities. This discussion,
however, is limited to ambiguities produced by the
concave/convex reversal. By contrast, we propose here a
stochastic sampling exploration method that is effective
to handle continuous ambiguities.

3 EXPLORING THE SOLUTION SPACE

Let us now assume that we are given a reference image
in which the 3D shape is known and a set of 2D point
correspondences between this reference image and an
input image in which the shape is unknown. In order to
compute the unknown 3D shape we will use the same
formalism as in [28] and will represent the deformations
in terms of a weighted sum of modes. We will then
seek for the weights that minimize the reprojection error
while preserving the distances in local neighborhoods.
However, and in contrast to [28], we will not just retain
a single solution as the correct shape is not always the
one that minimizes the above geometric criterion. This
is shown in Table 1 for the 3D surfaces of Fig. 1, and
responds to the fact that since in practice the 3D-to-
2D correspondences are not infinitely accurate, small
amounts of reprojection error may result in large changes
in 3D shape.

To avoid this problem, instead of picking the best set
of weights according uniquely to the geometric criterion,
we will fit a Gaussian distribution to those that corre-
spond to acceptable projections. This will let us to ex-
haustively sample the sets of weights that also preserve
local distances, and will typically result in approximately
one hundred candidate shapes per image, among which
the best will be picked using additional sources of
image information. In Section 4 we will then use either
shading cues or temporal consistency constraints for this
purpose.

3.1 Problem Formulation

In this section we will show that given a set of 3D-to-2D
correspondences, the problem of recovering non-rigid

shape can be found as the solution of a linear system.
As depicted in Fig. 2, we represent non-rigid surfaces

as triangulated meshes with nv vertices vi concatenated
in a vector x= [v�

1 , . . . ,v
�
nv
]�. We model shape defor-

mations as weighted sums of nm deformation modes
Q = [q1, . . . ,qnm ]. We write

x = x0 +

nm∑
i=1

αiqi = x0 +Qα , (1)

where x0 is a mean shape and α = [α1, . . . , αnm ]� are
unknown weights that define the current shape. The
deformation modes were obtained by applying Principal
Component Analysis over a set of deformed shapes,
randomly generated for the synthetic experiments, or
learned from training data in the real experiments.

As in [23], [27], we treat a correspondence between a
2D point uref

i in the reference image and a 2D point ui in
the input image as a 2D-to-3D correspondence between
ui and pref

i , the 3D point on the shape in its reference
configuration that projects at uref

i .
We then express the coordinates of pi, the unknown

position of the point pref
i in the deformed mesh, in

terms of the barycentric coordinates of the face to which
belongs

pi =

3∑
j=1

aijv
[i]
j , (2)

where the aij are the barycentric coordinates and the v
[i]
j

are the unknown nodes we seek to retrieve. Note that
the barycentric coordinates let us write the location of
the point coordinates in terms of the mesh vertices. We
compute them from the position pref

i of the points in the
reference mesh, and remain the same for the deformed
mesh, as we assume the mesh is inextensible.

Additionally, we assume the matrix A of internal
camera parameters to be known and that the 3D points
are expressed in the camera reference frame. Therefore,
the fact that pi projects at ui implies that

wi

[
ui

1

]
= Api =

[
A2×3

a�3

]
pi , (3)

where wi is a projective scalar, A2×3 are the first two
rows of A and a�3 the last one. Since from the last row
we have that wi = a�3 pi, we can write(

uia
�
3 −A2×3

)
pi = 0 . (4)

By using Eq. 2 we can represent pi as a function of the
mesh vertices. Thus, for each 3D-to-2D correspondence,
Eq. 4 provides 2 linear constraints on x. nc such corre-
spondences yield 2nc constraints which can be written
as a linear system

Mx = 0 , (5)

where M is a 2nc×3nv matrix obtained from the known
values ui, A, and aij . Injecting the modal description of
Eq. 1 then yields

MQα+Mx0 = 0 , (6)
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Reference Shape Reference Image Input Image Output Shape

Fig. 2. Estimating non-rigid shape from 3D-to-2D correspondences. We assume we are given a set of 2D-to-2D point
correspondences between a reference image and the input image. In addition, we assume the reference image to
be registered to a known shape, and thus, the correspondences are in fact from 3D-to-2D. Our goal, is to retrieve
the output shape from these matches. The colored dots represent corresponding points for the reference, input and
output configurations. We denote the 3D position of the point in the reference shape (red dot) by pref. The 2D projection
(yellow dot) of this point on the reference image is denoted by uref. Its 2D correspondence (green dot) on the input
image is written by u, and p is its unknown 3D position (blue dot).

such that any set of weights α that is a solution of it,
corresponds to a 3D surface that projects at the right
place.

3.2 Proposing Candidate Shapes

Since correspondences {pref
i ,ui} are potentially noisy,

the simplest way to solve Eq. 6 is in the least-squares
sense. This, however, may not result in a satisfactory
answer because MQ is an ill-conditioned matrix with
several small eigenvalues [23], [28]. As a result, even
when there are many correspondences, small changes in
the exact correspondence locations, and therefore in the
coefficients of M, can result in very large changes of the
resulting α values. In other words, many different sets
of α weights can result in virtually the same projection.
In [28], this is addressed by choosing the weights that
best preserve the lengths of the mesh edges. However,
as shown by Table 1, this does not necessarily yield the
best answer.

Therefore, in this paper, instead of choosing the best
set of weights based on geometric considerations alone
we have devised a way to quickly propose a restricted
set of candidate solutions among which the best can be
chosen using additional sources of image information,
as will be done in Section 4. To this end, we first derive
an analytical expression of the solution space as a func-
tion of the 2D input data statistics. We then efficiently
sample this space and keep the best samples in terms of
both minimizing reprojection errors and preserving local
distances.

3.2.1 Gaussian Representation of the Solution Space

The α weights we seek can be computed as the least-
squares solution of Eq. 6:

α = (B�B)−1B�b , (7)

where B = MQ is a 2nc×nm matrix, and b = −Mx0

is a 2nc vector. The components of B and b are linear
functions of the known parameters ui, Q, A and aij . We

have seen that this solution may not, in fact, be the right
one because B is ill-conditioned and solving the system
in the least-squares sense magnifies small inaccuracies
in the correspondences. We can nevertheless exploit the
expression of Eq. 7 to model where to look for other
potential solutions as follows.

Let us assume that the estimated correspondence lo-
cations are normally distributed around their true lo-
cations. Injecting the corresponding 2nc × 2nc diagonal
covariance matrix Σu into Eq. 7 means that the nm×nm

covariance matrix for the α weights can be written as

Σα = JβΣuJ
�
β , (8)

where Jβ is the nm×2nc Jacobian of (B�B)−1B�b with
respect to the 2D correspondence coordinates. Thus

Jβ =
∂(B�B)−1

∂u
B�b+ (B�B)−1 ∂B

�b
∂u

, (9)

which can be computed analytically considering that

∂(B�B)−1

∂u
= −(B�B)−1 ∂(B

�B)

∂u
(B�B) . (10)

We can therefore represent the family of 3D surfaces
whose projections are close to the one that minimizes the
reprojection error as being normally distributed around
μα, the least squares solution of Eq. 6, with covariance
Σα of Eq. 8. Note that, because μα is the solution of
an ill-conditioned system, it is an unreliable estimate of
the distribution’s center. We could have improved the
system’s conditioning by adding a damping term, but
this would have amounted to arbitrarily constraining the
norm of μα. Instead, as discussed in the next section, we
use a stochastic sampling mechanism to explore different
possible values of μα.

3.2.2 Efficiently Exploring the Solution Space
To create a set of plausible 3D shapes whose projection
are acceptably close to the correct one, we first define a
search region in the nm-dimensional space of the modal
weights. We then explore it using a sampling approach
which is based on an Evolution Strategy.
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Fig. 3. Efficient exploration of the solution space. The left-most figure shows the distribution of samples on the
modal weights space. For visualization purposes, only two of the nm dimensions are represented. In addition to the
individual samples, the graph depicts the path followed by the mean μα for successive iterations, the initial and final
configurations, and an optimal solution computed by directly projecting the ground-truth shape onto the deformation
modes. The evolution path is estimated using the CMA algorithm by minimizing an objective function of the reprojection
and inextensibility errors. The area inside the dashed rectangle is magnified in the middle image, and shows a detail
of the updated mean and covariance matrix. Note that although the mean evolution path does not end up close to
the optimal solution, some of the samples accumulated through the process lie very close, and are potentially good
solutions. The right-most figure depicts the reconstruction error for each of the samples, color-coded according to the
right bar.

Given the normal distribution N (μα,Σα) introduced
above, we take the search region as the set of αi such
that

(αi − μα)
�Σ−1

α (αi − μα) ≤ M2 , (11)

where M is a threshold chosen to achieve a specified
degree of confidence. To compute its value we use the
cumulative chi-squared distribution, which depends on
the dimensionality of the problem. In our experiments,
nm = 30 modes were sufficient to capture all surface
deformations. For this number of modes, setting M = 7
yields a 98% level of confidence.

We could then explore this region by drawing random
samples from the distribution N (μα,M2Σα). However,
as the μα we use is unreliable, and both μα and Σα

are built on the basis of uniquely minimizing the re-
projection error, we do not draw all samples at once.
Instead, we propose an evolution strategy in which we
draw successive batches by sampling from a multivariate
gaussian whose mean and covariance are iteratively up-
dated in order to fit an energy landscape that simultane-
ously minimizes reprojection and inextensibility errors.
The adaptation procedure is inspired by the Covariance
Matrix Adaption algorithm [14], an iterative random
sampling method, which has been shown to be effective
for optimizing non-linear objective functions. It includes
the following steps:

1) Let k ∈ N denote the current iteration, and Λ
the set of sample shapes which are accumulated
throughout the process. Initially, at k = 0, we set
the mean μk

α and covariance matrix Σk
α to the

values estimated using Eqs. 7 and 8, respectively.
Λ is initialized to an empty set.

2) We then draw ns random samples {α̃k
i }ns

i=1 from
the distribution N (μk

α,M2Σk
α).

3) Each sample α̃k
i is assigned a weight πk

i which
simultaneously considers the reprojection and in-
extensibility errors:

1

πk
i

= λrRepr_Err(α̃
k
i ) + λiInext_Err(α̃

k
i ) . (12)

Since these errors are expressed in different units
of measurement, we use λr and λi to give them
similar orders of magnitude.
The reprojection and inextensibility errors above
are computed as follows:
Let x̃ = [ṽ�

1 , . . . , ṽ
�
nv
]� be the shape corresponding

to a sample α̃ in the modal weights space, and let
{ũi}nc

i=1 be the 2D projections of the 3D points for
which correspondences ui are available. We then
define:

Repr_Err(α̃) =

nc∑
i

‖ũi − ui‖ (13)

Inext_Err(α̃) =
∑

{i,j}∈I
‖l̃ij − lref

ij ‖ , (14)

where l̃ij is the distance between two neighboring
nodes ṽi and ṽj , lref

ij is the distance between the
same nodes in the reference configuration, and I
represents the indices of neighboring nodes.

4) As in the CMA algorithm, the mean and covariance
matrix are updated as follows:
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Mesh Samples: Reconstruction Error 2D Projection Clustering

Set of Candidate/Ambiguous Shapes

Fig. 4. Clustering the Shape Samples. Top Row: The left-most figure shows the meshes corresponding to the modal
weight samples of Fig. 3. Again, the color of the meshes encodes the reprojection error. The figure in the middle shows
the reprojection of the meshes on the image plane. Observe that their projection is very similar. The figure on the right
shows the result of classifying the shape samples into a few clusters, where each cluster is represented by a different
color. Bottom Row: The cluster centers are taken as the set of potential candidate shapes that best span the solution
space. In practice the number of ambiguous shapes we estimate this way is around one hundred.

The mean vector μk+1
α is estimated as a weighted

average of the samples:

μk+1
α =

∑ns

i=1 π
k
i α̃

k
i∑ns

i=1 π
k
i

. (15)

The update of the covariance matrix Σk+1
α consists

of three terms: a scaled covariance matrix of the
previous step, a covariance matrix Σcurr that es-
timates the variances of the best sampling points
in the current generation, and a covariance matrix
Σevol that exploits information of the correlation
between the current and previous generations,

Σk+1
α = σk

[
(1− λc − λe)Σ

k
α + λcΣcurr + λeΣevol

]
.

(16)
The parameters λc and λe are precomputed learn-
ing rates, and σk controls both the global scale of
the distribution and the step size of the evolution
path. For a discussion on how these parameters are
chosen and further details of the CMA algorithm
we refer the reader to [14], [15].

5) The best nsb << ns samples with larger weights
are retained and added to the set Λ.

6) Steps 2) - 5) are repeated until a maximum number
of iterations Max_Iter is reached or until the mean
fitness error of Eq. 12 for all samples drops below
a threshold.

In our experiments we used ns = 200 random samples,
nsb = 50, and we set Max_Iter = 200, which lead to
a maximum number of 200 · 200 = 4 × 104 samples to
explore the solution space, among which 200 · 50 = 104

were retained for further analysis. The parameters λr

and λi were set to 0.8 and 0.2, respectively, and the
parameters of the CMA algorithm were set to the default
values suggested in [15].

The left image of Fig. 3 shows an example of the type
of distribution we obtain with the proposed approach.
Note that although the CMA converges relatively far
from the optimal solution with minimal reconstruction
error, some of the samples accumulated through the
exploration process are in fact very good approxima-
tions. This illustrates the advantages of an approach
like ours that simultaneously considers several plausible
solutions, and not only one. Furthermore, the cost of
obtaining this set of solution is very low, as it only
requires evaluating Eq. 12, which may be done very
efficiently.

In the following sections we will progressively apply
more stringent, and more computationally demanding
constraints to an ever decreasing number of samples,
until obtaining one single solution.

3.2.3 Clustering the Shape Samples

By construction, all the samples generated above rep-
resent shapes that yield similar projections and only
small violations of the length constraints. Furthermore,
many of them yield almost undistinguishable 3D shapes.
To further reduce their number, we therefore run a
Gaussian-means clustering algorithm over all the accu-
mulated samples in the space of the 3D coordinates.
For this purpose we used [13], which is a variant
of the k-means algorithm that automatically identifies
the optimal number of clusters based on statistical tests
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designed to check whether all the clusters follow a Gaus-
sian distribution. These tests are controlled by means of
a significance level parameter which we set to a very
low value to favor over-segmentation, that is, to produce
more clusters than absolutely necessary to avoid group-
ing shapes whose difference is statistically significant.

Finally, we take our set of candidates shapes to be the
cluster centers. This whole process typically reduces the
104 samples of the previous stage to about one hundred.
Fig. 4 shows a few candidate samples we obtain. Observe
that even though they have very similar projections, their
3D shape is very different.

4 USING ADDITIONAL CUES TO SELECT THE
BEST CANDIDATE

Given a set of correspondences between the reference
and the input images, the algorithm discussed in the
previous section returns about 100 candidate 3D shapes
that all project correctly in the input image and whose
local distances have retained their original length. We
will next show how to use additional image information
to disambiguate and pick the best one.

In this paper we will either use shading or motion for
this purpose. Note however, that these approaches are
just meant to be a proof of concept, and many other
image cues, such as silhouettes, texture or shadows,
could be used.

4.1 Using Shading to Disambiguate

When using shading to disambiguate among several
surface candidates, we consider two different cases. First,
we assume the surface is lit by a distant light source,
which is the situation envisioned in earlier works on
monocular deformable surface reconstruction that use
shading cues [23], [33], [34]. Second, we address the
situation in which the surface is lit by a nearby light
source. This is more difficult because the inverse of the
changing distance to the light source has to be taken into
account, which rules out approaches based on simple
linear or quadratic constraints. In both cases, we do not
assume the lighting parameters to be known a priori and
estimate them from the candidate 3D shapes. As shown
in Fig. 1, this lets us render the image we would see
for any candidate shape, compare it to the real one,
and select the best. To perform the rendering, we use
ray-tracing and take into account visibility effects and
shadows cast by the object on itself. Such non-local
and non-linear phenomena are rarely taken into account
by continuous optimization-based schemes because they
result in highly complex energy landscapes and poor
convergence. We now turn to the estimation of the
lighting parameters in these two cases.

4.1.1 Light Source at Infinity

Recall from Section 3.1, that we start from a set of
correspondences between 3D surface points pref

i and 2D

True Light Position
Re−initialization Positions
Light Position for Candidate Shape#1
Light Position for Candidate Shape#2

Image Error for Shape #1 Image Error for Shape #2

Fig. 5. Using shading to disambiguate under the assump-
tion of a nearby light source. Top: The red (Shape #1) and
blue (Shape #2) meshes are two possible interpretations
of the ground truth mesh in black. To pick the best one,
we estimate in each case the light source position through
an optimization procedure which is re-initialized on all the
yellow dots. It can be clearly seen that the light source
position estimated by Shape #1 is more accurate. Bottom:
Since the true light source position is unknown, we pick
the best shape by using the estimated light sources to
synthesize the input image and compute the error. The
intensity error for Shape #1 is considerably smaller, and
hence this is the chosen shape. Note that our approach
allows to simultaneously estimate shape and lighting pa-
rameters.

image points ui in the input image with intensity Ii. For
each point i, we also know that pref

i projects at uref
i in

the reference image and has intensity I ref
i . In practice,

we acquire the reference image under diffuse lighting so
that, assuming the surface to be Lambertian, we can take
the albedo ρi of pref

i to be Iref
i . In the remainder of this

Section, let pi denote the 3D coordinates of the 3D sur-
face points in the candidate shapes. For each candidate
shape, these pi are recomputed using the barycentric
coordinates, which are the same for all candidates, to
average the 3D vertex coordinates of the facets they
belong to.

Assuming a distant light source parameterized by its
unit direction l and power L, we can write Ii = ρiL(l ·
ni) , where ni is the surface normal at pi, which may
be estimated from the vi vertex coordinates. Grouping
these equations for all nc correspondences yields

Iρ = NL , (17)

where Iρ = [I1/ρ1, . . . , Inc/ρnc ]
�, N = [n1, . . . ,nnc ]

�,
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Fig. 6. Distribution of the reconstruction (left), reprojection (center) and inextensibility (right) errors for all the samples
accumulated using three exploration strategies. The solid lines represent the percentage of samples –vertical axis–
with a maximum level of error indicated by the horizontal axis. The dashed vertical lines correspond to the error
of the mean vector μk

α in Eq. 15 at the convergence of the exploration procedures. We also plot the optimal PCA
solution, which is computed by projecting the ground truth shapes onto the deformation modes, and represents the
best –minimal reconstruction error– approximation of the ground truth shape we could obtain.

and L = L · l. Solving this system in the least-squares
sense yields an estimation of L, from which the light
intensity and direction can be taken to be L = ‖L‖ and
l = L/L.

4.1.2 Nearby Light Source

When considering a light source that is not located at
infinity, the fact that the brightness decreases with the
square of the distance must be taken into account. The
image irradiance at pi therefore becomes

Ii = ρiL
li · ni

‖pi − s‖2 , (18)

where li = 1
‖pi−s‖ (pi − s) and s is the position of the

light source. s and L are estimated by minimizing

nc∑
i=1

∣∣∣∣Ii − ρiL
li · ni

‖pi − s‖2
∣∣∣∣ (19)

with respect to L and s using the nonlinear least-squares
Matlab routine lsqnonlin. To avoid local minima, we
define a sparse set of light positions {s̃j}nl

j=1 and use
each one in turn to initialize the optimization. In our
experiments, we used nl = 125 light positions uni-
formly distributed within a hemisphere on top of the
reference mesh. Its radius was taken to be sufficiently
large to include all distances for which the nearby light
assumption holds. Fig. 5 shows a simple example of this
methodology.

Note that what makes this approach computationally
feasible is the fact that we are only attempting to re-
cover the lighting parameters, while fixing the shape
parameters. Otherwise, the problem would be massively
underconstrained. This should also allow the use of more
sophisticated lighting models [16], [36] to relax the single
light and Lambertian assumptions.

4.2 Temporal Consistency

When video sequences are available, we can rely on tem-
poral consistency between consecutive shapes to select
the most likely ones. Let us assume that a second order
autoregressive model [2] has been learned from training
data. Given such a model, the shape at time t, xt, can
be expressed as function of the shapes at times t−1 and
t− 2 as

xt = Â2x
t−2 + Â1x

t−1 + B̂wt , (20)

where Â2, Â1 and B̂ are 3nv × 3nv matrices learned
offline, and wt is an nv Gaussian noise vector.

For any three consecutive images and the correspond-
ing shape samples, the most plausible shape in the third
one can be found by considering all {xt−2

i ,xt−1
j ,xt

k}
triplets and picking the xt

k belonging to the one that best
satisfies Eq. 20. Since this is done independently at each
time step t, we are not imposing temporal consistency
beyond our three consecutive frames windows.

5 RESULTS

In this section we will evaluate the performance of the
proposed algorithm. Since one of the core elements of
our approach is the exploration strategy described in
Sect. 3, we will first perform an analysis that will bring
to light its benefits compared to alternative strategies for
exploring the solution space. We will then evaluate the
whole methodology for recovering non-rigid shape, and
will compare to other state-of-the art approaches.

5.1 Analysis of the Exploration Strategy

The exploration strategy proposed in Sect. 3.2, accumu-
lates samples which are drawn in several batches from a
multivariate Gaussian. The success of the methodology
depends on two key ingredients:

1) Initialization of the distribution grounded on the
propagation of uncertainty from the image plane
to the shape space, as described in Section 3.2.1.
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Upper Row:Fig. 7. Comparison of three sampling strategies to explore the solution space. Upper Row: View of the path
followed during the exploration and the distribution of the accumulated samples. Note in the top-left graph that a
random initialization of the search converges far from the optimal solution, and that the number of accurate samples
is negligible. Bottom Row: Close up comparison of our approach, and a method in which the covariance of the
distribution is not updated. Although both methods converge on a similar solution, the adaptation of the covariance
matrix yields a higher concentration of samples close to the optimal solution.

2) Adapting both the mean and the covariance of
the distribution as on the CMA algorithm [14], as
discussed in Section 3.2.2.

We will now show the importance of these two design
choices. To this end, we will compare Our Approach to
two similar ones:

- Random Initialization: The initial distribution is cho-
sen to be isotropic, with a random mean and a
covariance taken to be the identity matrix. Both the
mean and covariance are updated using the CMA
approach.

- Constant Covariance: The mean and covariance are
initialized according to Eq. 7 and Eq. 8, respectively.
During the exploration process, only the mean is
updated. The covariance is kept constant.

To perform the analysis we built a synthetic data set
by deforming an initially planar 9 × 9 mesh of 30 × 30
cm. We created 400 meshes such as the one of Fig. 1
by randomly changing the angles between neighbor-
ing facets. In addition, we computed the deformation
modes by applying Principal Component Analysis over
a distinct set of 100 meshes generated in a similar
manner. We then placed a virtual camera approximately
75 cm above the mesh and produced 100 random 3D-to-
2D correspondences between the reference configuration
and each of the individual deformed meshes. Finally, a
2-pixel standard deviation Gaussian noise was added to
the 2D coordinates.

Given the deformation modes and the set of 3D-to-
2D correspondences we then explored the modal weight
space with each of the aforementioned strategies, and
computed the statistics of the accumulated samples. In
particular, we computed the distribution of the repro-
jection and inextensibility errors as defined in Eqs. 13
and 14, and the distribution of the reconstruction error
defined by:

Rec_Err(α̃) =

nv∑
i

‖ṽi − vi‖ , (21)

where xtrue = [v�
1 , . . . ,v

�
nv
]� corresponds to the ground

truth shape we seek to recover and x̃ = [ṽ�
1 , . . . , ṽ

�
nv
]�

is the shape corresponding to a sample α̃.
Fig. 6 depicts the average results over all the 400

deformed meshes. The solid lines show the error dis-
tribution of the samples accumulated by each method,
and confirm that an approach as the one we propose in
which the covariance matrix is iteratively adapted yields
a larger concentration of samples with small reconstruc-
tion error than an approach in which the covariance is
kept constant. From these curves, we can observe that a
random initialization of the method does not guarantee
a sufficient number of accurate samples and converges
very far away from the optimal solution.

The dashed vertical lines correspond to the error of
the mean μk

α in Eq. 15 at the convergence of the ex-
ploration strategies. Note that this is the solution that
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2D Projection Ground Truth Salzmann08 Moreno09 Moreno09 Our Approach Our Approach
(Our Approach) (Distant Light) (Nearby Light) (Distant Light) (Nearby Light)

Fig. 8. Reconstruction results for the synthetic wave sequence. They are best viewed in color as deviations from the
ground truth are encoded according the color-code of Fig. 3. Errors of more than 75% of the maximum amplitude of
the ground truth shape appear in red.

would be taken if only reconstruction and inextensibility
errors were considered. However, as we have argued
throughout the paper, this does not guarantee minimiz-
ing the reconstruction error. In our approach we handle
this issue by retaining several potential solutions which
are subsequently evaluated under more discriminative
constraints. In fact, as seen from the intersection of the
dashed and solid lines, approximately a 70% of the
samples in our approach are more accurate than the
shape estimated from the mean of the distribution.

To provide a reference of the magnitude of the error,
we also plot the results of an Optimal PCA Solution αopt,
computed by projecting the ground truth shape xtrue

onto the deformation modes. From Eq.1,

αopt = (Q�Q)−1Q�(xtrue − x0) . (22)

This solution corresponds to the best reconstruction that
may be obtained when approximating the ground truth
shape by a linear combination of deformation modes.
Note again in Fig.6, that a small reconstruction error
is not directly correlated with small inextensibility and
reprojection errors.

Finally, Fig. 7 shows one, but representative example
of how the samples are distributed for each of the
techniques compared in this section. Observe that our
strategy clearly concentrates a larger amount of samples
close to the optimal solution than other methods.

5.2 Non-Rigid Shape Recovery

For evaluating the complete algorithm, we compare
its performance on two synthetic and two real im-
age sequences against that of two state-of-the-art tech-
niques [28], [23], which we refer to as Salzmann08 and
Moreno09, respectively. As discussed in Section 2, the

first essentially returns the approximate solution of Eq. 6
that minimizes the variations in edge-length from the
reference shape while the second returns the solution
that best fits a shading model involving a point light
source at infinity.

5.2.1 Synthetic Results
Besides the synthetic random meshes described in the
previous section, we built another data set of 250 meshes
by giving the initially planar 9 × 9 mesh of 30 × 30
cm a wave-like shape, as shown in Fig. 8. In both
experiments, we used a real image as a texture-map and
synthesized shaded images by selecting a random light-
source direction in the hemisphere above the mesh. The
light was located either infinitely far or within 30 cm of
the mesh center. To compare the sensitivity of Moreno09
and of our approach to lighting conditions, for each
synthetic shape we computed two different estimates,
one using the image rendered using the distant light
source and the other using the nearby light.

Fig. 8 depicts the reconstruction results on three
frames of the synthetic wave sequence using Salz-
mann08, Moreno09, and our own approach in conjunc-
tion with either the distant or the nearby lighting.

In the first two rows of Fig. 9, we use boxplots1 to
quantitatively summarize all synthetic results. We plot
the mean reconstruction, reprojection and inextensibility
errors, as defined by Eqs. 21, 13 and 14, respectively.
In addition, besides computing the error of Salzmann08,
Moreno09, Our Approach and the Optimal PCA So-
lution, we also include the output of a hypothetical

1. Box denoting the first Q1 and third Q3 quartiles, a vertical line
indicating the median, and a dashed line representing the data extent
taken to be Q3+1.5(Q3−Q1). The crosses denote points lying outside
of this range.
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Fig. 9. In each row, reconstruction, reprojection, and inextensibility errors for each of the two synthetic and the two
real sequences. DL: Distant Light. NL: Nearby Light. MM: Motion Model. Note that some of the errors are scaled to fit
within the figure.

algorithm that would be able to select the Best Candidate
shape among all the samples produced by the sampling
mechanism of Sect. 3, which represents the theoretical
optimum an algorithm like ours could achieve by using
the image information as effectively as possible. Fur-
thermore, for the experiment with random meshes we
plot the errors of the CMA algorithm [14] when is not
used within our exploration framework, that is, when
it is directly used to minimize the objective function
of Eq. 12. We consider both the case when CMA is

randomly initialized, and the case when it is initialized
to the Gaussian distribution in the modal weight space
we propose in Sect. 3.2.1.

From all these errors, we can observe that our method
consistently returns a lower 3D reconstruction error,
which shows that it is more accurate than the other
methods and very close to the optimum. This is true
even though the reprojection and inextensibility errors
are very similar for all the methods, which confirms that
minimizing these is not sufficient by itself to retrieve the
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Sa Mo OA BC
DL NL DL NL MM

Random Meshes 84 81 15 91 99 – 100
Wave Sequence 78 95 31 100 100 – 100
Paper Bending 80 – 43 – 97 96 100

Deforming Cloth 59 – 57 – 97 81 99

TABLE 2
Percentages of correct solutions for all four set of

experiments with non-rigid surfaces. Sa: Salzmann08.
Mo: Moreno09. OA: Our Approach. BC: Best Candidate.
DL: Distant Light. NL: Nearby Light. MM: Motion Model.

correct 3D shape.
Both Moreno09 and Our Approach address this issue

by taking advantage of shading cues. Since we explicitly
model a nearby light, we clearly outperform Moreno09
in that case. Less intuitively, we also outperform it in the
distant light case, even though we then use the same
simple shading model. We believe this is due to the
fact that we use both the inextensibility and shading
constraints, whereas Moreno09 uses only the latter.

Another measure of success is the Percentage of correct
solutions of Table 2. Given the ground truth solution, a 3D
sample mesh is considered to be correct if at least 75%
of its vertices have a reconstruction error smaller than
0.5×Height, where Height refers to the maximum am-
plitude of the ground truth shape. Again, our approach
clearly yields the best numbers. The specific ratios –75%
and 0.5×Height– are of course ad hoc and have been
chosen so that 3D meshes that are deemed incorrect
produce disturbing effects when viewed in sequence. To
provide the reader with an intuitive understanding of
what this measure actually represents, in Fig. 8 facets
with reconstruction errors of more than 75% are color-
coded in red.

Finally, the table at the top of Fig. 10 depicts the
accuracy of the estimated lighting parameters. Note that
we estimate the position and direction of a light source
that was allowed to move freely within a 30 cm radius
hemisphere with an error below 1 cm and 10 degrees,
respectively.

5.2.2 Real Images
We also tested our approach on a 120-frame sequence
of a bending paper and a 150-frame sequence of a
deforming T-shirt, both acquired with a Pointgrey Bum-
Blebee stereo rig. The surfaces were lit by a dim ambient
lighting and a light source located at about 30 cm from
the surface.

We used the stereo pairs to estimate the ground truth
shape and then ran our algorithms using the output
of a single camera. We used SIFT [18] to establish cor-
respondences between the reference and input images.
Erroneous ones were removed by initially fitting a de-
formable smooth 2D mesh and discarding inconsistent
matches, as in [23].

In both cases we used the algorithm described in
Section 3 to initially produce a set of candidate 3D shapes

Distant Light
Direction Error (deg) Power Error (%)

Random Meshes 6.9± 4.3 5.2± 2.1
Wave Sequence 2.1± 0.9 2.2± 0.8

Nearby Light
Position Error (mm) Power Error (%)

Random Meshes 7.4± 6.1 6.8± 3.3
Wave Sequence 3.2± 0.8 2.8± 1.0

Paper Bending Deforming Cloth

Fig. 10. Estimated lighting parameters. Upper tables:
Mean error and standard deviation of the lighting param-
eters –direction, position and power– estimated indepen-
dently in each frame of the synthetic sequences. Bottom
figures: Light source positions estimated independently in
all frames of the real sequences.

in each individual frame. We then chose the best using
either shading or motion information.

When using shading we assumed a situation of a
nearby light source. The reconstruction errors depicted
in the boxplots of Figure 9 exhibit the same patterns
as those obtained for the synthetic sequences, which
confirms that our method outperforms the other two.
As shown in Table 2, we obtain 97% of correct solutions,
which represents a 30% increase in performance, using
the same definition of “correct” as before. In the bottom
of Figure 10, we plot the estimated light source positions
in each frame. Although we did not measure the exact
light source locations, the fact that the estimates are
tightly clustered is an indication that they are probably
correct, given that they all were obtained independently.

Finally, we also evaluated our approach when using
motion to disambiguate. To learn the autoregressive
model of Section 4.2, we acquired additional sequences,
obtained ground truth data using our stereo rig, and
learned the model parameters by probabilistic fitting [2].
In the case of the sheet of paper, as shown in the
third row of Figure 9 and in Table 2, using the motion
model yields similar results to those obtained using
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2D Projection Ground Truth Salzmann08 Moreno09 Our Approach Our Approach Our Approach
(Our Approach) (Distant Light) (Motion Model) (Textured view)

Fig. 11. Reconstruction results for the two real sequences. Top three rows: Paper Bending. Bottom three rows:
Deforming Cloth. The reconstruction errors are again color-coded.

shading and clearly outperforms both Salzmann08 and
Moreno09. The performance degrades slightly in the case
of cloth because our second order motion model is not
accurate enough to perfectly capture the dynamics of the
sharp cloth deformations. Nevertheless, our algorithm
still outperforms the other two state-of-the-art methods.

6 CONCLUSION

Geometry-based approaches to single view 3D recon-
struction can easily return erroneous solutions that both
satisfy the constraints and yield plausible reprojections.
To overcome this problem, given that the input data is
noisy, we use error propagation techniques to derive an
analytical expression of the space of potential solutions
and to propose a small but representative number of
samples. The best among them can then be chosen using
additional image cues, such as shading or motion, which
significantly improves results at a limited computational
cost.

We have demonstrated the effectiveness of this ap-
proach for 3D deformable shape reconstruction. How-
ever, our approach relies on representing deformation as
weighted sums of deformation modes, which somewhat
reduces its applicability. In future work, we will therefore
seek to extend it using first order matrix perturbation
theory [9] to reason directly in the space of vertex
positions. While applying this relaxation of the problem
would require having to consider much larger sampling
densities, we believe it can be feasibly addressed in the
context of specialized Monte Carlo techniques such as
the Partitioned Sampling proposed in [19].
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