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Abstract: We present a robust fault diagnosis method for uncertain multiple input–multiple output 

(MIMO) linear parameter varying (LPV) parity equations. The fault detection methodology is based on 

checking whether measurements are inside the prediction bounds provided by the uncertain MIMO LPV 

parity equations. The proposed approach takes into account existing couplings between the different 

measured outputs. Modelling and prediction uncertainty bounds are computed using zonotopes. Also 

proposed is an identification algorithm that estimates model parameters and their uncertainty such that all 

measured data free of faults will be inside the predicted bounds. The fault isolation and estimation 

algorithm is based on the use of residual fault sensitivity. Finally, two case studies (one based on a water 

distribution network and the other on a four-tank system) illustrate the effectiveness of the proposed 

approach. 

Keywords: Fault Detection, Isolation and Estimation. Linear Parameter Varying Model, Sensitivity 

Matrix. 

 

1. INTRODUCTION 

Model-based fault diagnosis is based on the use of mathematical models of the monitored system. Currently, most of the 

existing approaches that have been investigated and developed over the last few years are based on linear models (Gertler, 

1998)(Chen and Patton, 1998)(Isermann, 2006)(Blanke et al., 2006)(Ding, 2008). However, physical systems are inherently 

non-linear. This has motivated the interest of researchers in the development and application of non-linear FDI methodologies 

(Bokor et al., 2002). LPV models can be used to efficiently represent some nonlinear systems (Shamma and Cloutier, 1993). 

This is the reason why Fault Detection and Isolation (FDI) research community has recently addressed the development of 
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model-based methods using the LPV approach (see Bokor, 2009 for a recent survey). But, even with the use of LPV models, 

modelling errors are present. Reliability and performance of fault diagnosis algorithms depend on the quality of the model 

used. Thus, since modelling errors introduce uncertainty in the model, they interfere with the fault detection.  A fault detection 

algorithm able to handle uncertainty is called robust and its robustness is the degree of sensitivity to faults compared to the 

degree of sensitivity to uncertainty. The effect of noise on the model-based fault detection is well understood using statistical 

approaches (Basseville and Nikiforov, 1993). However, in many situations, the random nature of noise is unknown what makes 

difficult the use of statistical methods and has led to an alternative description of the noise based on what is known as 

“unknown but bounded noise” description (Milanese et al., 1996). Moreover, not only noise but also modelling errors should 

be taken into account. Modelling errors inclusion in the statistical methods is far from being trivial. For all these reasons, the 

research on robust fault detection methods that requires only knowledge about bounds in noise and parameters (modelling 

errors) has been very active in the FDI community (Fagarasan et al., 2004; Puig et al., 2008; Sainz et al., 2002; Ploix and 

Adrot, 2006; Reppa and Tzes 2009; Combastel and Raka 2009; Combastel et al., 2008; Raissi et al., 2010). These methods, 

known as set-membership, follow the passive robust approach (Chen and Patton, 1999) by enhancing the fault detection 

robustness at the decision-making stage using an adaptive threshold. This adaptive threshold is generated by considering the 

set of model trajectories that can be obtained by varying the uncertain parameters within their intervals.  

 

The contribution of this paper is to present a fault diagnosis method for systems that can be described by MIMO LPV models 

with a set-membership description of the noise and parametric uncertainty. The proposed approach covers fault detection, 

isolation and estimation stages. The fault detection methodology uses the parity equation formulation (see Gertler (1998)) 

expressing the model in regressor (ARX) form. Fault detection relies on comparing on-line the real system behaviour of the 

monitored system obtained by means of sensors with the estimated behaviour using the MIMO LPV model including the 

effects of noise and parametric uncertainty. In particular, the parametric uncertainty bounded by a zonotope is propagated to 

the residuals determining their alarm limits bounded by a zonotope as well. When the residuals are outside of the zonotope that 

defines the alarm limits, it is argued that model uncertainty alone can not explain the residual and it is assumed that a fault 

could have occurred. In this way, the robustness of the fault detection approach is achieved in a passive way contrarily to the 

active approaches that try to decouple the effect of the uncertainty on the residual (Chen and Patton, 1999).  The passive 

approach has the drawback that faults that produce a residual deviation smaller than the residual uncertainty due to parameter 

uncertainty will not be detected (missed alarms). But on the other hand, if noise and parametric uncertainty bounds are 

correctly tuned, using for example the model identification algorithm proposed in this paper, false alarms are avoided. 
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Regarding fault detection, the proposed approach extends the results of  Adrot et al. (2002) that uses parallelotopes to represent 

parametric uncertainty and considers static LTI systems. 

This paper also deals with the uncertain MIMO LPV model calibration that allows to find the uncertain parameter set 

considering that can be bounded by a zonotope extending the ideas proposed by Ploix et al. (1999) for static LTI systems and 

intervals for modelling parametric uncertainty. Finally, a fault isolation approach, alternative to the classic one based on binary 

fault signatures, is proposed. The proposed method uses the residual fault sensitivity to improve the isolation results as 

seminally suggested in Meseguer et al., (2010) but formulating instead the fault isolation and estimation as an optimization 

problem. The residual fault sensitivity concept has been introduced by Gertler (1998) and Isermann (2006) to characterize the 

performance of the fault detection but they have not used it for fault isolation. In Blanke et al. (2006), the idea of using the 

transfer function that relates residual and faults (what is called residual fault sensitivity in this paper) is suggested to estimate 

the fault size by means of the pseudoinverse in case of LTI systems. Here, the proposed fault estimation approach based on 

optimization allows to estimate the fault without using the pseudoinverse and it can be applied to LPV systems.  

 

The structure of this paper is the following: Section 2 introduces LPV parity equations with uncertainty, the consistency test 

used for fault detection as well as provides an overview of the proposed fault diagnosis approach. In Section 3, a parameter 

estimation procedure is described that allows bounding the parametric uncertainty using zonotopes and data from fault-free 

scenarios. Section 4 presents a fault detection methodology that relies on the use of the uncertain LPV parity equations and 

zonotopes. Section 5 presents the fault isolation and estimation methodology that makes use of residual fault sensitivity 

analysis. Finally, in Sections 6 and 7, a piece of water distribution network and a four tank system (a well known control 

benchmark) are used to assess the validity of the proposed approach. 

 

2. OVERVIEW OF THE PROPOSED FAULT DIAGNOSIS APPROACH  

2.1 LPV parity equations with uncertainty 

In this paper, the system to be monitored is assumed that can be described by a MIMO LPV model
*
 

ˆ( ) ( ) ( ) ( ) ( ) ( )kk k k k k   Φ θ py e y e                                                          (1) 

where 

- ( )ky  is the output vector of dimension 1yn  . 
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- ( )kΦ  is the regressor matrix of dimension yn n  which can contain any function of inputs ( )ku  and outputs ( )ky . 

- ( )k kp p  is a vector of measurable process variables of dimension 1pn   that defines the system operating point. 

- ( )k kθ p Θ  is the LPV parameter vector of dimension 1n   whose values can vary according to the system operating point 

following some known function ( )kg p , usually named as scheduling function. 

- ( )ke  is a vector of dimension 1yn   that contains the sensor additive noises whose components are bounded by constant 

bounds: ( )i ie k  , 1,..., yi n . 

There are several ways to obtain an LPV model either from the system non-linear equations, as e.g., using a state 

transformation (Shamma and Cloutier, 1993) or embedding non-linearities inside the LPV parameters (Kwiatkowski et al., 

2006), or through LPV identification methods (Bamieh and Giarré, 2002).  

In this paper, the uncertain parameter set kΘ  is described by a zonotope centered in the nominal LPV model: 

 0 0( ) ( ) :n n
k k k    Θ θ p H θ p Hz z                                                       (2) 

where  

-
0 ( )

n
k θ p   is the centre of the zonotope and corresponds to the nominal LPV model.  

-
n nH  is the shape of the zonotope (usually n n


 and as the bigger n is the more complicated relations between 

uncertain  parameters can be taken into account). 

- 1n n  is a unitary box composed by n unitary interval vectors, i.e.  1,1  .   

-  denotes the Minkowski sum. 

2.2 Consistency test 

Given the MIMO LPV model (1), the output measurement vector ( )ky  will be consistent with the output predicted by the 

model if  

( ) ( )k ky                                                                                   (3) 

where   

ˆ( ) ( ) yn
k k                                                                             (4) 

with 

                                                                                                                                                                            
*
 An LPV model has linear structure with parameters that are not constant but vary with the system operating point. The variation of parameters with the 

operating point is described by some known function. The operating point can be characterized through some measured variable: external or internal to the 
system. In case that an internal variable of the model is used the model is named as quasi-LPV (Shamma and Cloutier, 1993). 
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 ˆ ˆ( ) ( ) ( ) ( ), ( )k k kk k k  Φ θ p θ p Θy                                                      (5) 

and  1 , ,
yndiag   . This means that output measurement vector ( )ky  is inside the set of possible outputs that can be 

obtained using model (1), parameter uncertainty (2) and noise bounds.  

This approach was first suggested by Ploix et al. (1999) in the context of fault detection for SISO LTI systems, and later 

developed by Calafiore et al. (2002) and Campi et al. (2009). Adrot et al. (2002) extended this approach to MIMO LTI 

systems.  In the following, this approach is extended to MIMO LPV systems with uncertain parameters bounded by zonotopes. 

 

When the uncertain parameter set kΘ  is described by means of a zonotope, as in (2), (5) can be rewritten as follows                      

0ˆ ( ) ( ) ( ) ( ) n

kk k k Φ θ p Φ H                                                                               (6) 

Consequently, ( )k  leads to 

0 ˆˆ( ) ( ) ( )k k k  y                                                                                       (7) 

where 

0 0ˆ ( ) ( ) ( )kk kΦ θ py                                                                                         (8) 

and 

 ˆ ( ) ( )  yn n
k k


 Φ H E                                                                             (9) 

Notice that ( )k  is a zonotope centred in the nominal output estimation 0ˆ ( )ky  and with a shape defined by ˆ ( )k . Thus, 

condition (3) can be rewritten as  

0 ˆˆ( ) ( ) ( )k k k y y                                                                (10) 

2.3 Overview of the proposed fault diagnosis approach 

Using the LPV uncertain parity equations  introduced in  Section 2.1, as well as the consistency test presented in Section 2.2, a 

set of algorithms that allow fault detection (Section 4), isolation and estimation (Section 5) will the presented in this paper.  

Fig. 1 presents how the different algorithms interact. The measured system output is compared with the nominal predicted 

output using the LPV nominal model (1) by generating a residual. This residual is evaluated using the consistency test 

presented in previous section that considers the parametric uncertainty and additive noise bounds. If an inconsistency is 

detected a fault is indicated. Then, the fault isolation and estimation block is activated and the most probable fault and its 

magnitude are determined. An algorithm to estimate the LPV parameter and their uncertainty of parity equations (1) are also 

proposed (Section 3) that also relies on the consistency test presented in Section 2.2. 
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Figure 1: Scheme of fault detection, isolation and estimation procedure 

 

3. UNCERTAIN PARAMETER ESTIMATION 

In practice, nominal LPV parameters 0( )kθ p  could be obtained using LPV identification algorithms as the ones proposed by 

(Bamieh and Giarré, 2002)  and real data or by the physical knowledge of the system. However, as a result of this process, 

some modelling uncertainty (2) in the LPV parameters appears. Thus, additionally to estimate the nominal LPV parameters 

0( )kθ p , the uncertainty in the parameters should be estimated. This is especially important when the model should be used in 

robust fault diagnosis. 

 

Let us consider that a sequence of M regressor matrix values ( )kΦ  and output measurements ( )ky  in a fault free scenario is 

available, the model of the system to be monitored can be parameterized as in (1) and the parameter set kΘ  can be described 

as a zonotope (2). The aim is to estimate parameter uncertainty set kΘ defined by the matrix H  in such a way that all 

measured data in a fault free scenario satisfy condition (10). This condition can be applied to every component through the 

following yn equations  

0

1 1 1 1

0

ˆ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( ) ( )
y y y yn n n n

y k y k k k e k

y k y k k k e k

  

  

φ Hz

φ Hz

                                                          (11) 

with 
1

( )
n

i k 
φ  1,..., yi n  and 

1( )

( )

( )
yn

k

k

k

 
 

  
 
 

φ

Φ

φ

 and    1( )  , , ..., y

y

nn t
nk e e z E  
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In order to maximize the model sensitivity to faults, the identification procedure will be formulated as finding the parameter  

uncertainty set kΘ  such that the size of the predicted output using the considered set of data is minimized. Thus, this 

identification procedure can be formulated as an optimization problem with the following objective function 

1

ˆ( ( ( ))
M

k

J vol k


   

where vol is the volume of the output zonotope ˆ ( )k  defined in (6). This optimization problem with no knowledge 

assumptions about matrix H  is in general very complex to solve even in the single output case (Campi et al., 2009). In order 

to reduce the complexity, the zonotope that bounds kΘ  can be parameterized such that 0 H H , as proposed in Blesa et al. 

(2009), that corresponds to a zonotope with predefined shape (determined by 0H ) and a scalar  . For example if 
0( )kΦ H  is 

a square matrix:   0
1

( ) 2 det( ( ) )
M

n

k

J k 


  Φ H . Matrix 0H  that contains the information about the weight and shape of the 

parameter uncertainty can be obtained using physical knowledge of the system or by optimisation as is described in Annex 1.   

Then, the objective function can be rewritten as follows 

1

ˆ( ( )) ( )
M

k

J vol k J


                                                                          (12) 

and the problem of uncertainty identification can be reformulated as Problem 1 with cost function (12) and subject to 

conditions (11), for all the identification data ( 1,...,k M  ), considering 0 H H . 

Problem 1: “Parameter Uncertainty Identification” 

min    

subject to: 

0

1 1 1 0 1

0

0

ˆ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( ) ( )
y y y yn n n n

y k y k k k e k

y k y k k k e k

   

   

φ H z

φ H z

1,...,k M   

 1( )  , , ..., y

y

nn t
nk e e z E  and 0  

Remark 1: Problem 1 is a non-linear polynomial optimization problem that can be solved globally using GloptiPoly tool 

developed by Henrion et al. (2009). Problem 1 can alternatively be solved as proposed by Adrot (2000) but leads to a 

combinatorial problem that grows in a factorial way with n, the number of columns of matrix 0H . 

Remark 2: Since all the M observations in Problem 1 should be included in the output prediction zonotope ˆ ( )k , the presence 

of exceptional data points (known as outliers) may lead to extremely large values of  that would increase the model 

uncertainty. In order to address this issue, algorithms to remove outliers as the ones proposed in Campi et al (2009) should be 

applied such that N M  data are discarded in order to reduce model uncertainty. In the identification procedure in Problem 1, 
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the discarding procedure boils down to remove the N data that provides a value of    exceptionally large, and repeating the 

identification with the remaining M N data.  

4. FAULT DETECTION METHODOLOGY 

4.1 Fault Detection Procedure  

The fault detection methodology is based on the residual evaluation obtained from the difference between measurements and 

LPV model prediction using (1) 

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kk k k k k k k     θ pr y y e y e                                             (13) 

that corresponds to a MA parity equation (Gertler, 1998). Ideally, when modelling errors and noise are neglected, residual (13) 

should be zero in a fault-free scenario and different from zero, otherwise. However, because of modelling errors and noise, 

residual can be different from zero in a non faulty scenario. In order to take into account uncertainty in parameters and additive 

noise, the effects of these uncertainties will be propagated to the residual defining the region of admissible residuals. A fault 

will be detected when zero does not belong to this set. Then, the consistency test (10) is equivalent to check the following fault 

detection test 

( )k0 Γ                                                                             (14) 

where  

( ) ( ) ( ) ( ) ( ),
( )

( ) , ( ) y

k

n

k k

k k k k
k

k

    
  

   

θ p

θ p Θ

r y e

e





                                               

and 0 is a vector ( 1yn  ) of zeros    = 0 0
t

0 . 

Taking into account (1) and (2), ( )kΓ can be parameterized as a zonotope  

  0 ˆˆ( ) ( ) ( ) ( )k k k k  y y                                                                 (15) 

where 0ˆ ( )ky  and ˆ ( )k  are defined as in (8) and (9). Then, test (14) is equivalent to test (6) and involves checking if the point 

0 belongs to the zonotope ( )k . The fault detection test (14), considering matrix H known (calibrated as it was proposed in 

Section 3), can be implemented by determining if the constraint satisfaction problem, named as Problem 2, is feasible. 
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Problem 2: “Fault Detection Test”  

0

1 1 1 1

0

ˆ( ) ( ) ( ) ( ) ( ) 0

ˆ( ) ( ) ( ) ( ) ( ) 0
y y y yn n n n

y k y k k k e k

y k y k k k e k

   

   

φ Hz

φ Hz

 

( ) nk z   and   1 , ..., y

y

nt
ne e E  

 

Remark 3. For every instant k, the feasibility of Problem 2 can be efficiently verified solving a linear programming problem 

without objective function. 

Remark 4. The identification algorithm, described in Section 3, should deliver a model and an uncertainty parameter set that 

should include any healthy behaviour of the system. This only could be achieved if a large and rich enough (from the 

identifiability point of view) data set is used. In this case, the probability of false alarm applying fault detection test defined in 

Problem 2 should be zero as already discussed in the introduction. However, according to (Campi et al., 2009), when using a 

finite number of M data, the inclusion of all healthy behaviours can only be guaranteed with some confidence degree opening 

the possibility to have some false alarm. The probability of false alarm would even be increased if data, classified as possible 

outliers (see Remark 2), are discarded in identification process following the procedure described in (Campi et al., 2009). 

Using the results presented in this reference, the probability of false alarm could even be quantified. However, in this work, 

this is considered as possible further research.    

4.2 Fault Sensitivity  

In fault detection, two kinds of faults are typically considered: additive faults (affecting input/output sensors and actuators) and 

multiplicative faults (in parameters) (Gertler, 1998). Including both types of faults in the system (1), residuals (13) can be 

approximated, neglecting the terms in the Taylor series corresponding to the second and higher order derivatives with respect 

to the fault, as follows 

   ˆ( ) ( ) ( ) ( ) - ( ) ( ) ( ) ( ) ( )t t
i i i

t t t t
i i i i y k i k i ir k y k y k e k f k k k      φ φθ θ

θ p φ θ p φ φy y u uy u
f F F f F F f     1, , yi n     (16) 

where  

- yf  (vector 1n 
y

) and uf (vector 1n 
u

) are output and input faults (additive faults) 

- 
iyf  is an additive fault in the i

th
  sensor output (the i

th
 component of the vector yf ) 

- f  (vector 1n  ) are the parametric faults (multiplicative faults) 
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with 

1

1( )
i

ny

i

y

i

y

f

q

f



 
 
 

 

 
 
 
 

 

φ

φ

φ

yF , 

1

1( )
i

nu

i

u

i

u

f

q

f



 
 
 

 
 
 

  
 

φ

φ

φ

uF   

1 1

1

1

1

( )( )

( , ( ), )

( )( )

t

n ny y

n kk

y y

k

n kk

y y

f f

q

f f







 
 

  
 

  
 
 
  
 

θ

θ pθ p

θ p

θ pθ p

y
F f  and  

1 1

1

1

1

( )( )

( , ( ), )

( )( )

t

n nu u

n kk

u u

k

n kk

u u

f f

q

f f







 
 

  
 

  
 
 
  
 

θ

θ pθ p

θ p

θ pθ p

u
F f  

Notice that 
iφy

F  and 
iφuF matrices, with dimensions n n

y
 and un n  respectively, are functions of the shift operator 1q  

whose coefficients are constants. tθy
F  and t

θu
F  matrices, with dimensions n n

y
 and n n

u
 respectively, are functions of 

the shift operator 1q  as well. 

Remark 5. Coefficients of matrices tθy
F  and t

θu
F  may depend on faults f  because faults could affect the scheduling 

variables kp  in LPV parameters ( )kθ p . In this way the effect of faults in the scheduling variables could be characterized.  

Remark 6. In case of  Linear Time Invariant (LTI) systems, residual expression (17) is exact, because the second and higher 

derivative terms are zero, and t t 
θ θ

0
y u

F F  (see Gertler, 1998).  

Residuals (16) can be expressed in a compact form using the fault sensitivity transfer function matrix (Isermann, 2006), 

defined as 

1( ) ( , ( ), ) ( )kk q k
S θ pr f f                                                                    (17) 

where 

- ( )kf  is the vector of possible faults of dimension 1fn   

- 1( , ( ), )kqS θ p f  is the fault sensitivity matrix of dimension y fn n  that can be calculated as 

1( , ( ), )

f

k

1 n

q
f f


   
  
   
 

S θ p
r r r

f
f

                                                          (18) 

 

considering additive and multiplicative faults as in (16)  and introducing  the vector of faults of dimension 1 fn  with 

f y un n n n    
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 
1 1 1

t

( ) , , , , , , , ,
ny nu ny y u uk f f f f f f

 f  

Then, residual sensitivities to faults can be computed as follows 

1

2

1

φ 1

φ 2

φ

1 φ

φ

φ
ny ny

1 yf f

  
 
  

   
   

  
 

t

t

t

θ

θ

θ

θ

θ

θ

1 1

1 1

1 1

y y

y y

y y

F F

-F - Fr r

-F - F

,…

1

1 1

2 2

- φ φ

- φ φ

- φ φ
y ny

ny+1 u

u n u

f f

 
 

  
   

   
  
 

t

t

t

θ

θ

θ

θ

θ

θ

1 1

1 1

1 1
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 
   

   
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 
 
 
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Remark 7: Since coefficients of matrices tθy
F  and t

θu
F  may depend on faults f (see Remark 5) the sensitivity (18) as well. 

Residual fault sensitivity (18) can be used to characterize the minimum detectable fault (see next section) and to enhance fault 

isolation as well as to allow fault estimation (see Section 5).  

 

4.3 Minimum  Detectable Fault 

According to Gertler (1998), the minimum detectable fault corresponds to a fault that brings a residual to its threshold 

(“triggering limit”), assuming that no other faults and nuisance inputs are present.  The minimum detectable fault was defined 

in Blesa et al. (2010) for single output LPV systems (i.e. 1ny   in (1)). Here, it is extended to the MIMO systems (1) by 

considering that the residual (13), in presence of a single fault f, can be approximated by 1( ) ( ) ( )fk q f k
r s  where 1( )f qs  

is the vector that contains the residual fault sensitivity to the fault f and corresponds with a column of fault sensitivity matrix 

(18). Then, the minimum detectable fault can be computed as              

 1

min min min
; ;( ) min ( ) , , ( )

ny
f f r f rf k f k f k                                                 (19) 

where  

min
; 1

;

( )
( )

( )

i

i

r

f r

f i

k
f k

s q


                                                                            (20) 

with 

1
; ( ) i

f i

r
s q

f

 



                                                                                 (21)  

and,  

 

1
( ) 2 ( ) 2ri i ik k   φ H                                                                      (22) 

is computed as according to Blesa et al. (2011).   
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Notice that the term ( )ri k  considers uncertainty in parameters. Moreover, Eq, (20) defines the minimum detectable fault 

using residual ir . Therefore, the minimum detectable fault using the fault detection procedure presented in Section 4.1 is the 

smallest of the minimum detectable faults of the yn  residuals according to (19). 

 

5. FAULT ISOLATION AND ESTIMATION METHODOLOGY 

5.1 Introduction  

Fault isolation consists in identifying the faults affecting the system. Fault isolation could be carried out, as classically 

proposed in FDI books (Gertler, 1998)(Isermann, 2006), on the basis of fault signatures generated by the fault detection test 

(14) applied component-wise to each single residual 

i

i

0 if 0 Γ ( )
( )

1 if 0 Γ ( )
i

k
k

k


  


                                                                          (23) 

producing an observed fault signature ( )k : 

  1 2( ) ( ), ( ), , ( )nk k k k   


                                                                     (24)  

Then, the observed fault signature is supplied to the fault isolation module that has the knowledge about the binary relation 

between the considered fault hypothesis set  1 2( ) ( ), ( ), , ( )
fnk f k f k f kf  and the fault signal set ( )k . This relation is 

stored in the so called theoretical binary fault signature matrix (FSM). An element FSMi;j of this matrix is equal to 1 if the 

fault hypothesis fj(k) is expected to affect the residual ri(k), that is, the related fault signal i(k) is equal to 1 when this fault is 

affecting the monitored system. Otherwise, the element FSMi;j is zero-valued. 

 

However, this basic fault detection and isolation scheme has the drawback that does not consider the MIMO nature of the 

residuals (13) when generating the observed fault signature (24) since each residual is evaluated independently of the others, 

while in fault detection (14) all residual components are evaluated altogether.  Moreover, as discussed in (Meseguer et al., 

2010), the binarisation process used to generate the observed fault signature (24) causes a loss of useful information that can 

reduce fault isolability of the fault isolation algorithm. To address both issues, a fault isolation algorithm based on the residual 

fault sensitivity is proposed in the following.  

5.2 Fault isolation and estimation algorithm 
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The information of the residual fault sensitivity matrix (18) can be used for isolation and estimation purposes extending the 

idea presented in Zhang and Jiang (2005) for parametric faults in single output systems. In this approach, the fault isolation and 

estimation is formulated as a Variable-Length Sliding Window Blockwise Least Squares parameter estimation. Considering that 

the fault vector is given by 

,       
( )

,     

fault

fault

k < k
k

k k


 

 o

f
f

0
 

i.e., faults have appeared at instant faultk  and fn

o f . Then, the problem of fault isolation and estimation implies solving 

Problem 3, for faultk k  once the fault has been detected. 

Problem 3: “Fault isolation and estimation (multiple faults)”  

 0 ( ) arg min ( )k J ,k
f

f f  

subject to    
 

2
0 1 0

max , 1

( ) ( ) , ( ),

fault

k

i

i k k

J ,k i q

  

  S θ pf r f f  

where  

- 0 0ˆ( ) ( ) ( )k k k r y y  

-  is the time moving horizon where the fault is considered constant.  

 

Remark 8: Notice that formulating the fault isolation problem in this way, the residual fault sensitivity (18) that depends on the 

fault (see Remark 7) can be used for fault isolation (estimation) even though the fault is unknown. Moreover, with this 

formulation the fault effect in the scheduling variable described in Remark 5 can be taken into account in the fault isolation and  

estimation. 

This non-linear optimization problem can be particularized for parametric faults ( f ) and single output systems ( 1yn  ) since 

in this case:  1 0 0, ( ), / ( )iq r k
    S θ p φf f  and the objective function of Problem 3 can be formulated as follows 

 
 

2
0

max , 1

( ) ( ) ( )

fault

k

i k k

J ,k r i i 

  

  φf f                                                        (25) 

corresponding to a minimum least square parameter identification problem.  

The role of the time moving horizon  is to minimize the noise effects since the longer the moving horizon is, the smaller this 

effects will be. However, increasing the moving horizon will lead to slower fault isolation. Then, the window length has to be 

chosen as the minimum window that provides similar isolation and estimation results compared with longer windows. This has 
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been extensively discussed in Zhang and Jiang (2005), where the isolation and estimation approach proposed in this paper has 

been inspired. 

 

Problem 3 can be simplified when single faults are considered since in this case the fault vector can be parameterized as 

follows 

 

 

t

t

0 0 0 ,       
( )

0 1 0 ,   

fault

o fault

k < k
k

f k k




 


f                                                 (26) 

with of  .  

On the other hand, Problem 3 can be simplified when single faults (26) are considered. Then, the problem of fault isolation and 

estimation implies solving Algorithm 1. 

Algorithm 1: “Fault isolation and estimation (single faults)” 

1:  for 1, , fj n  do 

2:         ( ), ( ) min ( , )opt opt
j j j

f
J k f k J f k    

              subject to    

 

2
0 0

max , 1

( ) ( )

fault

k

j _, j

i k k

J f,k i f

  

  r s      

               where 

                           - 0 0 /_, j jf  s r  is the j
th

 column of  1 0, ( ),kqS θ p f  

3: endfor   

4: 
 

 
1, ,

( ) arg min ( )
f

opt
j

j n
I k J k


   

5:  0 ( )( ) ( )
opt
I kf k = f k   

 

Remark 9: Algorithm 1 implies solving nf multi-output least square error optimization problems as (25) for every nf  possible 

single faults. The most probable fault ( )I k  is determined as the fault that gives the minimum function cost ( , )jJ f k  after 

solving the set of least square error problems for the set of considered single faults. 

 

Remark 10: A fault jf  will be isolable, from the other 1fn   faults using Algorithm 1 when   

 ( ) ( )  1, ,     opt opt
j i f faultJ k J k i n i j k k                                           (27) 
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Then, the minimum isolable fault jf  will be the one with the smallest size such that (27) is satisfied. This size depends on the 

minimum distance between 0
_, js and the rest of the columns of   1 0, ( ),kqS θ p f : The bigger the minimum distance between 

columns the smaller minimum isolable fault will be. As a consequence, the fault isolation error rate will decrease when this 

distance increase. 

 

6. APPLICATION CASE STUDY 1: PIECE OF WATER DISTRIBUTION NETWORK 

6.1 Description of the system 

The first application case study to test the proposed approach is focused on the leak detection and isolation problem in a piece 

of a water distribution network (see Fig. 2).  This problem is particularly important in water distribution networks and currently 

is still a field of research (Pérez et al., 2011). One of the main difficulties of using a model-based approach to address this 

problem is due to the behaviour of the network is described by a multivariable input/output system described by a set of non-

linear equations that does not have explicit solution.   The method proposed in this paper can be considered a novel approach to 

this problem with respect the current approaches existing in the literature. Here, just for illustration purposes, a small piece of a 

water distribution network is considered, but it could be easily extended to a real size network just proceeding with the 

proposed methodology. The considered piece is composed by the following elements: Three pipes with flows q1, q2 and q3  (in 

m
3
/s) and two nodes with demands d1 and d2 (in m

3
/s). Pressure sensors provides heads hr1, hr2, hn1 and hn2 (in m ). Sensors that 

measure hr1, hr2 are located in the inputs of the piece of the system while sensors that measure hn1, hn2 are located in the two 

nodes. The possible faults are f1 and f2 that correspond to leaks located in the nodes.   
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Figure 2. Piece of water distribution network proposed as case study 

6.2 Water network distribution modelling 

Considering the flow continuity condition in the two nodes included in this case study 

1 2 1 1( ) ( ) ( ) ( ) 0q k q k d k f k                                                                             (28) 

3 2 2 2( ) ( ) ( ) ( ) 0q k q k d k f k                                                                            (29) 

and applying the Hazen-Williams (H-W) formula (Brdys and Ulanicki, 1994) to the pipe flows in (28) and (29) , the following 

set of equations can be derived  

     
1 1

1 1 1 2 1 2 1 1( ) ( ) / ( ) ( ) / ( ) ( ) 0
a a

r n n nh k h k R h k h k R d k f k
 

                                           (30) 

     
1 1

2 2 3 2 1 2 2 2( ) ( ) / ( ) ( ) / ( ) ( ) 0
a a

r n n nh k h k R h k h k R d k f k
 

                                         (31) 

where the pipe resistance coefficients 1R , 2R  and 3R  in the H-W formula  are given by  10 4.871.2216·10 / aR L C D where L 

is the pipe length (in m), D is the pipe diameter (in mm) and a is the flow exponent (a = 1.852). The length of the pipes is L1 = 

L2 = 1000m and L3 = 2000m and their diameters are D1 = D2 = D3 = 200mm. 
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This set of equations is non-linear since 1a   and can not be solved analytically to obtain the node heads, but instead 

numerical methods should be used (Brdys and Ulanicki, 1994). This non-linearity also makes difficult to estimate the 

parameters of the network (as, e.g. the pipe resistances). For all these reasons, the non-linear model of the network is not very 

useful for FDI. But in this paper, it will be used as a virtual reality using the high-fidelity simulator EPANET. 

 

In order to apply the proposed methodology, an LPV model for this network will be derived by means of the linearisation of 

the non-linear model (30) and (31), considering no fault is present, around a generic operating point characterised by the head 

measurements in nodes ( 0
1nh  and 0

2nh ) 

 

0 0 0
1 1 1 2 111 1

0 0 0
2 1 1 2 22

ˆ ( ) ( ( ), ( )) ( )( )

ˆ ( ) ( ( ), ( )) ( )( )

n n n n
hn hn

n n nn

h k F h k h k h kd k
A A

d k F h k h k h kh k

 
      
                    

                                                (32) 

 

where 
1 1 1

1 1 1
0 0 0 0 0

1 1 2 1 2 1

1 2 2

1 2 2

1 1 1
1 1 1

0 0 0 0 0
2 1 2 2 2 1

2 3 2

2 3 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

a a a
r n n n n n

hn

a a a
n n r n n n

h k h k h k h k h k h k

R R R

aR aR aR
A

h k h k h k h k h k h k

R R R

aR aR aR

  

  


       
          
     

 



       
          
     

 



 
 
 
 
 
 
 
 
 
 



 

 

and 

     
1 1

0 0 0 0 0
1 1 2 1 1 1 2 1 2 1 1( ( ), ( )) ( ) ( ) / ( ) ( ) / ( ) ( )

a a

n n d n n nF h k h k h k h k R h k h k R d k f k

 

                                           

     
1 1

0 0 0 0 0
2 1 2 2 1 3 2 1 2 2 2( ( ), ( )) ( ) ( ) / ( ) ( ) / ( ) ( )

a a

n n r n n nF h k h k h k h k R h k h k R d k f k

 

                                          

 

Notice that parameters vary with node heads. But, according to (30) and (31), the node heads are fixed by the demands in a 

complex way. For this reason, the LPV model (32) can be approximated as follows 

1;1 1 2 1;2 1 2 1;3 1 21 1

2;1 1 2 2;2 1 2 2;3 1 222

ˆ ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))( ) ( )

ˆ ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))( )( )

n

n

a d k d k a d k d k a d k d kh k d k

a d k d k a d k d k a d k d kd kh k

      
              

                                    (33) 

where  1;2 1 2 2;1 1 2( ( ), ( )) ( ( ), ( ))a d k d k a d k d k  and the model parameter dependence with the demand can be  approximated by 

an experimental relation as follows 

; ; 1 ; 2 ;( ) ( ) ( )i j k i j i j i ja d k d k    p           1,2i   and 1,2j                                                 (34) 

where the parameters ;i j , ;i j  and ;i j  are estimated using measurements and identification algorithms. 
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Finally, considering bounded additive noise in the pressure sensors, LPV model (33) can be rewritten in regressor form (1) as 

follows 

1

2

( )
( )

( )

n

n

h k
k

h k

 
  
 
 

y , 
1 2

1 2

( ) ( ) 0 1 0
( )

0 ( ) ( ) 0 1

d k d k
k

d k d k

 
  
 

Φ ,  
t

1;1 1;2 2;2 1;3 2;3( ) ( ) ( ) ( ) ( ) ( )k k k k k ka a a a aθ p p p p p p   (35) 

where 
1

2

( )

( )
k

d k

d k

 
  
 

p , 
1

2

( )
( )

( )

e k
k

e k

 
  
 
 

e       

In Annex 2, the procedure followed to apply the proposed identification and fault diagnosis approach is summarised in an 

algorithmic way. 

6.2 Identification 

The parameter identification of model (35) , considering the parameter set described by the zonotope (2), has been carried out 

in two steps: first estimation of nominal parameters and second estimation of its uncertainty defined by H . 

 

For the nominal parameter estimation, the LPV parameter estimation algorithm proposed by Bamieh and Giarré (2002) has 

been applied to a set of head/demand data recorded in the network in a non-leak scenario (fault free scenario) considering noise 

bounds given by sensors accuracy. The parameters ;i j , ;i j  and ;i j  in Eq. (34) obtained are showed in Table 1. 

 

1;1  0.0039 
2;1  -0.0023 

1;1  -1.11 
2;1  -0.0046 

1;1  1.11 
2;1  1.77 

1;2  -0.0023 
2;2  -1.21 

1;2  -0.0046 
2;2  -0.0016 

1;2  1.77 
2;2  3.01 

1;3  1.11 
2;3  0.633 

1;3  3.77 
2;3  3.01 

1;3  3.89 
2;3  2.94 

Table 1. Coefficients of nominal LPV parameters (34) 

 

After the nominal LPV model has been estimated, parametric modelling uncertainty has been obtained solving Problem 1, 

considering that there are not dependencies between parameters and the same uncertainty weight is used in every parameter, 

through the following parameterization 

0 0
; ; ;( ) ( ) , ( )i j k i j k i j ka a a   

 
p p p                      1,2i   and 1,2j                                                (36) 
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where 0
; ( )i j ka p  are the nominal parameter given by Equation (34) and coefficients of Table 1. Then, H  in (2) is 

0 H H with 0 H I . Using the same non-faulty data set used for the nominal identification, uncertain parameter   is 

determined by solving Problem 1  and it results in  2.05·10
-5

. 

Once the model has been calibrated, fault detection test (Problem 2) has been applied to different non-faulty scenarios in order 

to validate the model.  

 

6.3 Fault Detection, Isolation and Estimation 

The faults to be detected, isolated and estimated correspond to leaks in nodes 1 and 2. These faults can be interpreted as 

unknown changes in demands d1 and d2 and are denoted as: 1 1 1fd d f   and 2 2 2fd d f  , respectively. Only single faults 

have been considered. 

Combining (33) with (13), residuals are obtained. Then, the residual fault sensitivity transfer function matrix (18) is 

1;1 1;2

2;1 2;2

S S

S S

 
  
 

S                                                                                 (37) 

with 

1;1 1;1 1 2 1 1;1 2 1;2 1;3( , )f fS a d d d d       

1;2 1;2 1 2 1 1;2 2 2;2 2;3( , )f fS a d d d d       

2;1 1;2 1 2 1 1;1 2 1;2 1;3( , )f fS a d d d d       

2;2 2;2 1 2 1 1;2 2 2;2 2;3( , )f fS a d d d d       

On the other hand, the theoretical binary fault signature matrix FSM is given by 

 
1f  2f  

r1 1 1 

r2 1 1 

Table 2: Theoretical binary fault signature matrix of the two different considered faults 

 

From Table 2, it can be noticed that the two leaks can not be isolated using the classic fault isolation approach (recalled in 

Section 5.1)  but are distinguishable using the residual fault sensitivity transfer function matrix (37) since rank(S)=2. 

 

6.4 Fault scenarios 
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In the following, two different fault scenarios have been simulated and the results of the fault detection, isolation and 

estimation procedure are presented. 

 

Fault scenario 1: “Leak f1=0.5 l/s is present in the node 1 at time 1.7·10
5
s.”. Fig. 3(a) shows the components of the nominal 

MIMO residuals in the leak scenario 1.  These residuals are considered as the difference between the real and predicted head 

measurements using the LPV model (33) with nominal parameters (34). 
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 (a)                                                                                                      (b) 

Figure. 3. (a) Residuals evolution in fault scenario 1. (b) Fault test in fault scenario 1. 

 

Fig. 3 (b) shows the set Г, defined by (15), at the fault appearance instant. Notice that since the set Г does not contain the point 

(0,0),  the leak is detected according to (14) and leading to non feasibility of Problem 2.  

 

After the fault has been detected at time 1.7·10
5
s, it should be isolated and estimated. Fig. 4(a) shows the minimum of 

optimisation cost functions (J(f1) and J(f2)) defined in Algorithm 1. A window length 20  has been chosen as the minimum 

window that provides similar isolation and estimation results compared with longer windows. 
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Figure 4. (a) Optimization cost functions in leak scenario 1. (b) Fault estimation. 

 

As J(f1) is smaller than J(f2) 
51.7·10k s  , then a leak is located in node 1. Thus, the leak magnitude f1, presented in Fig. 4 

(b), is obtained as one that provides the smallest minimum of J(f1) when solving Algorithm  1. 

 

Fault scenario 2: “Leak f2=0.6 l/s is present in the node 2 at time 1.7·10
5
s.”. Fig. 5 (a) shows the components of the nominal 

MIMO residuals in the leak scenario 2.  
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Figure 5. (a) Residuals evolution in fault scenario 2. (b) Fault test in fault scenario 2. 
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As in the previous scenario, after the fault has been detected at time 1.7·10
5
s, it should be isolated and estimated. Fig. 6(a) 

shows the minimum of optimisation cost functions (J(f1) and J(f2)) defined in Algorithm 1 with the same window length used 

in fault scenario 1.  
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                                                           (a)                                                                          (b) 

Figure 6. (a) Optimisation cost functions in leak scenario 2. (b) Fault estimation. Both figures begin in the fault time detection 

of fault scenario 2 (t=1.7·10
5
s) 

 

As J(f2) is smaller than J(f1) 
51.7·10k s  , then a leak is located in node 1. Thus, the leak magnitude f1, presented in Fig. 6(b), 

is obtained as the minimiser J(f2) of that results from solving Algorithm 1. 

 

Figure 5 (b) shows the set Г , defined by (15), at the fault instant appearance. Notice that since the set Г does not contain the 

point (0,0), the leak is detected according to (14). 

 

7. CASE STUDY 2: FOUR TANK SYSTEM 

7.1 Description of the system 

 

A quadruple-tank process, proposed by Johansson (2000), is used as second case study to illustrate the effectiveness of the 

fault diagnosis method proposed in this paper. This example differs from the previous one that model equations are now 

dynamic. A schematic diagram of the quadruple-tank system is shown in Fig. 7. The inputs are 1v and 2v  (input voltages to the 

pumps) and the outputs are the tank levels 1h , 2h , 3h  and 4h .  
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Figure 7: Quadruple-tank process.   

The equations that describe the system presented in (Johansson, 2000) discretised by means of the Euler method with sampling 

time 1t s  are 
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( ) 1 ( 1) ( 1) ( 1) ( )

( 1) ( 1)

(1 )2
( ) 1 ( 1)

( 1)

aa kg g
h k h k h k v k e k

A h k A h k A

a a kg g
h k h k h k v k e k

A h k A h k A

a kg
h k h k

A h k A







 
           

 
           

  
      

2 3
3

4 1 1
4 4 1 4

4 4 4

( 1) ( )

(1 )2
( ) 1 ( 1) ( 1) ( )

( 1)

v k e k

a kg
h k h k v k e k

A h k A



 

  
        

                     (38) 

where 2
1 3 0.071a a cm  , 

2
1 3 28A A cm  , 1 0.7 , 

3
1 3.33 /k cm Vs , 2

2 4 0.057a a cm  , 
2

2 4 32A A cm  , 2 0.6  

3
2 3.35 /k cm Vs , 

2981 /g cm s   are the model parameters. ( )ie k , 1, ,4i   are the additive errors (including sensor and 

discretisation errors)  that are assumed to be bounded. The bounds are 0.05cmi  , 1, , 4i  . 

The non-linear model (38) can be expressed in quasi-LPV form (Shamma and Cloutier, 1993) by using the approach based on  

embedding the non-linearities inside the LPV parameters as proposed by (Kwiatkowski et al., 2006). Following this procedure 

model (38)  can be expressed as in (1) through the following parameterisation 

 
t

1 2 3 4( ) ( ) ( ) ( ) ( )k h k h k h k h ky ,  1 2( ) ( ) ( )k k kΦ Φ Φ ,
1

2

( )
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k
k

 
  
 

θ p
θ p

θ
              (39) 

 
t

1 2 3 4( ) ( ) ( ) ( ) ( )k e k e k e k e ke                                                          (40)                                                     
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Additionally to additive noise, there is uncertainty in parameters ;j ia  because their value is adapted through the scheduling 

functions  

0 1
( )

( 1)
i k

i

g
h k

p 


        1, , 4i                                                      (46) 

that depend on the measured variables (43) that are contaminated with noise leading to consider its effect as follows. 

0( ) ( ) ( )i k i k ig g g kp p  1, , 4i                                                     (47) 

Then, the LPV vector parameter ( )kθ p  can be expressed as 
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with nominal parameters 

 
t

0 0 0 0 0 0 0
1 1;1 1;3 2;2 2;4 3;3 4;4( ) ( ) ( ) ( ) ( ) ( ) ( )k k k k k k ka a a a a aθ p p p p p p p                                 (49) 

where 0
; ( )j i ka p  are obtained with  (41)  considering 0( ) ( )i k i kg gp p  and uncertainty 

t
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0 0
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Parametric uncertainty can be expressed using a zonotope, as in (2), in the following way 
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1( ) nk θ H                                                                      (52) 

As in the previous application example, the procedure followed to apply the proposed identification and fault diagnosis 

approach is summarised in  Annex 2,  

 

7.2 Identification 

Nominal parameters (49) have been obtained by the physical modelling of the system that leads to (51). On the other hand,  in 

the following it is shown how the parameter uncertainty (52) has been estimated..  

In order to apply identification techniques presented in Section 3, input/output data is recorded in a fault free scenario applying 

a pseudorandom binary sequence (PRBS’s) in the pump inputs such that all the operation points (  1 2.4,3.8 Vv  and 

 2 2.3,3.5 Vv  )  are swept (Fig. 8).   
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Figure 8: Fault free data using for parameter and uncertainty estimation (14000 samples) 

The following parameterisation of matrix H in (52), that takes into account physical relations in parametric uncertainties 

described in (50), has been used 

 

t gH H H                                                                            (53) 

with  
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and 4 n
g

H  is the matrix to be identified that defines the zonotope that bounds parameters ( )kg , that is 
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The uncertainty  (52) of parameters (48) can be viewed as a linear transformation of ( )kg  

( ) ( )tk k  θ H g                                                                            (56) 

The procedure of identification and fault detection presented in Section 3 and 4, respectively, can be carried out considering 

that ˆ ( )k  in (9) can be parameterised as follows  

 ˆ ( ) ( )  yn n

g gk k


 Φ H E                                                            (57) 
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Let us consider 0g  H H , with  

2

0.93 0 0 0

0 0.77 0 0
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1.3 0 8.4 0

0 1.22 0 8.74



 
 
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 
 
 

0H                                                              (59) 

estimated as it is described in Annex 1 by dividing the data in 4 different directions. Fig. 9 shows the 1 3g g   and  

2 4g g   projections of the zonotope 0
n

H  and the 8 support polytopes (
jΘ and 

jΘ 1,...,4j  ) used to compute 0H  

according to Annex 1.  
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a)                                                                                  b) 

Figure 9: a) 1 3g g   and b) 2 4g g   projections of the zonotope 0
n

H  (blue) and support polytopes (red and black).  

 

Once 0H  has been calculated, with the additive error bounds and nominal parameters obtained by the physical knowledge of 

the system,   is computed solving Problem 1 being equal to 0.762 . 

 

Once the model has been calibrated, fault detection test (Problem 2) has been applied to different non-faulty scenarios in order 

to validate the model.  

 

7.3 Fault detection, isolation and estimation 

In order to illustrate the fault detection, isolation and estimation procedure described in Sections 4 and 5 (and presented in Fig. 

1), in several fault scenarios, two different kinds of faults have been considered: additive faults (in input and output sensors: 

uf  and yf ) and multiplicative faults (in parameters: f ). The fault scenarios are created by introducing faults when the 

system is working in the operation range presented in Fig 10.  
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Figure 10: No faulty scenario data 

In particular, the set of considered faults and their type is listed in the following: 

Additive 

- Input sensor faults uf : 
1vf  and 

2vf  

- output sensor faults yf : 
1hf , 

2hf ,
3hf and 

4hf  

Multiplicative 

- Component faults: 
1af , 

2af , 
3af , 

4af , 
1

f  and 
2

f  

Only single faults have been considered. 

 

Fault isolation and estimation method presented in Section 5 is based on the fault sensitivity transfer function matrix (18). In 

our case study, with 4 residuals and 12 possible different faults to be detected, the matrix 1( , ( ), )kqS θ p f  of dimension 

(4 12)  is  

1;1 1;3 1;5 1;7 1;9 1;11

2;2 2;4 2;6 2;8 2;10 2;121

3;3 3;6 3;9 3;12

4;4 4;5 4;10 4;11

0 0 0 0 0 0

0 0 0 0 0 0
( , ( ), )

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

k

S S S S S S

S S S S S S
q

S S S S

S S S S



 
 
 
 
  
 

S θ p f                            (60) 

On the other hand, the theoretical binary fault signature matrix FSM signature is given by 

 

 

 

 



 

 

-29- 

 

 
1hf  

2hf  
3hf  

4hf  
1vf  

2vf  
1af  

2af  
3af  

4af  
1

f  
2

f  

r1 1 0 1 0 1 0 1 0 1 0 1 0 

r2 0 1 0 1 0 1 0 1 0 1 0 1 

r3 0 0 1 0 0 1 0 0 1 0 0 1 

r4 0 0 0 1 1 0 0 0 0 1 1 0 

Table 3: Theoretical binary fault signature matrix of the different considered faults 

From Table 3, it can be noticed that there are some faults that can not be isolated with the binary fault signature matrix, even 

considering single faults. For example, the fault signature corresponding to the additive fault  
1

1 0 0 0
t

hf   is the same 

than the fault signature of the multiplicative fault  
1

1 0 0 0
t

af   . Therefore, they are not distinguishable Whereas using 

the fault sensitivity matrix (60), the effect of both faults is  1;1 0 0 0
t

S  and  
1 1;7 0 0 0

t

af S , respectively, with 

1;1 1S   and 
1

1
1

1;7
1

2 ( ( 1) )yg y k f q
S

A

 
 . Thus, the two faults are distinguishable using the residual fault sensitivity (60). 

 

7.4 Faults scenarios 

In the following, two different fault scenarios have been simulated and the results of the fault detection, isolation and 

estimation procedure are presented. 

 

Fault scenario 1: “Sensor additive fault: 
1

0.8hf cm  at t=9500s” 

Figures 11a) and b) show the result of the detection test in this fault scenario. The fault is detected at the appearance time              

(t=9500s). At this time, the residual admissible space   does not contain the origin in the 1 3r r  projection. Thus, condition 

(14) is not fulfilled and derives in the non feasibility of Problem 2 what proves the existence of a fault.  
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a)                                                                 b) 

Figure 11: Residual admissible space   projections a)  1 3r r  and b) 2 4r r , at the fault time detection (t=9500s) in fault 

scenario 1. 

 

After the fault has been detected, the fault isolation and estimation procedure is activated and Algorithm 1 is solved 

considering the 12 possible different faults and using residual fault sensitivity (60). A window length 20  has been chosen 

as the minimum window that provides similar isolation and estimation results compared with longer windows. 

Fig. 12 a) shows the evolution of the inverse of the optimisation cost function for different considered faults, obtained solving 

Algorithm 1 from the fault detection time (t=9500s). As the objective function ( J ) corresponding to 
1hf  is smaller than the 

objective function corresponding to the other faults considered, the fault isolation algorithm determines that the fault is an 

additive fault in output sensor 1h . The fault magnitude estimation corresponding to 
1hf , determined also as result of the 

application of Algorithm 1,  is presented in Fig. 12 b). 
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a)                                                                                                  b) 

Figure 12: a) Inverse of optimisation cost function ( 1J  ) of different faults and b) fault estimation of 
1hf . Both figures begin 

in the fault time detection of fault scenario 1 (t=9500s). 
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Fault scenario 2:  “Multiplicative fault: 
1

20.035af cm  at t=8800s” 

 

In this case, the fault is detected at t=8809s, that is 9 seconds after the fault time appearance. Figures 13a) and b) show the 

result of the detection test at the detection time. It can be noticed in the 1 3r r  projection that since the residual admissible 

space   does not contain the origin, condition (14) is not fulfilled. This proved the existence of a fault. 
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a)                                                                     b) 

Figure 13: Residual admissible space   projections a) 1 3r r  and b) 2 4r r , at the fault time detection (t=8809s) in fault 

scenario 2. 

 

Once the fault has been detected, the fault isolation and estimation procedure is activated and Algorithm 1 is applied. Fig. 14 a) 

shows the evolution of the inverse of the optimisation cost function for different considered faults obtained applying Algorithm 

1 at the fault detection time (t=8809s) with the same window length used in the previous fault scenario. 

 

As the objective function ( J ) corresponding to 
1af  is smaller than the objective function of the other faults considered, the 

fault isolation algorithm determines that the fault is a multiplicative fault affecting parameter 1a . The fault magnitude 

estimation corresponding to
1af is also determined when solving Algorithm 1 and is represented in Fig. 14 b). 
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a)                                                                               b) 

Figure 14: a) Inverse of optimisation cost function ( 1J  ) of different faults and b) fault estimation of 
1af . Both figures begin 

in the fault time detection of fault scenario 2 (t=8809s). 

 

8. CONCLUSIONS 

In this paper, a robust fault detection, isolation and estimation method for systems that can be modelled by uncertain MIMO 

LPV models has been presented. The identification procedure is formulated as an optimisation problem that determines a 

zonotope that encloses the parametric uncertainty given the model structure in regressor form and additive error bounds. The 

fault detection methodology is based on checking if measurements are inside the prediction bounds provided by the LPV 

model, parametric uncertainty and additive error. It has been formulated as the feasibility problem that can be solved using  

linear programming algorithms. The fault isolation and estimation algorithm are based on residual fault sensitivity analysis. 

This methodology allows to provide additional information to the relationship between residuals and faults increasing fault 

isolability. Moreover, it allows obtaining a fault estimation. Finally, satisfactory results have been obtained using two case 

studies based on a water distribution network and a four tank system. 
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Annex 1: Uncertainty shape 0H  

Matrix 0H  determines the weight and relations between the different parametric uncertainties. In this annex, a data-based 

procedure is presented to find a suitable 0H  given a set of data rich enough from the identification point of view, M regressor 

matrix values ( )kΦ  and output measurements ( )ky . 

Let us consider the consistency test condition (10) for all the identification data, model (1) and parameter vector  ( )k kθ p Θ  

with 0 ( )k k Θ θ p Θ  where Θ  is a convex set. In the following, it will be described how to find the set Θ   fulfilling 

condition (10). Notice that this parameterization of the uncertainty is more general than the parametric uncertainty given in (2) 

(bounded by a zonotope). 

Then, the matrix 0H  will be computed in such a way that the zonotope centred in the origin defined by 0H  fulfils the 

uncertainty conditions of Θ .  

0
n Θ H                                                                              (61) 

A.1 Defining convex set Θ  

At every instant k, the regressor matrix ( )kΦ  and the measured output y(k) define two half-spaces kΘ and kΘ  in n  that 

fulfil  

 0ˆ: ( ) ( ) ( ) , 1,..,
n

k i i i i yk y k y k i n          Θ θ φ θ  

 0ˆ: ( ) ( ) ( ) , 1,..,
n

k i i i i yk y k y k i n          Θ θ φ θ  

where iφ  is the i
th

 row of the regressor matrix ( )kΦ . 

Then, the sets Θ  and Θ  that satisfy respectively 0ˆ( ) ( ) ( )i i i ik y k y k    φ θ   and 0ˆ( ) ( ) ( )i i i ik y k y k    φ θ , 

1,...,k M  , 1,.., yi n    are defined by  

1

M

kk
  Θ Θ  and 

1

M

kk
  Θ Θ                                                                       (62) 

Notice that: Θ  and Θ  are polytopes defined by linear inequalities. 

And finally, the set Θ  that fulfils condition (10) 1,...,k M   satisfies   

  and        Θ Θ Θ Θ                                                                      (63) 

Condition (63) implies that at least one point of every polytope defined in (62) belongs to the uncertainty set Θ . This points 

will be denoted as θ  (point of Θ ) and θ  (point of Θ ). 

In order to minimize the uncertainty of the output estimation, the parameters θ  and θ  can be chosen as follows 
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 0

1 1

ˆarg min ( ) ( ( ) ( ) )
ynM

i i i i

k i

k y k y k 


 

     
θ

θ φ θ                                                        (64) 

subject to 0ˆ( ) ( ) ( )i i i ik y k y k    φ θ        1,.., yi n   and 

 0

1 1

ˆarg min ( ) ( ( ) ( ) )
ynM

i i i i

k i

k y k y k 


 

      
θ

θ φ θ                                                       (65) 

 subject to 0ˆ( ) ( ) ( )i i i ik y k y k    φ θ       1,.., yi n   

A.2 Enclosing Θ  by a zonotope 

Once θ  and θ  have been calculated, the zonotope centred in the origin that contains these two points can be determined as 

the box (particular case of zonotope) whose opposite vertex are θ  and θ  that can be defined as in (61) with 0H  as 

 0 1;1 ;diag H Hn n 
H                                                           (66) 

where  ;H max ( θ ), ( θ )i i i iabs abs    1,..,i n  

In order to benefit of the richness of the zonotope representation of the uncertain parameter set, lets take into account possible 

dependencies between the different components of the parametric uncertainty, the data can be divided depending on the 

direction of the regressor vectors in Dn  groups. Then, the parameter sets (62) can be obtained for every set of data ( jΘ and 

jΘ  1,.., Dj n ) and, in the same way, optimal parameters ( jθ  and jθ  1,.., Dj n ) can be calculated applying  (64) and 

(65) to every set of data. 

 Then, the zonotope centred in the origin that contains these 2 Dn  points can be calculated considering  

 0 1 1, , nD nD  H v v                                                                             (67) 

where jv  1,.., Dj n  are the unitary vectors (dimension 1n  ) that define the directions of the data sets, and 0j   

1,.., Dj n  are the coefficients to be computed. 

The problem of computing j , 1,.., Dj n  can be formulated as the following linear programming optimization problem 

 

Problem A.1: “Computation of the coefficients j , 1,.., Dj n ” 

, ,, ,
1

min
D

i i j i j

n

i

i
  



  subject to  
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, ,

1 1

   and        1,..,
D Dn n

j j
i j i i j i D

i i

j n
 

       θ v θ v  

, ,with  and     1,.., ,   1,..,i i j i i i j i D Di n j n                      

Notice that Problem A.1 is a linear programming problem. 



 

 

-39- 

 

Annex 2: Off-line and on-line procedures to apply the proposed identification and fault diagnosis approach 
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