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Abstract

This technical report presents a novel control-oriented hybrid linear sewer network model. It also
provides the mathematical details of the Mixed Logical Dynamic (MLD) systems reformulation
of the system equations to turn all the involved hybrid/logical statements into linear inequalities
by means of the definition of binary variables. Using this reformulation a compact hybrid linear
delayed expression is obtained to be used for simulation or optimal control purposes.
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1 Introduction

Physical models of sewer networks implemented in commercial simulators are based in the Saint-
Venant equations. These equations are partial differential equations that precisely describe the
flow and the water level at every point of the network. The presence of hydraulic structures such
as weirs or overflow points is taken into account by means of boundary or interior conditions in
the set of PDEs. Thus, the evaluation of such models becomes computationally very demanding
and takes long times to be performed. In this context, control-oriented models are developed to
come up with control solutions in real-time, which is a very desired feature in a problem that
is strongly affected by a disturbance, the rain inflow, which is only predictable for short future
horizons.

Early control models of sewer networks for optimal/predictive control date back to [7]. Fol-
lowing the linear approach of this work the virtual reservoir model was first presented in [1] and
further developed into hybrid linear models in [4, 18, 16, 14]. The virtual reservoir is based on
modeling entire areas of a city as linear reservoirs with an emptying parameter to be calibrated
on-line and is therefore specially suitable for large networks. The improved hybrid linear version
of the model was implemented in a software tool allowing for network design and closed-loop
control simulation with MOUSE as reported in [6, 4].

Other works are based on nonlinear approximation of the model network elements [9, 10, 11,
19, 20, 5, 12, 13, 17, 21, 3]. These models, which are usually more precise, are more suitable for
smaller networks due to the computational effort required for its evaluation.

The model developed in this work has its precedents in the virtual reservoir model but
instead of simplifying city areas as reservoirs, each sewer between junctions is considered, which
allows to explicitly take into account the two main properties of the water transport through
sewers: the time delay and the wave attenuation. Other novelties in the model focus on the
description of flow over weirs, overflows in sewer junctions and flood runoff in a hybrid linear
framework that allows for a good trade-off between computational speed and precision. In a
more structural sense, the model aims to be easily implemented and calibrated off-line and fastly
modified for on-line calibration purposes, which will be developed in future research.
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2 Model overview

The model describes only the flow values of the network, i.e., it does not take into account water
levels. It has two main parts: the water transportation and mass balance equations and the
weir, overflow and flood runoff equations. The water transportation and mass balance equations
are linear equations that take into account delays and flow attenuation in the network sewers.
On the other hand, the weir, overflow and flood runoff equations make use of logic/event-based
decisions that allow the model to switch between different (linear) behaviors. This part of
the model is therefore a hybrid linear model. The logic decisions of this part of the model
are described by means of binary variables and linear inequalities following the Mixed Logical

Dynamic systems approach described in [2].

All the variables and equations are considered in a discrete time setting where variable t ∈ Z,
is used as the discrete time variable with time step ∆t. Thus, x(t) means the value of x at time
step t or, equivalently, t∆t seconds after the computation start. To account for the delays in
the sewers, ∆t is expected to be of the order of 1 minute approximately, although the choice
depends on the network properties.

To present the model equations the following notation will be used:

Description Symbol Units Indexing

Flow upstream of each sewer qini (t) m3/s i = 1 . . . nq

Flow downstream of each sewer qouti (t) m3/s i = 1 . . . nq

Volume stored in reservoirs vi(t) m3 i = 1 . . . nv

Flow under gates gi(t) m3/s i = 1 . . . ng

Flow over weirs wi(t) m3/s i = 1 . . . nw

Overflows fi(t) m3/s i = 1 . . . nf

Flood runoff flow qti(t) m3/s i = 1 . . . nf

Overflow volume vti(t) m3/s i = 1 . . . nf

Rain inflow ci(t) m3/s i = 1 . . . nc

where n∗ is the number of the corresponding elements in the network. The flood runoff flows
and the overflows are defined associated with the overflow points, thus sharing the same number
of elements nf .

Overflow points, flood runoff flows and overflow volumes are defined in sewer junctions and
therefore their number could be potentially the number of junctions. However, it can be observed
from simulation or historical data that in most networks overflows occur only at some particular
points, no matter how strong the rain events under consideration. Therefore, it is possible and
worthwhile to define overflow variables only at those points to avoid the definition of a lot of
useless variables.

Notation

For compact matrix notation, vectors of each kind of variables are defined with the same notation
using capital letters, for example, Qin(t) = (qin1 (t), . . . , qinnq

(t))⊤.

In the description of each element the subindex will be dropped for clarity whenever possible.

2.1 Hybrid Linear Delayed Systems

Hybrid systems allow modeling systems involving both continuous and binary variables. These
systems are defined not only by a set of dynamic equations, but also by a set of inequalities.
If the system is properly defined, these inequalities define uniquely the values of the binary
variables that are also involved in the dynamic equations [2].
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In a delayed system setting both dynamic equations and inequalities involve the system
variables at different time steps. In the discrete-time linear case the system reads

T∑

i=0

Mi X(t− i) = m(t),

T∑

i=0

Ni X(t− i) ≤ n(t),

(1)

where t ∈ Z is the discrete time variable and

X(t− i) = (x1(t− i), . . . , xn(t− i))⊤, i = 0, . . . , T,

with xj(t− i) ∈ R for a subset of indices j ∈ C ⊂ {1, . . . , n} and xj(t− i) ∈ {0, 1} for a subset of
indices j ∈ B ⊂ {1, . . . , n}. Index sets C and B are such that C ∩ B = ∅ and C ∪ B = {1, . . . , n}.
Mi, i = 0, . . . , T , are neq ×n matrices, Ni, i = 0, . . . , T , are nineq ×n matrices, m(t) ∈ R

neq and
n(t) ∈ R

nineq .
Vectors X(t − i), i = 0, . . . , T, include all system variables, making no distinction whether

they are either state variables or controlled variables. The influence of any disturbance variable
at any time step is included in vectors m(t) and n(t).

2.2 Mixed Logical Dynamical Systems Approach

TheMixed Logical Dynamical (MLD) systems is a framework for modeling and control of systems
governed by linear dynamics together with switching behaviors arising from logical statements
involving the variables of the system [2].

To this end, binary variables describing the truth value of the fulfillment of linear inequalities
are defined. Using these variables, any statement constructed using the usual logical operators
(‘and’, ‘or’, negation and implication) concerning the truth value of linear inequalities can be
reformulated as further equalities and inequalities. Continuous variables resulting of the product
of a binary variable and a continuous one can also be defined by means of linear inequalities and
all the newly defined variables can be used in further linear equalities and inequalities.

Thus, the MLD framework allows to model any system behavior consisting in switching
between different linear dynamics depending on the different combinations of the truth value
of a set of linear inequalities. MLD systems have been shown to be equivalent to other system
modeling formats including linear complementarity systems, extended linear complementarity

systems, piecewise affine systems, and max-min-plus-scaling systems [8].
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3 Sewer Network Model Equations and MLD Reformulation

3.1 Flow model

Q(t)

qin(t)

qout(t)

Figure 1: Pipe model diagram.

The basic flow model is based on a linear delayed expression. As mentioned before, two flows
for each sewer are defined: qin(t) as the inflow and qout(t) as the outflow. The model is then
based on the two following relations:

• Mass balance at each sewer junction:

qini (t) =

nq∑

j=1

aqjq
out
j (t) +

nw∑

j=1

awj wj(t)+

nf∑

j=1

afj fj(t) +

nc∑

j=1

aqtj qtj(t)+

ng∑

j=1

agjgj(t) +

nc∑

j=1

acjcj(t),

where most of the a∗j will be zeros since a junction does not usually involve more than three
or four elements. This formulation will help representing the whole network equations in
matrix form.

If qini is the only sewer leaving the junction, the nonzero a∗j take the value 1 (-1 in the case
of weirs or overflows leaving the junction). If there are several sewers leaving the junction
they will take a value in (0, 1) depending on the proportion of flow that goes to each one.
These values are obtained from simulation data.

• Flow routing through sewers accounting for delay and wave attenuation:

qouti (t) = ai q
in
i (t− ti) + (1− ai) q

in
i (t− ti − 1),

where 0 ≤ ai ≤ 1 are the attenuation coefficients, ti ∈ {0, 1, 2, . . .} the sewer delays. These
parameters are obtained from simulation data as the values ai and ti that minimize the
difference between the outflow computed with the expression and the simulation outflow
values.

Notice that the use of a weighted sum of two inflows at consecutive time steps allows for
a good approximation of sewers having a delay which is not a multiple of the simulation
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time step, which is mostly the case. Also, notice that, eventually, ti can take the value 0
and then qouti (t) depends on qini (t), that is, at the same time step. This is because for the
shorter sewers the transport time can be smaller than the simulation time step and thus
the transport in those sewers is computed using the weighted sum of inflows at the current
and previous time steps.

The two previous expressions written in matrix form become:

Qin(t) =AQQout(t) +AWW (t) +AFF (t)+

ATQT (t) +AGG(t) +ACC(t),
(2)

Qout(t) =A0Qin(t) +
T∑

i=1

AiQin(t− i), (3)

where matrices AQ, AW , AG, AC , AF , AT are dictated by the the network topology and Ai, i =
1 . . . T , are diagonal matrices containing the ai or 1 − ai coefficients for each sewer, where
T = maxi{ti}.

In order to reduce the number of variables in the model, equations (2) and (3) can be
combined. By substituting Qout in (2) for its expression in (3) and solving for Qin, the following
expression is obtained

Qin(t) =

T∑

i=1

ÃiQin(t− i) + ÃWW (t) + ÃGG(t)+

ÃCC(t) + ÃFF (t) + ÃTQT (t),

(4)

with

Ãi = (I −AQA0)
−1AQAi, i = 1 . . . T,

ÃW = (I −AQA0)
−1AW ,

ÃG = (I −AQA0)
−1AG,

ÃC = (I −AQA0)
−1AC ,

ÃF = (I −AQA0)
−1AF ,

ÃT = (I −AQA0)
−1AT .

3.2 Reservoir model

The reservoir model follows the discrete-time volume equation

v(t) = v(t− 1) + ∆t
(
qin(t− 1)− qout(t− 1)

)
,

where qin and qout are the total net inflow and outflow to the tank. These flows are outflows
from sewers qouti or are controlled flows under gates gi. Hence, the matrix expression for this
part of the model is

V (t) = V (t− 1) + ∆tBQQout(t− 1) + ∆tBGG(t− 1)

= V (t− 1) + ∆tBQ

T+1∑

i=1

Ai−1Qin(t− i) + ∆tBGG(t− 1),
(5)

where BQ and BG are 0-1 matrices selecting the suitable variables and where (3) has been used
to obtain the second expression.
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zw(t)

qin1 (t)

qout1 (t)

qin2 (t)

qout2 (t)

w(t)

Figure 2: Weir model diagram.

3.3 Weir model

To keep the model structure, the flow over a weir is modeled as a function of the inflow to the
junction where the weir is connected. In physical models, the flow over a weir is, in fact, a
function of the square root of the difference between the water level and the weir crest level.
Using this model would break the desired linear structure we want to use. However the hybrid
structure can still be used to come up with a suitable approximation.

From simulation data, a flow value qmax
w is determined as the maximum inflow to the junction

that does not produce any flow over the weir. Thus, while the inflow is below this threshold,
the flow over the weir is zero. For inflow values higher than qmax

w we define the flow over the
weir as a fraction 0 < aw < 1 of the difference between the inflow and qmax

w . Mathematically:

w(t) =

{
aw (zw(t)− qmax

w ) , if zw(t) ≥ qmax
w

0 , otherwise,

where zw(t) is the inflow to the junction where weir is connected. The previous expression is
equivalent to

w(t) = max{0, aw (zw(t)− qmax
w )},

or
w(t) = aw δw(t) (zw(t)− qmax

w ), (6)

where

δw(t) =

{
1 , if zw(t) ≥ qmax

w

0 , otherwise.
(7)

The value of parameter aw is also determined from simulation data as a the one that minimizes
the error between prediction and data. The introduction of this parameter is new feature with
respect of previous similar works like [15, 16, 14] and has proven to improve the predictions
considerably.

3.3.1 Weir MLD formulation

According to the Mixed Linear Dynamic (MLD) systems approach developed in [2], condition

δw(t) =

{
1 , if zw(t) ≥ qmax

w

0 , otherwise
,

and expression
w(t) = aw δw(t) (zw(t)− qmax

w ),
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are equivalent to the following set of inequalities

zw(t)− qmax
w ≥ mw(1 − δw(t)),

zw(t)− qmax
w ≤ Mwδw(t) + ε(δw(t)− 1),

w(t) ≤ Mwδw(t),

w(t) ≥ mwδw(t),

w(t) ≤ aw (zw(t)− qmax
w )−mw(1− δw(t)),

w(t) ≥ aw (zw(t)− qmax
w )−Mw(1− δw(t)),

where

mw = min aw (zw(t)− qmax
w ),

Mw = max aw (zw(t)− qmax
w ).

In matrix form










−1
1
0
0

−aw
aw











zw(t) +











−mw

−Mw − ε
−Mw

mw

−mw

Mw











δw(t) +











0
0
1
−1
1
−1











w(t) +











mw + qmax
w

ε− qmax
w

0
0

mw + aw qmax
w

−Mw − aw qmax
w











≤ 0,

Defining vectors

pwj =











1
1
0
0

−awj

awj











, qwj =











−mwj

−Mwj
− ε

−Mwj

mwj

−mwj

Mwj











, rw =











0
0
1
−1
1
−1











, swj =












mwj
− qmax

wj

ε− qmax
wj

0
0

mwj
+ awj

qmax
wj

−Mwj
− awj

qmax
wj












,

and matrices







pw1
pw2

. . .

pwnw








︸ ︷︷ ︸

EZW

ZW (t)+








qw1
qw2

. . .

qwnw








︸ ︷︷ ︸

E∆W

∆W (t)+








rw

rw

. . .

rw








︸ ︷︷ ︸

EW

W (t)+








sw1
sw2
...

swnw








︸ ︷︷ ︸

ECW

≤ 0,

(8)
where

W (t) =
(

w1(t), . . . , wnw(t)
)⊤

,

ZW (t) =
(

zw1
(t), . . . , zwnw

(t)
)⊤

,

∆W (t) =
(

δw1
(t), . . . , δwnw

(t)
)⊤

,

and nw the number of weirs in the network, the set of inequalities defining the the weir flow
variables W and ∆W has the form:

EZW
ZW (t) + E∆W

∆W (t) + EWW (t) + ECW
≤ 0 (9)
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zf (t)

qin(t)

qout(t)

f(t)

Figure 3: Overflow model diagram.

3.4 Overflow model

The overflow flow is defined in the same way as the flow over a weir:

f(t) = max{0, af (zf (t)− qmax
f )} = af δf (t) (zf (t)− qmax

f ), (10)

with

δf (t) =

{
1 , if zf (t) ≥ qmax

f

0 , otherwise,
(11)

with zf (t) the flow entering the junction where the overflow is considered to potentially occur.

3.5 Overflow MLD formulation

Since the overflow model is analogous to the weir one, only a few notation details are given.
Starting from the definition of the overflow variable f(t) and auxiliary boolean variable δf (t)

f(t) = max{0, af (zf (t)− qmax
f )} = af δf (t) (zf (t)− qmax

f ),

with

δf (t) =

{
1 , if zf (t) ≥ qmax

f

0 , otherwise
,

matrices EZF
, E∆F

, EF and ECF
are defined in the same way as EZW

, E∆W
, EW and ECW

,
giving

EZF
ZF (t) + E∆F

∆F (t) + EFF (t) + ECF
≤ 0 (12)

3.6 Flood runoff model

The flood runoff model is also a a novel contribution of the proposed modeling approach. In
previous works, the overflow volume was considered to be leaving the network and not re-
entering it anymore. In this new approach, the overflow volume is kept in a fictional reservoir
which returns it to the network as soon as the overflow at the current junction finishes.

Using the previously defined overflow variable f(t) a simple volume model is then used to
keep track of the volume:

vt(t) = vt(t− 1) + ∆t
(
f(t− 1)− qt(t− 1)

)
,
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zf (t)

qin(t)

qout(t)

f(t)

vt(t)

qt(t)

Figure 4: The new overflow model keeps track of the volume released to the enviroment and lets
it re-enter the network when possible.

where qt(t) is the flow leaving the fictional reservoir and defined as follows:

qt(t) = min

{

max
{
0, bf (q

max
f − zf (t))

}
,
vt(t)

∆t

}

.

The reservoir can never provide more flow than that which would empty it in a single time step,
thus the minimum is applied. If there is enough volume available and setting bf = 1 the reservoir
would provide the flow that together with the one entering the junction would make the outgoing
pipe run full (zero in case it already is). The simulator works in a similar way but taking into
account the shape of the fictional reservoir making its emptying rates vary depending on this
shape. Parameter bf ∈ (0, 1] was introduced later to better approximate this phenomenon.

The fictional tank equations are expressed in matrix form as

VT (t) = VT (t− 1) + ∆t
(
F (t− 1)−QT (t− 1)

)
(13)

3.6.1 Flood runoff MLD formulation

The flood runoff definition equation involving a maximum function within a minimum one may
suggest that several boolean variables will be needed to reformulate it.

qt(t) = min

{

max
{
0, bf (q

max
f − zf (t))

}
,
vt(t)

∆t

}

, (14)

However, making use of the already defined variables f(t), only one such variable will be needed
for each flood runoff one. First, recall the definition of f(t)

f(t) = max{0, af (zf (t)− qmax
f )} = af max{0, zf (t)− qmax

f }.

Making use of the identity max{0, a − b} −max{0, b − a} = a− b

max{0, qmax
f − zf (t)} −max

{
0, zf (t)− qmax

f

}
= qmax

f − zf (t),

the maximum function in (14) can be replaced by

max{0, qmax
f − zf (t)} = qmax

f − zf (t) +
f(t)

af
.
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In a last step, another boolean variable can be avoided by forcing one of the two arguments of
minimum function to be zero:

qt(t) = min

{

bf

(

qmax
f − zf (t) +

f(t)

af

)

,
vt(t)

∆t

}

= min

{

bf

(

qmax
f − zf (t) +

f(t)

af

)

−
vt(t)

∆t
, 0

}

+
vt(t)

∆t
.

Finally,

qt(t) = qaux(t) +
vt(t)

∆t
,

with
qaux(t) = δt(t) faux(t),

and

faux(t) = bf

(

qmax
f − zf (t) +

f(t)

af

)

−
vt(t)

∆t
,

δt(t) =

{
1 , if faux(t) ≤ 0
0 , otherwise

.

Now, the MLD formulation of the previous expressions becomes

faux(t) ≤ Mt(1− δt(t)),

faux(t) ≥ mtδt(t) + ε (1 − δt(t)),

qaux(t) ≤ Mtδt(t),

qaux(t) ≥ mtδt(t),

qaux(t) ≤ faux(t) −mt(1− δt(t)),

qaux(t) ≥ faux(t) −Mt(1− δt(t)).

Expanding the terms in faux and regrouping










0
0
1
−1
1
−1











qaux(t) +











−bf
bf
0
0
bf
−bf











zf (t) +











bf/af
−bf/af

0
0

−bf/af
bf/af











f(t) +

1

∆t











−1
1
0
0
1
−1











vt(t) +











Mt

mt − ε
−Mt

mt

−mt

Mt











δt(t) +












bfq
max
f −Mt

−bfq
max
f + ε

0
0

−bfq
max
f +mt

bfq
max
f −Mt












≤ 0.

Defining vectors

VT (t) =
(

vt1(t), . . . , vtnf
(t)
)⊤

,

QT (t) =
(

qt1(t), . . . , qtnf
(t)
)⊤

,

∆T (t) =
(

δt1(t), . . . , δtnf
(t)
)⊤

,

Qaux(t) =
(

qaux1
(t), . . . , qauxnf

(t)
)⊤

,
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and repeating the set of inequalities in a block-diagonal way analogous to (8) with the corre-
sponding parameters afj , bfj , q

max
fj

, mtj and Mtj , the matrix expression for the set of inequalities

defining the flood runoff variables Qt(t) for the entire network is obtained

EQT
Qaux(t) + EZT

ZF (t) +EFT
F (t) + EVT

VT (t) +E∆T
∆T + ECT

≤ 0.

Finally, in order to reduce the number of variables to be used in the problem, variables Qaux(t)
are substituted for their expression in terms of QT (t) and VT (t)

Qaux(t) = QT (t)−
1

∆t
VT (t),

to get

EQT
QT (t) + EZT

ZF (t) + EFT
F (t) +

(

EVT
−

1

∆t
EQT

)

VT (t) + E∆T
∆T + ECT

≤ 0 (15)

3.7 Inflow to Nodes

In (9), (12) and (15) the inflows to each weir ZW (t) and overflow junction ZF (t) have not
been defined in terms of other elements flows in order to keep the notation clear and compact.
However, it will be necessary to obtain the hybrid linear expression (4) for the system in terms
of a reduced set of variables.

To this end, let variable Z(t) be defined as the inflow to each sewer

Z(t) = AQQout(t) +A+
WW (t) +A+

GG(t) +ACC(t)

=

T∑

i=0

AQAiQin(t− i) +A+
WW (t) +A+

GG(t) +ACC(t),
(16)

where A+
W and A+

G collect only the positive terms in AW and AG respectively.
The components of Z(t) corresponding to inflows to nodes connected to a weir can be selected

using a matrix SW defined as follows:

(SW )ij =

{
1, if wi is connected upstream to the same junction as qj
0, otherwise.

A matrix SF is defined in the same way, to select the components of Z(t) corresponding to links
connected upstream to a junction where overflow is considered to be possible.

Now, using SW and SF inflows ZW (t) and ZF (t) can be defined

ZW (t) = SWZ(t),

ZF (t) = SFZ(t).

3.8 Hybrid Linear Delayed System Formulation

To obtain the Hybrid Linear Delayed System expression (1)

T∑

i=0

Mi X(t− i) = m(t),

T∑

i=0

Ni X(t− i) ≤ n(t),
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for the sewer network model the first step is to define the vector of unknown variables. In this
case, this vector includes all the systems variables at the current time step except the disturbance
(rain inflow) ones:

X(t) =
(

V (t)⊤, Qin(t)
⊤,W (t)⊤,∆W (t)⊤, F (t)⊤,∆F (t)

⊤, VT (t)
⊤, QT (t)

⊤,∆T (t)
⊤, G(t)⊤

)⊤

,

Now equations (4), (5) and (13) and inequalities (9), (12) and (15) can be expressed in compact
matrix form in terms of X(t) as

M0 X(t) = beq(t)

N0 X(t) ≤ bineq(t)
(17)

with

M0 =

(
I 0 0 0 0 0 0 0 0 0
0 I −ÃW 0 −ÃF 0 0 −ÃT 0 −ÃG

0 0 0 0 0 0 I 0 0 0

)

,

beq(t) =

(
V (t−1)+

∑T+1
i=1

∆tBQAi−1Qin(t−i)+∆tBGG(t−1)
∑T

i=1 Ãi Qin(t−i)+ÃC C(t)

VT (t−1+∆tF (t−1)−∆tQT (t−1),

)

and

N0 =

(
0 EZW

SWAQA0 EW+EZW
SWA+

W
E∆W

0 0 0 0 0 EZW
SWA+

G

0 EZF
SFAQA0 EZF

SFA+
W

0 EF E∆F
0 0 0 EZF

SFA+
G

0 EZT
SFAQA0 EZT

SFA+
W

0 EFT
0 EVT

−
1
∆t

EQT
EQT

E∆T
EZT

SFA+
G

)

,

bineq(t) = −





EZW
SW (

∑T
i=1 AQAi Qin(t−i)+AC C(t))+ECW

EZF
SF (

∑T
i=1 AQAi Qin(t−i)+AC C(t))+ECF

EZT
SF (

∑T
i=1 AQAi Qin(t−i)+AC C(t))+ECT



 .

Finally, to come up with an expression like (4) the left hand-sides of (17) are to be expressed in
terms of the system variables at previous time steps X(t− 1), . . . ,X(t− T ):

beq(t) = −
T+1∑

i=1

MiX(t− i) +m(t),

bineq(t) = −

T∑

i=1

NiX(t− i) + n(t),

with

M1 = −

(
I ∆tBQA0 0 0 0 0 0 0 0 ∆tBG

0 Ã1 0 0 0 0 0 0 0 0
0 0 0 0 ∆tI 0 I −∆tI 0 0

)

,

Mi = −

(
0 ∆tBQAi−1 0 0 0 0 0 0 0 0

0 Ãi 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

)

, i = 2 . . . T,

MT+1 = −
(

0 ∆tBQAT 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

)

,

m(t) =

(
0

ÃCC(t)
0

)

.

and

Ni =

(
0 EZW

SWAi 0 0 0 0 0 0 0 0

0 EZF
SFAi 0 0 0 0 0 0 0 0

0 EZT
SFAi 0 0 0 0 0 0 0 0

)

, i = 1 . . . T,

n(t) = −

(
EZW

SWACC(t)+ECW

EZF
SFACC(t)+ECF

EZT
SFACC(t)+ECT

)

.
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