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Exhaustive Linearization for Robust Camera
Pose and Focal Length Estimation

Adrian Penate-Sanchez, Juan Andrade-Cetto, Member, IEEE and Francesc Moreno-Noguer

Abstract—We propose a novel approach for the estimation of the pose and focal length of a camera from a set of 3D-to-2D point
correspondences. Our method compares favorably to competing approaches in that it is both more accurate than existing closed form
solutions, as well as faster and also more accurate than iterative ones.
Our approach is inspired on the EPnP algorithm, a recent O(n) solution for the calibrated case. Yet, we show that considering the
focal length as an additional unknown renders the linearization and relinearization techniques of the original approach no longer valid,
especially with large amounts of noise. We present new methodologies to circumvent this limitation termed exhaustive linearization
and exhaustive relinearization which perform a systematic exploration of the solution space in closed form. The method is evaluated on
both real and synthetic data, and our results show that besides producing precise focal length estimation, the retrieved camera pose is
almost as accurate as the one computed using the EPnP, which assumes a calibrated camera.

Index Terms—Camera calibration, Perspective-n-Point problem.

F

1 INTRODUCTION
Estimating the camera pose from n 3D-to-2D point corre-
spondences is a fundamental and well-understood problem
in computer vision. Its solution is relevant to almost every
application of computer vision in the era of smart phones. The
most general version of the problem requires estimating the six
degrees of freedom of the pose and five calibration parameters:
focal length, principal point, aspect ratio and skew. This can be
established with a minimum of 6 correspondences, using the
well known Direct Linear Transform (DLT) algorithm [11].

There are, though, several simplifications to the problem
which turn into an extensive list of different algorithms that
improve the accuracy of the DLT. The most common simplifi-
cation is to assume known calibration parameters. This is the
so-called Perspective-n-Point problem, for which three point
correspondences suffice in its minimal version [10]. There
exist also iterative solutions to the over-constrained problem
with n > 3 point correspondences [7], [12], [21] and non-
iterative solutions that vary in computational complexity and
accuracy from O(n8) [1] to O(n2) [8] down to O(n) [20].

For the uncalibrated case, given that modern digital cameras
come with square pixel size and principal point close to the
image center [4], [11], the problem simplifies to the estimation
of only the focal length. Solutions exist for the minimal
problem with unknown focal length [2], [18], [25], [27], and
for the case with unknown focal length plus unknown radial
distortion [4], [5], [14], [27].

Unfortunately, in the presence of noise and mismatches,
these solutions to the minimal problem become unstable and
may produce unreliable pose estimates. This is commonly
addressed including an extra RANSAC [9] iterative step
for outlier removal, either taking minimal or non-minimal
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subsets [26], but at the expense of high computational load.
Recent approaches have reformulated the problem as a quasi-
convex optimization problem, allowing for the estimation of
global minima [6], [15], [16]. Yet, while this is a very attractive
idea, the iterative nature of these approaches makes them
unpractical for real-time applications, unless a very small
number of correspondences is considered.

In this work we advocate for an efficient solution that can
handle an arbitrarily large point sample, thus increasing its
robustness to noise. Using a large point set may be especially
useful for current applications such as 3D camera tracking [19]
or structure-from-motion [28], which require dealing with
hundreds of noisy correspondences in real time.

The method we propose fulfills these requirements: it allows
estimating pose and focal length in bounded time, and since it
is a non-minimal solution, it is robust to situations with large
amounts of noise in the input data. Drawing inspiration on the
EPnP algorithm [20], [22], we show that the solution of our
problem belongs to the kernel of a matrix derived from the 3D-
to-2D correspondences, and thus can be expressed as a linear
combination of its eigenvectors. The weights of this linear
combination become the unknowns of the problem, which we
solve applying additional distance constraints.

However, solving also for the focal length has the effect that
the linearization and relinearization techniques used in [20],
[22] to estimate these weights are no longer valid. Several
factors contribute to this: (1) the new polynomials that need
to be considered are of degree four, in contrast to those in
the EPnP that were of degree two; (2) the variables being
computed differ in several orders of magnitude and small
inaccuracies in the input data may propagate to large errors in
the estimation; and (3) the number of possible combinations
in the solution subspace explodes combinatorially for large
kernel sizes. All these issues make that a naive selection of
equations for back substitution after linearization produces
unreliable results. Moreover, a least squares solution of the
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Problem Formulation:Fig. 1. Problem Formulation: Given a set of correspondences between 3D points pi expressed in a world reference
frame, and their 2D projections ui onto the image, we seek to retrieve the pose (R and t) of the camera w.r.t. the world
and the focal length f .

kernel weights is also not viable since it will equally ponder
constraints that involve variables with different orders of
magnitude. We propose alternative solutions, which we call
exhaustive linearization and exhaustive relinearization that
circumvent these limitations by systematically exploring the
solution subspace.

As will be shown in the results section, our method, called
Uncalibrated PnP (UPnP), compares favorably in terms of
accuracy to the DLT algorithm, the only closed-form solution
we are aware that is applicable for an arbitrary number of
correspondences. This is because the least squares solution
of the DLT algorithm chooses an optimal solution only in the
direction along the vector associated with the smallest singular
value of the linear system of equations built from the 3D-
to-2D correspondences. In contrast, our method considers all
directions of the kernel of the system, which for the ideal
case is of size one [23], but for noisy overconstrained systems
grows in size [20]. Our method also yields better accuracy
and efficiency than [15] and [16], which are algorithms that
guarantee maximum error tolerance, but which are compu-
tationally expensive. In fact, the accuracy of our results is
even comparable with that of the EPnP, which assumes known
calibration parameters.

2 PROBLEM FORMULATION

In this section we formulate the problem of recovering the
camera pose and focal length from a set of n 3D-to-2D point
correspondences. We first show that these matches yield a
rank-deficient linear system, which requires additional con-
straints to be solved. We then introduce distance constraints
that convert the original linear system into a set of polyno-
mial equations of degree four. In Sec. 3 we introduce novel

linearization techniques that help solve this polynomial set of
equations.

2.1 Linear Formulation of the Problem
We assume that we are given a set of 3D-to-2D correspon-
dences between n reference points pw1 , . . . ,p

w
n expressed

in a world coordinate system w, and their 2D projections
u1, . . . ,un in the image plane. We further assume a camera
with square pixel size and with the principal point (u0, v0) at
the center of the image, although we do not know its focal
length. Under these assumptions, we formulate the problem
as that of retrieving the focal length f of the camera, and
the rotation R and translation t, that align the world and the
camera coordinate systems (see Fig. 1).

We will address this problem by minimizing the following
objective function based on the reprojection error:

minimize
f,R,t

n∑
i=1

‖ui − ũi‖2 , (1)

where ũi is the projection of point pwi :

ki

[
ũi
1

]
=

f 0 u0
0 f v0
0 0 1

 [R|t]
[
pwi
1

]
, (2)

with ki a scalar projective parameter.
Following [20], we rewrite each 3D point in terms of the

barycentric coordinates of 4 control points. This turns the
problem into that of finding the solution of a linear system
of 2n equations in 12 unknowns.

Let cwj , j = 1, . . . , 4, be the coordinates of these four con-
trol points defining an arbitrary basis in the world coordinate
system. Without loss of generality, we choose this basis to be
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centered at the mean of the reference points and aligned with
the principal directions of the data. Each reference point pwi
then becomes

pwi =

4∑
j=1

aijc
w
j . (3)

The aij terms indicate the barycentric coordinates of the i-th
reference point and may be computed from the position of the
reference and control points in the world coordinate system,
with the normalization constraint that

∑4
j=1 aij = 1. Note

that these barycentric coordinates are independent from the
coordinate system we use, i.e., the same points in the camera
referential c become pci =

∑
aijc

c
j .

Therefore, replacing Rpwi + t with pci into Eq. 2, produces
the two following perspective projection equations for each
3D-to-2D correspondence:

4∑
j=1

(
aijx

c
j + aij(u0 − ui)

zcj
f

)
= 0 , (4)

4∑
j=1

(
aijy

c
j + aij(v0 − vi)

zcj
f

)
= 0 , (5)

where ui = [ui, vi]
> and ccj = [xcj , y

c
j , z

c
j ]
>. These equations

can be jointly expressed for all the n correspondences as a
linear system

Mx = 0 , (6)

where M is a 2n × 12 matrix made of the coefficients aij ,
the 2D points ui, and the principal point; and x is our vector
of 12 unknowns containing both the 3D coordinates of the
control points in the camera reference frame and the camera
focal length, dividing the z terms:

x = [xc1, y
c
1, z

c
1/f, . . . , x

c
4, y

c
4, z

c
4/f ]

> . (7)

Note that by using the barycentric coordinates we have
converted the pose estimation problem to that of estimating the
position of the four control points cci in the camera coordinate
system. The two problems, though, are equivalent, since given
cwi and cci , we can then apply standard techniques to compute
the orientation and translation between the world and camera
referentials [13].

Equation 6 tells us that the solution lies on the null-space
of M. We can therefore write x as a weighted sum of the
null eigenvectors vk of M>M, which can be computed using
Singular Value Decomposition (SVD). Hence, we write

x =

N∑
k=1

βkvk , (8)

where the weights βk become our new unknowns and N is
the rank of the kernel of M>M. It can be shown that, for
n ≥ 6, and with noise-free correspondences, N = 1. In
practice, though, noise makes no eigenvalue exactly zero and
the matrix M>M has full rank. Nonetheless, the matrix loses
rank numerically and the effective dimension of the null space
increases. Thus, we have to consider the effective dimension
of the kernel being greater than one, and to cope with this
situation, we follow a similar strategy as in [20], and compute

the solution for various values of N , picking the one that
minimizes Eq. 1. There is no clear criterion on the value of N
to choose, as this will depend on the focal length magnitude
and on the amount of noise in our input data. Yet, setting
N ≤ 3 has proven adequate in all our experiments.

2.2 Introducing Distance Constraints

In order to solve for the weights βk in Eq. 8 we add constraints
that preserve the distance between control points. That is, for
each pair of control points cj and cj′ ,

‖ccj − ccj′‖2 = d2jj′ , (9)

where djj′ is the known distance between control points cwj
and cwj′ in the world coordinate system. Rewriting ccj and ccj′
in terms of the βk coefficients, from Eqs. 7 and 8 we obtain

ccj =

xcjycj
zcj

 =
N∑
k=1

 βkv
[j]
k,x

βkv
[j]
k,y

fβkv
[j]
k,z

 , (10)

where v
[j]
k = [v

[j]
k,x, v

[j]
k,y, v

[j]
k,z]
> is the sub-vector of vk

corresponding to the coordinates of the j-th control point.
Observe that the unknown focal length has been moved to the
right-hand side of Eq. 8 and now multiplies the z component
of the control points. As a consequence, applying the distance
constraints between all pairs for control points will now
generate 6 polynomials of degree 4, in contrast to the quadratic
equations appearing in the original EPnP formulation. As
we will see in the following sections this will require a
substantially different approach, especially when solving the
cases N = 2 and N = 3.

3 EXHAUSTIVE LINEARIZATION AND RELIN-
EARIZATION

In this section we introduce novel closed-form linearization
techniques to solve the systems of polynomial equations which
result from combining Eq. 8 and the six distance constrains
of Eq. 9. We will see that a standard linearization approach
is only effective to solve the case N = 1 (when only two
variables need to be estimated), but it fails to solve the cases
N = 2 and N = 3, in which we have a larger number of
unknowns while the number of equations remains the same.

3.1 Case N = 1: Linearization

For the case where N = 1, we only need to solve for β1 and
f . This case may be solved by simply linearizing the system
of equations and introducing new unknowns for the quadratic
and bi-quadratic terms. In particular, we will use β11 = β2

1 ,
and βff11 = f2β2

1 . Applying the six distance constraints from
Eq. 9 between all pairs of control points, results in a system
of the form

Lb = d , (11)

where b = [β11, βff11]
> and L is a 6 × 2 matrix built from

the known elements of v1, and d is a 6-vector of squared
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Fig. 2. Reconstruction error for all possible equation sets. The graphs plot the mean normalized reconstruction error
Fig. 2. Reconstruction error for all possible equation sets. The graphs plot the mean normalized reconstruction error
over 1000 different experiments with random input correspondences, and different amounts of noise. Left. All 18 triplet
combinations for a kernel of size N = 2. Right. All 538.704 quadruplet combinations for a kernel of size N = 3. In this
case, the reconstruction errors have been sorted in increasing order of magnitude for viewing purposes. Observe that
in both cases, the selection of one set of equations from another, results in significantly different reconstruction error
(and hence pose and focal length estimation).

distances between the control points. We solve this overdeter-
mined linearized system using least squares and estimate the
magnitudes of β1 and f by back substitution:

β1 =
√
β11 , f =

√
|βff11|/|β1| . (12)

Finally, we select the sign of β1 such that after computing the
pose, all the points end up placed in front of the camera.

3.2 Case N = 2: Exhaustive Linearization
For the case N = 2 we need to solve for β1, β2 and f .
Applying the six distance constraints we obtain again a linear
system Lb = d, where now L is a 6 × 6 matrix built from
substituting the known elements of the basis v1 and v2 into
Eq. 9. The number of unknowns becomes a six dimensional
vector

b = [β11, β12, β22, βff11, βff12, βff22]
>. (13)

Note that the entries in L become quadratic expressions on the
elements of the orthogonal basis vectors v1 and v2, and since
these are made of control points which are by construction
different from each other, L has full rank. Following a similar
procedure as before, we can thus retrieve the vector of linear
unknowns b computing the inverse of L.

However, the simple backsubstitution scheme used to solve
for each of the individual unknowns as in Eq. 12 is no longer
valid. In fact, by simple observation of the vector b it can be
seen that the individual variables may be computed, once b
is known, applying backsubstitution over 18 different triplets,
namely (β11, β12, βff11), (β11, β12, βff12), (β11, β12, βff22),
(β11, β22, βff11) and so on. It turns out that in the absence
of noise, all these triplets render the same solution, but when
noise comes into play, each of the triplets has a different effect
on the solution. This is depicted in Fig. 2-left, where we plot

the mean reconstruction error of the solution obtained with
each triplet, computed as the mean Euclidean distance between
the 3D points aligned with respect to the ground truth camera
coordinate system, and the same 3D points aligned using the
estimated pose and focal length.

To choose the right equation set we propose what we call an
exhaustive linearization, which is a strategy that generates and
explores all possible triplets, and takes the one that minimizes
the reprojection error of Eq. 1. Note that the number and form
of each triplet is always the same, and independent of the input
data. Therefore, this exploration can be efficiently executed in
parallel.

To solve the monomial quadratic terms we rewrite bilinear-
ities as logarithmic sums. That is, by applying logarithms on
the absolute values of all the elements within the triplet, we
can rewrite the terms βij as equations of the form log |βij | =
log |βi|+log |βj |. Doing this for all elements within the triplet
produces a linear system of 3 equations and 3 unknowns that
yields the magnitude of each individual variable. To determine
the sign of each variable we check sign consistency with the
components of b that have not been used, and also enforce
the geometric constraints of positive focal length and 3D point
location in front of the camera.

3.3 Case N = 3: Exhaustive Relinearization
For the case of N = 3 we need to solve for β1, β2, β3 and
f . Unfortunately, neither the linearization nor the exhaustive
linearization techniques suffice to address this case, because
the number of quadratic unknowns in the linearized system
is larger than the number of equations. We have 12 linearized
terms of the form βkl and βffkl with k and l ∈ {1, 2, 3}, while
the number of distance constraints remains equal to six. We
solve this problem by using a relinearization technique [17]
in conjunction with our exhaustive strategy described above.
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We call the combination of both methods as exhaustive relin-
earization.

The idea of the relinearization technique is to add con-
straints that enforce the algebraic nature of the elements βkl
and βffkl. We start by considering the following homogeneous
linear system:

[L| − d]

[
b
ρ

]
= 0 ⇒ L̃b̃ = 0 , (14)

where L̃ is now a 6×13 matrix, b̃ is a 13-vector including the
quadratic and biquadratic unknowns, and ρ is a scaling factor.
The solution for b̃ is then spanned by the null space of L̃.
That is,

b̃ =

M∑
i=1

λiw̃i , (15)

where w̃i are the right singular vectors of L̃. As in the case
N = 2, L̃ is of rank 6 by construction, and thus M = 7.
Finally, we solve for the λi-s setting ρ = 1 to remove the
scale ambiguity, and using additional constraints coming from
the commutativity of the multiplication of the βkl and βffkl
monomials, e.g.,

βklmf = βklβmf = βk′l′m′f ′ , (16)

where (k′, l′,m′, f ′) represents any permutation of
(k, l,m, f). After imposing these constraints, the coefficients
λi are solved using linearization, and thus the name
relinearization.

However, this second linearization suffers again from the
problem we mentioned above for the case N = 2. That is, the
coefficients λi may be retrieved from small sets of quadratic
monomials λij = λiλj , but due to noise, choosing each of
these sets produces a different reprojection error, which is
the function we are trying to minimize. Hence, we need to
perform again an exploration of the possible minimal sets
of λij vectors. In addition, once the coefficients λ1, . . . , λM
have been recovered, we need to retrieve the coefficients
β1, β2, β3 and f by exploring the possible minimal sets of
βkl vectors. To filter out parasitic solutions we impose the
additional constraints βiiβjk = βijβik.

3.3.1 Efficient Exploration of the Minimal Equation Sets
Note that the number of all possible sets of equations we have
to explore grows exponentially with M . In our experiments
we have observed that it is sufficient to explore only up to
the 5th singular vector of L̃, which produces 1548 different
equation sets from which to retrieve the λ’s, and for each
of them we have 348 quadruplets from which to retrieve the
β’s. This yields a total of 538.704 possible combinations to
explore. Exploring all possible combinations is computation-
ally expensive (in the order of minutes on a standard PC).
Fortunately, the right equation set to choose does not heavily
depend on the point configuration nor the value of the focal
length, more than on the algebraic combination of variables.
For this reason, we devised a strategy to select off-line the
best equation set from a large number (103) of synthetic
experiments, without jeopardizing the computational efficiency
of the overall method at run time.

EXPLORESET(p,u,E1 ,E2)
INPUT:

p: 3D points.
u: image correspondences.
E1: reprojection error for the case N = 1.
E2: reprojection error for the case N = 2.

OUTPUT:
t∗: Camera translation.
R∗: Camera rotation.
f∗: focal length.

1: E∗ ←∞
2: if E1 > Emin and E2 > Emin then
3: for each equation set Qi in decreasing rank order do
4: (λ′s,β′s,f ) ← EXHAUSTIVERELINEARIZATION(p,u,Qi)
5: (R,t) ← RECOVERPOSE(p,β′s,f )
6: E ← REPROJECTIONERROR(p,R,t,f )
7: if E < E∗ then
8: E∗ ← E, R∗ ← R, t∗ ← t, f∗ ← f
9: end if

10: if i > imax or E∗ ≤ Emin then
11: RETURN(R∗, t∗, f∗)
12: end if
13: end for
14: end if
Algorithm 1: Algorithm to explore the set of equations in the
case N = 3.

The idea is to order the equation sets according to their
weighted contribution in solving all experiments in the large
training session. To do this, we run the complete algorithm
over synthetic random input data and assign to each equation
set Qi, a weight inversely proportional to the cumulative
reconstruction error throughout all experiments. Fig. 2-right
illustrates the normalized error distribution for each equation
ordered using this weight.

At run time, this ordering is used to test each equation set
searching for the one that minimizes Eq. 1, as shown in Alg. 1.
Only in those cases when the reprojection is still not good
enough (above a threshold Emin) for the cases N = 1 and
N = 2, we enter the case N = 3 and iterate over the ordered
list of equation sets, compute the λ’s, β’s and f for each set,
and use these parameters to recover the pose parameters R and
t. The solution is updated should it improve the reprojection
error. A stopping condition is set after exploring a reduced
number of equation sets or once the reprojection error falls
below Emin.

The parameter imax defines the maximum number of equa-
tion sets to explore, and thus it is an upper bound in the time
required by our algorithm. This parameter offers a trade-off
between efficiency and optimality. While the computation time
grows linearly with imax, the residual error of the minimization
rapidly falls after just a few iterations. In practice, as shown in
the next section, by setting the maximum number of equations
to validate to 500, the accuracy results are comparable to
that of the calibrated case, while maintaining computational
efficiency. In addition, E is usually good enough for the cases
N = 1 or N = 2, preventing from having to evaluate the case
N = 3 at all, a situation that happens roughly 80% of the time
for noise levels between 1 and 3 pixels.
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Fig. 3. Comparison of our approach that estimates the parameters via backsubstitution over minimal equation sets,
Fig. 3. Comparison of our approach that estimates the parameters via backsubstitution over minimal equation sets,
against an approach that estimates these via backsubstitution over a least squares approximation using all equations
for a set of 1000 experiments and varying image noise. Left column: Effective number N of null eigenvalues of M>M.
Second to fourth columns: Reprojection error distributions (in pixels) for the N = 1, N = 2, and N = 3 cases. The
box edges in the boxplots denote first and third quartiles, red lines inside the boxes indicate medians, dashed lines
represent the extent of the statistical data, and red crosses are outliers.

3.4 Why Using Minimal Sets of Equations?
One question that may naturally arise from our methodology
is why exploring minimal sets of equations (triplets for solving
the case N = 2 and quadruplets for the case N = 3).
As an alternative to this, we could have also tried to take
the logarithms of all the elements of the vector b, and use
least squares over the resulting overdetermined system to
retrieve the variables log |βi| and log f . However, although
this solution is faster than independently evaluating triplets
or quadruplets and retaining the solution with minimum re-
projection error, it is far less accurate. The reason is that
the algebraic combination of variables with severe differences
in order of magnitude, weights binomials that include focal
length more heavily than other binomials, and a least squares
solution would wrongly average such inconsistencies.

To see this effect, we compare the Exhaustive Linearization
and Exhaustive Relinearization approaches, to linearization
and relinearization implementations that use least squares to
solve for the β’s and λ’s. Fig. 3 compares both alternatives
in an experiment where pose and focal length are computed
for n = 6 random 3D-to-2D correspondences with increasing
amounts of noise in a 640×480 image. The leftmost plots show
the effective number N of null singular values in M>M, i.e.,
the percentage of solutions in which the minimal reprojection

error has been obtained for each specific value of N . Note that
for N = 1, neither linearization nor relinearization come into
play, since β1 and f are obtained by simple backsubstitution
in both cases, with the only difference being the percentage
of solutions with minimal error. The differences between the
methodologies can be assessed for those cases in which N = 2
or N = 3 improve the solution obtained with N = 1. When all
minimal equation sets are independently explored, we observe
a significant increase in the percentage of cases in which a
solution with N = 2 or N = 3 produces smaller reprojection
error than a solution with N = 1 (see Fig. 3 third and
fourth columns), indicating that exhaustive linearization and
exhaustive relinearization clearly outperform a least squares
solution.

This result was in fact expected because the noise in
the input 3D-to-2D correspondences is not homogeneously
propagated through the SVD decomposition and linearization
processes, and as seen in Fig. 2, it results in equation sets with
very different accuracies. Simultaneously handling all equation
sets in a least squares sense does not allow to filter out these
large variations, and is only using a robust method like the
algorithm we proposed in the previous section that we can
optimally search for the right values for the β’s and λ’s.
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Fig. 4. Mean rotation, translation and focal length estimation errors when is selected as the best solution (weFig. 4. Mean rotation, translation and focal length estimation errors when N = 3 is selected as the best solution (we
refer the reader to Sec. 4.1 for a precise definition of these errors), and computation time for an increasing number
of equation sets. Note that the horizontal axis is plotted in logarithmic scale, and the time scales linearly with the
number of equation sets. Exploring 500 equation sets is a good trade off between accuracy and computation time.
These graphs are generated with random experiments with n = 7 points, and large amounts of 2D noise (at the level
of σn = 5), in order to ensure that exploration of the case N = 3 was meaningful.

3.5 Dealing with Planar Configurations
Like the EPnP algorithm [20], our approach can be easily
adapted to address situations in which the 3D points lie on
a plane. For these configurations, the n 3D reference points
can be spanned using only three control points –instead of
four–. The 3D to 2D projection of the point correspondences
may then be written as a linear system equivalent to that of
Eq. 6, but with a different dimensionality. Now, the matrix M
of coefficients will be 2n × 9, and the vector of unknowns
will contain the focal length and the coordinates of only three
control points, x = [xc1, y

c
1, z

c
1/f, . . . , x

c
3, y

c
3, z

c
3/f ]

>.
We will solve this homogeneous linear system by inde-

pendently resolving specific dimensionalities of the Kernel
of M>M, as in the non-planar case. However, note that
when using three control points, we can only define up to
three constraints based on their inter-distances. These three
equations will not be sufficient to solve for the six unknowns of
the vector b in Eq. 13, for the case N = 2. As a consequence,
for N ≥ 2, we will need to make use of the additional
equations provided by the extended relinearization technique
explained above.

3.6 Iterative Refinement
Although the exhaustive linearization and relinearization tech-
niques perform a sequential exploration of the collection of
equation sets, the spirit of the whole algorithm is still non-
iterative, as no initialization is required and the exploration can
be performed in bounded time. We will now feed this result
into a final iterative stage that will increase the accuracy in
the estimation of both the camera pose and focal length at a
very small additional cost.

Following [20], we iterate over the parameters β1, β2, β3,
and f to solve the problem

minimize
β1,β2,β3,f

∑
(i,j) s.t. i<j

(‖cci − ccj‖2 − d2ij) (17)

where the dij’s are the known distances between control points
in the world coordinate system and, following Eq. 10, the cci

are expressed in terms of the βk coefficients and focal length
f . Their values are initialized to those estimated using the
exhaustive linearization approaches, or to zero when they are
not available. That is, when the effective rank of M>M is
found to be N = 1, then β2 and β3 are initialized to zero.
When the rank is found to be N = 2, only β3 is set to zero.
We then perform the minimization using a standard Gauss-
Newton optimization.

Note that the minimization is performed over the four
dimensional space of the β’s and f coefficients, and not over
the seven dimensional space of the pose and focal length. In
addition, since in general the initialization provided by the
linearization approaches is usually very accurate, the optimiza-
tion typically converges in about 10 iterations. Overall, the
impact of this refinement on the method’s computational time
is of less than 5% of the total time.

4 EXPERIMENTAL RESULTS
In this section we compare the accuracy of our algorithm with
and without the final Gauss Newton optimization (we denote
these cases UPnP+GN and UPnP, respectively) against the
DLT [11], and the approaches [15] and [16], which search for
a global solution. The first of these methods, denoted by L2-
L2, is based on a branch and bound strategy that minimizes
the L2 norm of the reprojection error. The approach described
in [16] shows that replacing the L2 norm by the L∞ norm
yields a convex formulation of the problem with a unique
minimum which is retrieved using second-order cone program-
ming. In the following we will denote this method by Linf 1.
Note that DLT, L2-L2 and Linf retrieve the complete 3 × 4
projection matrix P, while our approach separately estimates
the orientation R, translation t and focal length f . In order to
perform a fair comparison, given P we will first retrieve the
calibration matrix A, using a Cholesky factorization of P3P

>
3 ,

1. For the L2-L2 method we have used the implementation
from the Branch and Bound Optimization toolbox available at
http://www.cs.washington.edu/homes/sagarwal/code.html. The code for
the Linf method has been taken from the L-infinity toolbox available at
http://www.maths.lth.se/matematiklth/personal/fredrik/download.html.
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Fig. 5. Results on synthetic data for non-planar distributions of points. Two upper rows: Mean rotation, translation
Fig. 5. Results on synthetic data for non-planar distributions of points. Two upper rows: Mean rotation, translation
and focal length errors for: increasing levels of image noise on 10 2D-3D correspondences, and two different focal
lengths. Third row: increasing number of 2D-3D correspondences. Fourth row: increasing focal length, also for 10
point correspondences. Each tick in the plot represents the average over 100 experiments with random points.

where P3 is the left 3× 3 submatrix of P [29]. We will then
fix the principal point to the ground truth value and estimate
R by ortho-normalizing A−1P3. The translation vector t is
directly estimated from the last column of P.

We also include the results of the EPnP [22], and the
EPnP with a Gauss-Newton refinement [20]. For both these
approaches the true focal length is provided and obviously

work better than the uncalibrated methods. We plot them here
as a reference baseline.

One parameter that needs to be chosen beforehand in our
algorithm, is the maximum number imax of equations we want
to explore for the case N = 3. In Fig. 4 we plot the pose
and focal length estimation errors as a function of the number
of equations, when we enforce our algorithm to compute



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Computation Time (seconds)

20 40 60 80 100 120 140 160 180 200
10

−4

10
−2

10
0

10
2

10
4

Number of points

C
o
m

p
u
ta

ti
o
n
a
l 
T

im
e
 (

s
e
c
o
n
d
s
)

Fig. 6. Comparison of the computation time of our methodFig. 6. Comparison of the computation time of our method
against state of the art approaches with respect to the
number of input points, and for fixed values of f = 2500
and σn = 5. The color codes and line styles are the same
as those used in Fig. 5.

pose with only the case N = 3. In all cases we obtain
reasonable results in relatively short time by exploring 500 sets
of equations, which only represents a very small fraction of
all possible 538.704 combinations. In the experiments, we will
thus evaluate each of these situations, indicating the number
of explored equations. When nothing is said, we will assume
that only 500 equations are evaluated.

4.1 Non-Planar Synthetic Experiments

For the synthetic experiments, we simulated 3D-to-2D cor-
respondences for sets of points of different size, uniformly
distributed in the cube [−2, 2]× [−2, 2]× [4, 8], and projected
onto a 640×480 image using a virtual calibrated camera with
squared pixels, and principal point at (u0, v0) = (320, 240).
Image points were corrupted with Gaussian noise.

For any given ground truth camera pose, Rtrue and ttrue,
focal length ftrue, and corresponding estimates R, t and f , the
relative rotation error was computed as Erot = ‖qtrue−q‖/‖q‖,
where q and qtrue are the normalized quaternions of R and
Rtrue, respectively; the relative translation error was computed
with Etrans = ‖ttrue − t‖/‖t‖; and the error in the estimation
of the focal length was determined by Ef = |ftrue− f |/f . All
errors reported in this section correspond to average errors
estimated over 100 experiments with random positions of the
3D points.

The first and second rows in Fig. 5 show the robustness of
all methods against image noise. For these experiments the
2D coordinates of the matches were corrupted with additive
Gaussian noise with a growing standard deviation σ up to 15
pixels, and the number of correspondences was set to n = 10.
Observe that our approach performs consistently better than
other uncalibrated approaches, and even retrieves the rotation
matrices with an accuracy comparable to that of the calibrated
ones. Yet, the translation error is larger, and responds to the

fact that the ambiguity between focal length and translation
cannot be perfectly solved, specially for noisy 2D-to-3D corre-
spondences. In fact, note that not even with the final refinement
using Gauss Newton optimization and considering all equation
sets we were able to completely solve this ambiguity. In any
case, both the translation and focal lengths estimations we
obtain are remarkably more accurate than those obtained by
the rest of uncalibrated methods. It is worth to note that the
L2-L2 algorithm guarantees a bound with respect to the global
minimum solution below a certain tolerance ε, which we set
to 0.05. Although improved accuracies might be achievable
choosing smaller tolerances, we found it prohibitive as the
computational burden at ε = 0.05 was already too high.

The third row in Fig. 5 shows the robustness of the method
for varying sizes of the point correspondence set. Fixing the
image reprojection noise at σ = 5, and varying the number of
points in the set from 6 to 50, the method again outperforms
the other uncalibrated methods, and turns to be very similar
to the EPnP. In particular, using all equation sets and only six
points, pertains to the situation depicted in Fig. 3. Note that
although in this case there is a clear difference in exploring
all or just the reduced set of equations, for point sizes n ≥ 8,
the solutions recovered using the reduced equation set are as
good as the solution using all equations, with a significant
advantage in computational cost.

The last row in Fig. 5 plots simulation results for varying
focal length values. The number of 3D-to-2D correspondences
and their 2D noise are set to constant values of n = 10 and
σ = 5, respectively. Note that while for low values of f , our
UPnP method performs slightly better than other approaches,
as projection becomes orthographic, the difference becomes
more drastic. The UPnP algorithm remains stable whereas
the accuracy of the other uncalibrated algorithms degenerates.
This is because DLT, L2-L2 and Linf assume a projective
camera model, which leads to failure when the camera grad-
ually comes close to turning orthographic. In contrast, our
approach can naturally handle this situation, as the effect of
moving from a fully perspective to an orthographic camera is
to increase the dimensionality of the kernel of M>M, and
thus for large values of the focal length, the UPnP method
automatically finds the most accurate solutions at N = 2 or
N = 3.

Fig. 6 shows the computation time of all algorithms for an
increasing number of input correspondences and fixed values
of σ = 5 and f = 2500. All algorithms are implemented in
Matlab, although the Linf and L2-L2 methods use compiled
C functions. Among the uncalibrated methods, only the DLT
algorithm is faster than our algorithm, although as shown
in Fig. 5, the DLT performs comparatively very poorly in
terms of accuracy. Surprisingly, our approach happens to be
slower for a small number of input correspondences. This is
because when the number of input points is small, the pose
and focal length estimates become very sensitive to noise. This
requires evaluating all kernel dimensionalities, i.e., N = 1, 2
and 3, where the latter may be quite expensive, especially
when testing all equation sets. In particular, observe that the
difference in computation time of having to test 500 or all
538.304 equation sets is of more than two orders of magnitude,
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Fig. 7. Results on synthetic data for planar distributions of points. Mean rotation, translation and focal length errors
Fig. 7. Results on synthetic data for planar distributions of points. Mean rotation, translation and focal length errors
for increasing levels of image noise, and two different tilt values.

while the performances reported in Fig. 5 of both alternatives
are pretty similar.

Yet, when the size of the correspondence set increases (n ≥
9), ambiguities and instabilities induced by noise are reduced,
and small reprojection errors are generally obtained by just
evaluating N = 1 and N = 2. In fact, for a large number of
points, the computation time of our approach is very similar
to that of the EPnP, which assumes a calibrated camera. In
addition, the cost of our algorithm could be further improved
by exploiting the fact that the equations sets that need to be
explored are independent and known in advance, and thus,
their exploration could be easily parallelized.

4.2 Planar Synthetic Experiments
We now present the results obtained on planar scenes. The
DLT has been removed from this analysis as it is not directly
applicable to planar distributions of points. By contrast, we
have included the approach of Schweighofer and Pinz [24],
which is a calibrated method specifically designed to handle
planar scenes. Jointly with the EPnP, this method is used as
a baseline to evaluate the magnitude of the error of the non-
calibrated approaches.

These experiments have been performed for a constant
number n = 10 of 3D-2D correspondences, corrupted using
Gaussian noise with a standard deviation σ ranging from 0
to 15 pixels. In addition, we have considered two different
situations, one in which the points lie on a quasi frontoparallel
plane, and another in which this plane has a tilt of 30 degrees

w.r.t to the optical axis of the camera. Fig. 7 summarizes the
results. Note that the pose and focal length estimates obtained
using the UPnP clearly outperform those of the Linf and L2-
L2 methods. The accuracy of our approach only falls when
noisy input data is combined with a frontoparallel distribution
of points. In this case, the ambiguity between focal length and
translation is magnified and cannot be resolved by any of the
non-calibrated methods. Yet, our approach yields an estimation
of the rotation matrix which is almost as accurate as that of
the calibrated algorithms.

4.3 Real Images
The method was also tested on a real image sequence taken
with a Canon EOS 550D digital camera. The camera was
manually moved around an object of interest with known
geometry and the focal length was changed from 600 to 2000
pixels. Ground truth focal lengths were read from the exif
jpeg image headers, and ground truth poses were computed by
applying the EPnP+GN to a set of 3D-to-2D matches manually
selected. We then manually registered the 3D model to one
reference image, from which we extracted approximately 500
SIFT feature points. After backprojecting these 2D points onto
the model we obtained a set of reference 3D points, with an
associated SIFT descriptor.

At runtime, 2D feature points and their corresponding
SIFT descriptors were automatically extracted from each input
image, and matched to the set of reference 3D points. This
provided an initial set of 3D-to-2D hypotheses. To filter out
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Fig. 8. Results on a real sequence with increasing focal length. Top. 3D model reprojected onto the reference and input
Bottom.Fig. 8. Results on a real sequence with increasing focal length. Top. 3D model reprojected onto the reference and input

images using the pose and focal length retrieved with the UPnP. Bottom. Ground truth focal length and performance
comparison of all methods.

UPnP+GN Linf DLT EPnP EPnP+GN
1.67 1052.04 2.72 0.15 0.13

TABLE 1
RANSAC Computation Times (seconds)

outliers, we then independently ran RANSAC using each
of the algorithms until obtaining a consensus of 200 in-
lier correspondences. The UPnP, EPnP and DLT performed
quite efficiently while Linf required a considerable additional
amount of time. The L2-L2 was not applicable within a
RANSAC framework as its convergence rate was even two
orders of magnitude larger than that of Linf. Table 1 reports the
mean computation time per frame required for each method.

The accuracies of all approaches are depicted in Fig. 8-
bottom. The images on the top show the reprojection obtained
with UPnP.

Finally, as a test case, the method was also used to register
12 images available on Flickr of the Cheverny Castle with
its GoogleEarth 3D model. Feature correspondences were
manually matched in both the reference and input to obtain
pose ground truths. The true focal lengths were obtained from
the camera settings available in the Flickr images. The test was
again performed after using RANSAC to filter out mismatches
between the SIFT features of the reference and input images.
As shown in the box plots at the bottom of Fig. 9, our method
compares again favorably with the DLT and Linf algorithms.
Some of the reprojection results are shown in the top of the
figure.

4.4 Comparison with Minimal Solutions

The UPnP provides an efficient solution to estimate pose
and focal length from an arbitrary large number of 3D-to-2D
correspondences. As discussed in Section 2.1, the minimum
number of correspondences which are required to solve the
underlying linear system of Eq. 6 is 6. In fact, we could
even solve when only 5 noise-free correspondences are given,
as in this case the rank of the kernel of M>M would be
N = 2. Solving the minimal case with 4 correspondences
requires considering larger kernel dimensionalities, and the
complexity of the exhaustive relinearization would become
impractical. In order to solve the minimal case with four
correspondences there exist specialized algorithms such as [2],
which takes advantage of the constraints introduced by all
the possible pairs of distances between 3D points. These
constraints generate a system of 15 polynomial equations,
solved using hidden variable or Gröbner basis methods. Note
however, that this is only feasible for the minimal case, as the
number of pairs of distances between points explodes with
n. In Fig. 10 we compare the performance of [2], which we
denote as P4Pf, with the UPnP for n = 6 and for an increasing
amount of noise. As expected, P4Pf is more sensitive to noise,
and by just considering two additional correspondences UPnP
yields significantly more accurate results.

One advantage of taking minimal subsets is that it increases
the chances of picking an all-inliers subset in a RANSAC-
based algorithm. Yet, while this may accelerate the outlier
removal process when considering noise free data, it can have
an opposite effect when the data, besides containing outliers,
is corrupted by noise [26]. In this case, the hypotheses fitted
on minimal subsets may be severely biased, even when only
containing inliers, and many true inliers may not be included
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Fig. 9. Results on a real set of images obtained from with a 3D model obtained from . Top. 3DFig. 9. Results on a real set of images obtained from Flickr with a 3D model obtained from GoogleEarth. Top. 3D
model reprojected onto the reference and input images using the pose and focal length retrieved with the UPnP .
Bottom. Comparing the accuracy of our approach against Linf, DLT, EPnP and EPnP+GN. The last two methods
assume a calibrated camera.

in the final consensus set, leading to accuracy errors. In order
to put evidence on this, we have performed an experiment
where the P4Pf and the UPnP have been used within a
RANSAC scheme. We have considered a set of 5000 3D-to-
2D correspondences, corrupted by 2D noise with σ = 5 pixels,
and different percentages po of outliers, going from 10 to 60%.
Taking minimal subsets of size n = 4 for the P4Pf and n = 6
for the UPnP, we have then followed an hypothesize-and-
test approach, until reaching a maximum number of iterations
iransac
max , that ensures with a confidence level P an outlier-free

hypothesis. This threshold is computed as [9]

iransac
max =

log(1− P)
log(1− (pi)n)

(18)

where pi = 1 − po is the percentage of inliers, and P has
been set to a 98% level. Fig. 11-left shows this theoretical

number of iterations for the different percentages of outliers.
Fig. 11-center and right represent the rotation, translation and
focal length errors for each method and level of outliers. In
each of these graphs, we plot both the error computing the
pose and focal length with the best minimal subset for each
algorithm, and the error computing the pose and focal length
using the whole consensus. The latter has been computed with
the UPnP in both cases, as the P4Pf can only be used in
the minimal case. Observe that although the P4Pf requires
a smaller number RANSAC iterations, the UPnP consistently
yields better estimations of the pose. In fact, there are levels
of outliers for which the number of theoretical iterations is
very similar in both algorithms, while the gain in accuracy is
still significant in favor of the UPnP.
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Fig. 10. Comparison of the UPnP using 6 correspondences vs. the minimal approach proposed in [2], which estimates
Fig. 10. Comparison of the UPnP using 6 correspondences vs. the minimal approach proposed in [2], which estimates
pose and focal length from four 3D-to-2D correspondences.
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Fig. 11. Comparison of UPnP vs P4Pf within a RANSAC scheme. Left: Number of iterations required to retrieve a

Other threeFig. 11. Comparison of UPnP vs P4Pf within a RANSAC scheme. Left: Number of iterations required to retrieve a
hypothesis of n point correspondences free of outliers, where n = 4 for the P4Pf and n = 6 for the UPnP. Other three
frames: Rotation, Translation, and Focal length errors for different levels of outliers. Min set: Errors obtained when
computing pose using the best minimal subset. Con: Error after computing pose using all the correspondences within
the inlier set. Since the P4Pf does not generalize to more than four correspondences, the error of the consensus is
computed using the UPnP in both cases.

5 CONCLUSIONS

In this paper, we have presented a fast solution to the problem
of recovering the pose and focal length of a camera, given n
3D-to-2D correspondences. We have shown that our approach
can be expressed as the solution of a fixed-size linear set
of equations independent of the number of points, similar to
the EPnP algorithm for the fully calibrated case. However,
dealing with uncalibrated cameras required the introduction
of new approaches to handle higher degree polynomials under
noisy input data. To this end, this paper presents the extended
linearization and extended relinearization techniques, which
overcome the limitations of current linearization-based ap-
proaches. An extensive evaluation of the method shows re-
markable improvement when compared to competing methods,
and also to algorithms for pose recovery that make use of
calibrated cameras.

An unexploited advantage of the approach is that it is highly
parallelizable for large kernel sizes since the sets of equations
that need to be exhaustively explored are known in advance.
Another alternative to speed up the process would be to use
strategies such as Kernel voting [3] to directly pick a solution
from the set of minimal equations, based on how well they
satisfy the distance constraints. This would remove the need

to repetitively calculate and test reprojection error. We leave
this as an unexplored venue for further research.
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