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Abstract— This paper develops a new method for uncali-
brated image-based visual servoing. In contrast to traditional
image-based visual servo, the proposed solution does not require
a known value of camera focal length for the computation of
the image Jacobian. Instead, it is estimated at run time from
the observation of the tracked target. The technique is shown to
outperform classical visual servoing schemes in situations with
noisy calibration parameters and for unexpected changes in
the camera zoom. The method’s performance is demonstrated
both in simulation experiments and in a ROS implementation
of a quadrotor servoing task. The developed solution is tightly
integrated with ROS and is made available as part of the IRI
ROS stack.

I. INTRODUCTION

Visual servo control is the problem of using computer
vision data in the servo loop to control a robot. We are
concerned with image-based visual servo, in which a set of
image features have to reach desired image locations. This
set of features usually correspond to the projected image
coordinates of several 3D points on the tracked target. For
a stable visual servo control law, the difference between the
actual location of the observed features and their desired
locations should decrease asymptotically.

The classical approach to image based visual servo re-
quires a priori knowledge of the camera calibration pa-
rameters, basically to estimate the depth of each feature
point in the visual data. There are situations however in
which camera parameters are either noisy or unavailable.
This situation might negatively influence the convergence
of the error function along the directions corrupted by such
noise.

In this paper we develop a strategy to image-based visual
servo with mild assumptions about principal point and skew,
and that does not require a priori knowledge of camera focal
length. Instead, the focal length is re-expressed in terms of
the solution of a linear system on the coordinates of a set of
control points in the target reference frame, and is estimated
at each iteration of the control loop.

Our approach is compared with the classical approach to
image-based visual servo, both in Matlab simulations and
inside a ROS quadrotor stack. The technique is used to
stabilize an UAV during the landing approach maneuver.

This paper is structured as follows. In the next section a
brief description about the state of the art on visual servoing,
and more specifically on image-based servo is given. The
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problem background formulation is explained in Section
3; and in Section 4, our new uncalibrated image Jacobian
is developed and the control law is described. Section 5
contains simulations and experimental results. Conclusions
are given in Section 6.

II. RELATED WORK

Vision-based robot control systems are usually classified in
three groups: position-based visual servo, image-based visual
servo, and hybrid control systems [1], [2]. In position-based
visual servo, the geometric model of the target is used in
conjunction with visual features extracted from the image
to estimate the pose of the target with respect to the camera
frame. The control law is designed to reduce such pose error.
For this reason, the approach is also referred as 3D visual
servoing [3]. Minimizing error in pose has the disadvantage
that features could easily be lost from the image during
the servo loop. In image-based visual servoing on the other
hand, the control law is defined directly in the image plane,
minimizing the error between observed and desired image
feature coordinates [4], [5]. There exist however stability
and convergence problems that may occur, either because
the image Jacobian becomes singular during the servoing, or
because the controller falls in a local minima at points with
unrealizable image motion [6].

This situation can be palliated to some extent with the use
of hybrid approaches, which entail some combination of both
groups of algorithms. The 2-1/2-D hybrid visual servoing
scheme [7] estimates partial camera displacement at each
iteration of the control law and minimizes a functional of
both, the error measures in image space typical from image-
based servo and a log depth ratio accounting for the rate
at which the camera moves to the target. Another hybrid
approach is the partitioned visual servo scheme [8], which is
based on adding to the traditional image-based error function
a term decoupling the motion and rotation along the z axis.
To this end two new image features are introduced, one of
them related to the area of the polygon being tracked.

In all image-based and hybrid approaches however, the
resulting image Jacobian or interaction matrix, which relates
the camera velocity with the image feature velocities, de-
pends on a priori knowledge of intrinsic camera parameters.
To do away with this dependence, one could optimize for the
parameters in the image Jacobian while error in the image
plane is being minimized. This is done for instance, using
Gauss-Newton to minimize squared image error and non-
linear least squares optimization for the image Jacobian [9],
[10]; using weighted recursive least squares (RLS), not to
obtain the true parameters, but instead an approximation that



still guarantees asymptotic stability of the control law in
the sense of Lyaponov [11]; or using k-nearest neighbor
regression to store previously estimated local models or
previous movements, and estimating the Jacobian using local
least squares (LLS) [12]. To provide robustness to outliers
in the computation of the Jacobian, [13] proposes the use of
an M-estimator.

This paper presents a new approach to image-based visual
servo in which the computation of the image Jacobian makes
mild assumptions about the camera parameters. In particular,
it assumes squared pixel sizes, centered principal point, and
unknown focal length. Independence of focal length makes
the system robust to noise and to unexpected large variations
of this parameter.

III. BACKGROUND

Drawing inspiration on the EPnP [14] and UPnP [15]
algorithms, we can formulate the focal length in terms of the
relation between the camera and target frames. To this end
we set a reference system attached to the target object, and
define a set of four control points as a basis for this reference
system. Then, one can express the 3D coordinates of each
target feature as a weighted sum of the elements of this basis.
Computing the pose of the object with respect to the camera
resorts to computing the location of these control points with
respect to the camera frame. A least squares solution for
the control point coordinates albeit scale, is given by the
null eigenvector of a linear system made up of all 2D to
3D perspective projection relations between the target points.
Given the fact that distances between control points must be
preserved, these distance constraints can be used in a second
least squares computation to solve for scale and focal length.

More explicitly, the perspective projection equations for
each target feature become

4∑
j=1

(
aijxj + aij(u0 − ui)

zj
α

)
= 0, (1)

4∑
j=1

(
aijyj + aij(v0 − vi)

zj
α

)
= 0, (2)

where si = [ui, vi]
T are the image coordinates of the target

feature, and cj = [xj , yj , zj ]
T are the 3D coordinates of the

j-th control point in the camera frame. The terms aij are the
barycentric coordinates of the i-th target feature which are
constant regardless of the location of the camera reference
frame, and α is our unknown focal length.

These equations can be jointly expressed for all 2D-3D
correspondences as a linear system

Mx = 0 , (3)

where M is a 2nx12 matrix made of the coefficients aij , the
2D points si and the principal point; and x is our vector
of 12 unknowns containing both the 3D coordinates of the
control points in the camera reference frame and the camera
focal length, dividing the z terms:

x = [x1, y1, z1/α, ..., x4, y4, z4/α]T . (4)

Its solution lies in the null space of M, and can be
computed as a scaled product of the null eigenvector of
MTM via Singular Value Decomposition

x = βv , (5)

the scale β becoming a new unknown1.
To solve for β we add constraints that preserve the distance

between control points of the form

||cj − cj′ ||2 = d2jj′ , (6)

where djj′ is the known distance between control points cj
and cj′ in the world coordinate system. Substituting x in the
six distance constraints of Eq. 6, we obtain a system of the
form

Lb = d, (7)

where b = [β2, α2β2]T , L is a 6 × 2 matrix built from
the known elements of v, and d is the 6-vector of squared
distances between the control points. We solve this overde-
termined linearized system using least squares and estimate
the magnitudes of β and α by back substitution:

β =
√
b1 α =

√
|b2|
|b1|

(8)

For a more exhaustive explanation of this method for pose
and focal length estimation we refer the reader to the above-
mentioned papers.

IV. IMAGE JACOBIAN AND CONTROL LAW

A. Image Jacobian

In camera coordinates, the motion of the target can be
described by a translational velocity t and an angular velocity
Ω. The velocity of each control point in the camera frame
is given by the expression

ċj = −t−Ω× cj (9)

which corresponds toẋjẏj
żj

 =

−tx − ωy zj + ωz yj
−ty − ωz xj + ωx zj
−tz − ωx yj + ωy xj

 (10)

Injecting Eq. 5 in Eq. 10, we obtainẋjẏj
żj

 =

−tx − ωy αβvz + ωz βvy
−ty − ωz βvx + ωx αβvz
−tz − ωx βvy + ωy βvx

 , (11)

where vx, vy, and vz are the x, y, and z components of
eigenvector v related to the control point cj , and whose
image projection is given by[

uj
vj

]
=

[
α
xj

zj
+ u0

α
yj
zj

+ v0

]
, (12)

and its time derivative by

1In the noise-free case, MTM is only rank deficient by one, but when
image noise is severe MTM might loose rank, and a more accurate solution
can be found as a linear combination of the basis of its null space. In this
work, we consider only the least squares approximation. That is, only the
eigenvector associated to the smallest eigenvalue.



[
u̇j
v̇j

]
= α

 ẋj

zj
− xj żj

z2j
ẏj
zj
− yj żj

z2j

 . (13)

Substituting Eqs. 5 and 11 in Eq. 13 we obtain

u̇j =
−tx − αβvzωy + βvyωz

βvz
− vx(−tz − βvyωx + βvxωy)

αβv2z
(14)

v̇j =
−ty − αβvzωx + βvxωz

βvz
− vy(−tz − βvyωx + βvxωy)

αβv2z
,

(15)
which can be rewritten as

ṡj = Jj vc, (16)

with ṡj = [u̇j , v̇j ]
T , the image velocities of control point j,

and vc = [tT ,ΩT ]T , the camera velocities. Jj is our seeked
calibration-free image Jacobian for the j-th control point,
and takes the form

Jj =

 −1βvz
0 vx

αβv2z

vxvy
αv2z

−v2x−α
2v2z

αv2z

vy
vz

0 −1
βvz

vy
αβv2z

v2y+α
2v2z

αv2z

−vxvy
αv2z

−vx
vz

 .
(17)

Stacking these together, we get the image Jacobian for all
control points

J =

J1

...
J4

 .
B. Control Law

The aim of our image-based control schemes is to mini-
mize the error

e(t) = s(t)− s∗ , (18)

where s(t) are the current image coordinates of our set of
target features, and s∗ are their final desired position in the
image plane, computed with our initial value for α. If we
select s to be the projection of the control points c, and
disregarding the time variation of α, and consequently of s∗,
the derivative of Eq. 18 becomes

ė = ṡ = J vc . (19)

Assuming a holonomic platform, the camera velocities
vc can be used to command the robot with an exponential
decoupled decrease of the error, i.e., ė = −λe,

vc = −λJ+ e, (20)

where J+ is chosen as the Moore-Penrose pseudo-inverse of
J, that is J+ = (JT J)−1 JT .

C. Stability analysis

To analyze the stability of this closed loop visual servo
system, we will use Lyapunov analysis. Let L = 1

2 ‖e(t)‖2
be a candidate Lyapunov function, whose derivative is given
by [1]

L̇ = eT ė = −λ eT J J+ e . (21)

Our system is globally asymptotic stable when the follow-
ing sufficient condition holds

J J+ > 0. (22)
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Fig. 1. Comparison of control point trajectories in the image plane under
noise-free conditions.

The terms of v in our Jacobian are the coordinates, albeit
scale of our control points, which in turn form a basis
of the original features. They are by construction linearly
independent and it can be shown that with such selection of
control points, J has full rank 6 and thus, Ineq. 22 holds.

V. SIMULATIONS AND EXPERIMENTS

In this section, a comparison between the classical image-
based and the new uncalibrated image-based visual servoing
approaches is presented, as well as an implementation of
our method for an approach to land maneuver task for a
quadrotor UAV.

A. Simulations

The traditional image-based and the uncalibrated image-
based approaches were simulated in Matlab-Simulink using
as template the Visual Servoing Toolbox2.

Given a random set of target features, an initial camera po-
sition, and a desired final position with respect to the target,
we want to compare the performance of the two algorithms.
The camera is assumed to be fully controllable. That is, to
have 6 dof, and the controller used is a proportional controller
with a λ gain of 0.125. This value is chosen to be able to
compare the time both algorithms take to reduce both image
and Cartesian errors.

The simulation runs for 50 sec with time steps of 0.1
sec, and executes the two approaches with the same setup,
except for the unknown camera calibration parameters in the
uncalibrated case. Image trajectories of the control points
are shown in Fig. 1. Fig. 2 shows the obtained camera
trajectories, as well as the corresponding control points. The
camera is indicated with a yellow tetrahedron in the initial
and final locations, and the camera trajectories are shown as
a concatenation of camera frames, with their axes depicted
in red, green, and blue colors.

The time evolution of errors in the image plane and in
Cartesian coordinates of the control points is plotted in
Fig. 3. Under equal noise-free simulation conditions, both

2http://vstoolbox.sourceforge.net/
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Fig. 2. Camera trajectory comparison between a) classical IBVS and b) uncalibrated IBVS, under noise-free conditions.
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(b) Uncalibrated IBVS
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Fig. 3. Comparison of control point errors for noise-free conditions, (a-b) as reprojections in the image plane, and (c-d) as Cartesian coordinates in the
camera reference frame.

Fig. 4. Values of the Lyapunov candidate function L and its derivative L̇.

methods have comparable asymptotic convergence. At this
point, both methods compare adequately with respect to each
other, reaching the goal at the desired pose with similar but
not identical trajectories.

To show experimentally that our new control scheme is
globally asymptotically stable, we plot in Fig. 4 the value
of the candidate function L = 1

2 ‖e(t)‖2, and its derivative
L̇ = −λ eT J J+ e.

Now that our control scheme has been validated, we
compare the method again versus the original visual-based
servo scheme, but now subject to noise, both in the image
reprojections and in the internal camera parameters. Both
methods turned out to be robust to noise levels of 1 to 3
pixels on the image coordinates. The interesting results are
obtained when noise is added to the focal length, which can
be caused by mechanical vibrations of the optics which result
in slight modifications of the camera zoom.
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Fig. 5. Camera velocities during a servo task subject to white noise of 1
mm in the focal length.

1) Noise in focal length: An unexpected variation of focal
length is assumed by the original image-based servo ap-
proach mainly as camera motion along the z axis. To recover
from this, the control law induces undesirable changes in
the robot velocity commands. This is shown in Fig. 5, in
which we plot the camera velocities for a servoing task
with a focal length of 10 mm, and subject to white noise
variations of 1 mm. Frame a corresponds to the focal-length
dependent Jacobian, whereas frame b corresponds to the
proposed scheme. As can be observed, the proposed method
is robust to such variations in focal length.

2) Unexpected large change in zoom: The robustness of
the approach becomes more evident when large unexpected
changes in zoom values occur. Fig. 6 shows the image
projections of the control points for both the original and
the proposed approaches with a change in focal length with
a zoom of 20%. The classical approach to visual servo
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Fig. 6. Control point trajectories in the image plane with an unexpected
zoom change of 20%.
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Fig. 7. Comparison of control point errors for unexpected zoom change
of 20%, (a-b) as reprojections in the image plane, and (c-d) as Cartesian
coordinates in the camera reference frame.

is unable to reach the desired configuration in the alloted
simulation time, in contrast to the proposed approach in
which the servoing task is completed without trouble. Figure
7 shows the control point error trajectories, in the image
plane (a-b), and in camera centered Cartesian coordinates
(c-d).

B. Quadrotor experiments

This visual-based servo method was designed with a par-
ticular application in mind, that of maneuvering a quadrotor
UAV to a desired location for robotic construction tasks. In
the experiments reported here, we simulated an approach to
landing maneuver by attaching a camera below the platform
that observes an easily recognizable tag. The entire simu-
lation system, including quadrotor kinematics and dynam-
ics, was implemented in ROS using the Hector quadrotor
stack [16].

As explained in the background formulation, we assume a
set of randomly selected 3D feature points on the target and
their 2D projections. This is achieved by attaching an ARTag

(a) Target refernce frame and control
points

(b) Desired configuration

Fig. 8. Target and desired robot configuration for the approach to landing
task. a) The ARTag, its reference frame, 3D feature points (blue), and their
basis points (red). b) Desired robot configuration.

marker to the object frame, and computing the location of
these random points with respect to the object frame, as well
as its basis, i.e., the control points. At each iteration, the
marker is detected in the scene, and the projection of the
control points computed. Fig. 8 a shows the ARTag, its
coordinate frame, the randomly selected feature points (blue
dots), and the four control points that constitute the basis
(red points). For simplicity, all other figures do not plot the
feature or reference points, but simply the marker. Frame b
in the same figure shows the desired robot position.

The quadrotor is teleoperated to an initial position, shown
in Fig. 9 a-b. At that point, manual control is turned off and
the uncalibrated image-based visual servo method activated,
performing at each iteration marker detection, with the
estimation of the location of the control points and the focal
length. These values are used to evaluate the image Jacobian
and to update the control law. The obtained velocities are
used to control the UAV to its final destination as in Fig. 9
c-d.

The quadrotor is an underactuated vehicle [17], its pitch
and roll are controlled by the attitude subsytem and cannot
be directly actuated. Our control law does not have access
to these variables and to remove from the control command,
their contribution to the image error can be isolated from that
of the other control variables as in [18]. Rewriting Eq. 19 as

ė = J1 [vx, vy, vz, ωz]
T + J2 [ωx, ωy]T , (23)

and rearranging terms, our control command becomes

[vx, vy, vz, ωz]
T = J1

+ (J2 [ωx, ωy]T − λ e) (24)

where J1
+ is the Moore-Penrose pseudo-inverse of the

Jacobian columns corresponding to [vx, vy, vz, ωz]
T , and J2

are the Jacobian columns correponding to [ωx, ωy]T . The
platform gyros are used to read out values for ωx and ωy .

One last issue remains to be solved. The selection of
the control gain λ bears a compromise between speed and
stability. We must have in mind that our robot is a dynamical
nonholonomic platform, and that velocity values in some
directions cannot be achieved. Moreover, control commands
must also guarantee that during the servoing task the camera
does not loose the target object from its field of view. These
two reasons suggest that low values of λ should be selected.



(a) Initial configuration (b) Initial target reprojection

(c) Final configuration (d) Final target reprojection

Fig. 9. Initial and final configurations for the approach to land task. The
frames to the left show the robot location with respect to the target. The
frames to the right show the target as seen by the camera in each case.

Fig. 10. Time to target comparison over the classical and the proposed
approaches for different values of the control gain λ.

To determine an appropriate value of this parameter for our
working conditions, we simulated both the calibrated and
uncalibrated visual-based servoing schemes with increasing
values of λ, and plotted the time to completion in Fig. 10.
We can see that the proposed approach is slightly slower than
the original approach. An optimal selection of this parameter
is an issue of further research.

VI. CONCLUSIONS

This paper presents a new visual-based uncalibrated visual
servoing method. Target features are parameterized with their
barycentric coordinates, and the basis of these coordinates is
used to define a set of control points. A method is given to
recover the coordinates of these control points and also of
the camera focal length. With these, a new image Jacobian
is derived which is guaranteed by construction to be of full
rank. This guarantees asymptotic stability of the control law
regardless of the target point selection, as long as planar
configurations are avoided.

The technique is demonstrated in both Matlab and ROS
simulations. All our code is available for download at

www.ros.org/wiki/kinton apps. A video of the method at
work is also available in the same page.

We can think of two avenues for further research. On
the one hand, servoing is constrained in the approach, as
presented, to work only on the control points. To make it
generic to any point in the target, their coordinates must
be expressed using their barycentric coordinate coefficients.
This situation entails very long terms in the Jacobian and
we are thinking on ways to make them simpler. Secondly,
the true dynamic behavior of the UAV must be taken into
account in the design of the control law. There are some
motion directions which are unattainable, and this might
lead to instability. We leave these two topics as our current
research interests.
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