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Abstract—The maps built by standard feature-based SLAM methods
cannot be directly used to compute paths for navigation, unless enriched
with obstacle or traversability information with the consequent increase
in complexity. Here, we propose a method that directly uses the Pose
SLAM graph of constraints to determine the path between two robot
configurations with lowest accumulated pose uncertainty, i.e., the most
reliable path to the goal. The method shows improved navigation results
when compared to standard path planning strategies, both over datasets
and real world experiments.

Index Terms—SLAM, Path Planning, Autonomous Navigation

I. INTRODUCTION

Aside from applications such as the reconstruction of archaeo-
logical sites [1] or the inspection of dangerous areas [2], the final
objective for an autonomous robot is not to build a map of the
environment, but to use this map for navigation, i.e., to reach distant
locations in the environment efficiently and safely. In recent years, we
have witnessed an amazing advance in the field of simultaneous local-
ization and map building (SLAM), and state of the art approaches can
now build maps over several kilometers [3]. For efficiency reasons,
most SLAM algorithms represent the environment using a sparse
set of features. Unfortunately, this representation cannot be directly
used for collision-free path planning since it does not provide much
information about which routes in the map have been previously
traversed safely, or about the nature of the obstacles it represents.
Those sparse models could be somehow enriched with obstacle or
traversability related information [4]–[6], but at the expense of an
increase in complexity.

The problem of finding paths to reach distant locations is addressed
in the motion planning literature, and the most successful methods
are based on randomized sampling [7, 8], in which collision-free con-
figurations are stochastically drawn and where, if possible, neighbor
samples are connected forming a roadmap. This roadmap is later used
to find a path between any two given configurations. Some approaches
have addressed the problem of optimizing the quality of this path,
mainly focusing on reducing the path length [9, 10]. In any case, the
research in motion planning typically assumes deterministic setups
where a perfect model of the environment is available and where the
configuration of the robot is perfectly known too.

Some extensions have been introduced recently to deal with
uncertainties in the model of the environment [11], in the robot
configuration [12], in the effect of robot actions [13], or in the
effect of actions and measurements [14]. The extension that best
matches the stochastic nature of SLAM is the Belief Roadmap
(BRM) [15, 16]. In this approach, the edges defining the roadmap
include information about the uncertainty change when traversing
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such an edge. However, the main drawback of the BRM is that
it still assumes a known model of the environment, which is in
general not available in real applications. In this paper, we aim to
overcome the limitation of BRMs noting that the map generated by
Pose SLAM [17], or any other delayed-state SLAM method [18]–
[20], can be directly used as a belief roadmap.

Pose SLAM is the variant of SLAM where only the robot path is
estimated and where landmarks are only used to produce relative
constraints between robot poses. In a semi-autonomous scenario
where a human initially drives the robot through a set of interest
way points, the outcome of Pose SLAM is a graph of obstacle-free
paths in the area where the robot has been operated. Using this graph
for navigation allows to have an infrastructure-free automated guided
vehicle, as those widely used for material distribution in factories,
or for drug delivery in hospitals [21, 22]. An added advantage is
that Pose SLAM is agnostic with respect to the sensor modalities
used, which facilitates its application in different environments and
robots. Moreover, the paths stored in the map satisfy constraints
not easy to model in the robot controller, such as the existence of
restricted regions, or the right of way along paths. Deviations from
these paths might result in an inconvenience for other operations
carried out in the factory or hospital. Thus, a robot that can adequately
choose the correct path from a set of previously traversed ones, or
their combination, is desirable for such applications. However, in
those scenarios, the use of a robot is only practical if it is able to
autonomously navigate without becoming lost.

In this paper, we show that, using the information stored in the Pose
SLAM graph, we can plan in the belief space to obtain paths with the
least probability of becoming lost. The key idea behind our method
is that, in Pose SLAM, highly informative areas of the environment
result in poses in the graph with low uncertainty. In these areas,
sensor matching is more reliable, and there is less risk of deviating
from the path during execution. We first introduced this idea in [23],
and here, we a) simplify the computation of the path cost showing that
the uncertainty of the localization estimate can be evaluated without
explicitly maintaining a localization filter, b) propose alternatives to
efficiently deal with large-scale problems by approximating marginal
covariances, and c) thoroughly evaluate the approach in simulated
and real datasets and with a real robot in outdoor experiments.

From the point of view of SLAM, this paper constitutes a step
forward to actually use the output of the mapping process for path
planning. From the point of view of motion planning, this paper con-
tributes with a method to generate belief roadmaps without resorting
to stochastic sampling on a pre-defined environment model. Note
however that the proposed method limits the planning only to those
areas already covered by the Pose SLAM graph. The exploration of
novel paths is out of the scope of this work. We address the issue
in [34].

After a review of the state of the art in Section II, the rest of the
paper details the proposed extensions to Pose SLAM to determine
reliable paths. Section III summarizes Pose SLAM and reinterpret its
map as a set of samples in belief space, and Section IV describes
how to plan using a roadmap defined on these samples. In Section V,
this new planning approach is tested with datasets and real world
experiments and, finally, Section VI gives some concluding remarks.

II. RELATED WORK

Initial work in SLAM represented the environment using a sparse
set of features. However, this representation needs to be enriched with
obstacles or traversability related information before it can be used
for collision-free path planning. For instance, in [4], the map of the
environment is enriched with virtual free-space markers connected
defining a graph of traversable regions. A robot would navigate first
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to the nearest free-space marker and then follow the free-space graph
to the goal. Alternatively, the hybrid metric maps (HYMMs) in [5]
split the environment in local triangular regions (LTR) whose corners
are features in the map. Each LTR has local paths that traverse it and
an associated cost for each of these local paths so that a planner
can find the lowest cost path from any point to the goal through
a sequence of LTRs. HYMMs were improved to include a scalar
evaluation of the potential information that the robot can obtain from
the environment at each LTR [6]. This is relevant information for
path planning, but comes at the expense of a significant increase in
complexity and in memory use.

Instead of enriching feature-based maps, other approaches build
grid maps out of volumetric representations of 3D point clouds [24,
25]. These techniques, typically use the 3D map to extract a 2D map
of traversable regions from which a graph-like roadmap is derived.
Such graph is then used for path planning relying on standard graph
search algorithms. Those approaches, however, also come at the
expense of increased complexity and high memory cost. Moreover,
traversability is typically computed over the mean estimate of the
map, disregarding map uncertainty.

An alternative is to compute a lighter representation of the en-
vironment such as a topological map [26]–[28] and to use it for
path planning [29]. However, since topological maps are not accurate
enough to localize the robot in all cases, they are sometimes combined
with local grid maps [30, 32]. In these approaches, the topological
map is used as a roadmap to devise a path to the goal using graph
search techniques, and the local grid map associated with each node
in the topological map is used to compute a path from one node to
the next, considering local obstacle avoidance and path smoothing.
Although the use of hybrid metric-topological maps improves the
efficiency of path planning when compared to the use of a global
grid map, these approaches still require a considerable effort to
maintain the coherence between both representations, especially at
loop closure. As with the traversability maps, the computed routes
on topological maps also ignore the sources of uncertainty included
in the map.

In this paper we observe that the maps computed with Pose SLAM
can be directly used as belief roadmaps and, thus, used for planning
reliable paths without further processing the map nor enriching it
with additional information. Moreover, since we rely on Pose SLAM
which marginalizes out the sensor readings, the approach can be used
with any type of sensors. In [3] it is suggested to use the graph
of poses built with bundle adjustment for path planning, but the
uncertainty information in the map is not exploited in the computation
of the optimal path. In contrast, we use the maps computed with Pose
SLAM to plan in the belief space obtaining paths to remote locations
that take into account the uncertainty balance along them.

The approach is devised to autonomously guide the robot in
scenarios where the robot had already built a map. This mapping
session need not be exhaustive as long as it traverses all areas the
robot is intended to visit in normal operations. Note however that
the technique could be extended to plan routes in a partially built
scenario during autonomous exploration [34], but this extension is
out of the scope of this paper.

III. ENVIRONMENT SAMPLING WITH POSE SLAM

Pose SLAM produces a directed graph, in which the nodes are
poses or waypoints, and the edges are established from odometry
or sensor registration. Assuming Gaussian distributions, a proba-
bilistic estimate of the pose nodes, x = {x1, . . . , xk}, is main-
tained using an information filter with a canonical parametrization
p(x) = N−1(η,Λ), with information vector η, and information
matrix Λ. This parametrization, compared to the traditional Kalman

form, with mean µ = Λ−1η and covariance Σ = Λ−1, has the
advantage of being exactly sparse [17].

In Pose SLAM, state transitions result from the composition of a
motion command uk to the previous pose,

xk = f(xk−1, uk) = xk−1 ⊕ uk, (1)

where ⊕ is the operator used to add the relative displacement uk to
pose xk−1, as described in [35].

Augmenting the state in information form introduces shared in-
formation only between the new robot pose xk and the previous
one xk−1, resulting in an information matrix with a tridiagonal
block structure. If the state mean is available, this operation can be
performed in constant time.

Registration of sensory data also introduces shared information,
but now between non-consecutive poses. These relative constraints
can be modeled as

zki = h(xk, xi) = 	xk ⊕ xi, (2)

that is, the tail-to-tail operation defined in [35], which computes the
relative displacement from xk to xi in the frame of reference of xk.
When establishing such a link, the update operation only modifies the
diagonal blocks i and k of the information matrix Λ and introduces
new off-diagonal blocks at locations ik, and ki. This operation is also
executed in constant time, assuming the state mean to be available.
These links enforce graph connectivity, or loop closure in SLAM
parlance, and revise the entire path state estimate, reducing the overall
uncertainty. The result is that the marginal uncertainty at each node in
the graph results from the fusion of the uncertainties for all possible
paths from the origin of the map to that node.

From the point of view of planning, it seems reasonable to
distribute poses uniformly in the space where the plan is to be
defined. In classical motion planning algorithms, the plan is built in
the configuration space, but when taking into account the uncertainty,
the plan must be defined in the belief space.

During map building, the distance in belief space from a new pose
to any pose already in the map can be measured by the amount of
information encoded in the link that connects those poses. Formally,
the information gain of a link, i.e., the difference in entropy on the
entire map before and after the link is established, can be evaluated
as [17]

Iki =
1

2
ln
|Λ + ∆Λ|
|Λ| =

1

2
ln
|Ski|
|Σy|

, (3)

where ∆Λ is the information provided by the new link, Σy is the
sensor registration error, Ski is the innovation covariance

Ski = Σy + [Hk Hi]

[
Σkk Σki

Σ>ki Σii

]
[Hk Hi]

>, (4)

Hk, Hi are the Jacobians of h with respect to poses k and i
evaluated at the state means µk and µi, Σkk and Σii are the
marginal covariances of poses k and i, respectively, and Σki is
the cross correlation between these two poses. If none of the links
with neighboring poses is informative enough (above a threshold γ),
there is no need to include such new pose in the map as it is too
close to other poses in belief space. Note that the Pose SLAM
system maintains the marginal covariances and cross correlations
in amortized constant time during mapping [36], but when using a
general delayed-state SLAM algorithm their computation requires to
invert the information matrix, which is computationally expensive.

In Pose SLAM, nodes are added to the graph as a function of the
information content in their connecting links, as measured by Eq. (3).
Thus, we can say that the sampling methodology is aware of the
uncertainty in both the motion and sensor models. Note, however,
that the information content separating two nodes is only lower
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bounded by γ, but there is no upper bound. Actually, information
content between neighbor nodes varies depending on the quality of
sensor registration, the speed of the robot, and the density of loop
closures in that region. For this reason, different paths from a given
start configuration to a goal node would entail different uncertainty
profiles.

IV. PATH PLANNING WITH POSE SLAM
We are in the quest for a path p = r1:T that would drive the robot

from its current configuration s = r1 to a goal configuration g = rT ,
that, for the applications considered in this paper, is always included
in the Pose SLAM graph. In this quest, we assume that the robot
is equipped with a local planner able to drive the robot to nearby
configurations. Moreover, we assume maximum likelihood actions
and measurements, as it is usual when planning in belief space [37].
With this, when tracking a path on the graph, the uncertainty
estimate would evolve according to the motion uncertainty and sensor
registration, but the mean estimate will lie at the mean of a node in
the graph, and the observation previously obtained at that position
will be repeated. In consequence, the proposed planning approach
only needs to consider poses in the graph, which are guaranteed to
be collision free.

Given that candidate paths lie on top of this graph, after path
execution the final robot uncertainty will be close to the original
marginal at that node. Thus, a cost function that only evaluates the
belief state at the goal is unsuitable and we are interested instead
in determining reliable paths, i.e., paths where the robot has low
probability of becoming lost. Herein, we assume that the probability
of becoming lost is directly related with the increments in the
uncertainty in robot positioning since uncertainty decrements can
only result in a better track of the path.

To identify the most reliable path we follow these steps. First,
we increase the connectivity of the Pose SLAM graph so that
paths combining different exploration sequences can be considered.
Next, we propose a principled way to evaluate the changes in the
uncertainty of the transitions between nodes, and use this uncertainty
measure to define the cost of a path as its mechanical work in the
uncertainty surface. Finally, this cost function is used to search the
minimum uncertainty path to the goal.

A. Increasing Graph Connectivity

The graph used for path planning is initialized with the odometry
edges of the Pose SLAM graph. However, we allow the local planner
to attempt connections to other neighboring poses. In this way, the
global planner can switch among different exploration sequences in
the quest for an optimal path.

Extra edges are included for nodes with high probability of being
close to each other and, thus, likely to be reachable using the
local planner. To determine such poses, we estimate the relative
displacement, d, from any robot pose xk to any other pose xi as
a Gaussian with parameters

µd = h(µk, µi), and (5)

Σd = [Hi Hk]

[
Σii Σik

Σ>ik Σkk

]
[Hi Hk]> . (6)

Marginalizing the distribution of the displacement, d, along each one
of its dimensions, t, we get a one-dimensional Gaussian distribution
N (µt, σ

2
t ), which can be used to compute the probability of pose xi

being closer than vt to pose xk along such dimension

pt =

∫ +vt

−vt

N (µt, σ
2
t )

=
1

2

[
erf
(
vt − µt

σt

√
2

)
− erf

(
−vt − µt

σt

√
2

)]
. (7)

If for all dimensions, pt is above a given threshold s, then con-
figuration xi is considered close enough to configuration xk. Pose
SLAM [17] computes the set of neighbors for each pose during
mapping in logarithmic time, organizing the poses in a tree. For
other delayed-state systems, though, the computation of the set of
neighbors requires to compute the marginal covariances and the cross
correlations between all pairs of poses, which is a costly operation.

Observe that the proposed approach remains agnostic about the
properties of the local planner and, thus, neighboring poses are
searched in a rectangular box around the current pose in configuration
space. If we had information about the kinematic constraints of the
robot, or about the distribution of obstacles around the robot, we
could reduce the search for neighboring poses to smaller areas. For
instance, for a car-like robot, we could focus the search for neighbors
into triangular areas on the xy plane, in front of and behind the
robot, since these are the regions including the kinematically-feasible
neighboring poses. Also, for a robot that can only safely move
forward due to the arrangement of its obstacle detection sensors, only
neighboring poses in front of the robot need to be detected. In all
cases, the size of the area where to look for neighbors is limited by
the accuracy of the local planner, which typically relies in odometry
readings.

Independently of the location and size of the area used to search for
neighbors, an edge is added to the path planning graph only if the
kinematic constraints enforced by the local planner allow reaching
the nearby node. Despite this verification, the local path might be
still unfeasible during path execution, mainly due to the presence of
obstacles. In this case, the problematic edge can be removed from
the graph and a re-planning process can be triggered.

B. Uncertainty Change of a Path Step

Every pair of poses in a planned path, say rk−1 and rk, would
match two poses in the Pose SLAM graph, say xi and xj . The
command uk that drives the robot from rk−1 to rk and the associated
motion noise Σu are provided by the local planner. Since, during the
planning process the actual sensor readings are not available, the
update of this estimate is made assuming that rk and xj will be
coincident and, thus, zkj = rk − xj ∼ N (0,Σjj) where Σjj is the
marginal covariance of the pose xj .

To evaluate the uncertainty change introduced by the motion
from rk−1 to rk, we must look at the dispersion of the conditional
distribution p(rk|rk−1, uk, zkj) that is obtained from the estimate
of the joint state (rk−1, rk). This estimate can be computed using,
for instance, an EKF as in [23]. We show next how this uncertainty
change can be more elegantly evaluated using an EIF parametriza-
tion instead, i.e., p(rk−1, rk) = N−1(η̄, Λ̄), but without actually
computing such pose estimate.

In the prediction step the joint information matrix on these two
states would be updated with [19][

Λ̄k−1k−1 + F Q−1 F> −F>Q−1

−Q−1 F Q−1

]
, (8)

where Q = WΣuW>, F and W are the Jacobians of f with
respect to rk−1 and uk evaluated at the means, and where Λ̄k−1k−1

is obtained marginalizing from the previous Λ̄. In the correction step
the measurement zkj is used to update the information matrix as

Λ̄ =

[
Λ̄k−1k−1 + F Q−1 F> −F>Q−1

−Q−1 F Q−1 + Σ−1
jj

]
. (9)

With this, the uncertainty change of rk given full confidence
about rk−1 can be evaluated as

Uk =
1

|Λ̄k|k−1|
, (10)
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where Λ̄k|k−1 is the information matrix for the conditional
p(rk|rk−1, uk, zkj) obtained from Λ̄.

Fortunately enough, conditioning in information form is dual to
marginalization in covariance form, thus Eq. (10) simply evaluates to

Uk =
1

|Q−1 + Σ−1
jj |

, (11)

which saves us from explicitly maintaining a localization filter as
done in [23]. Furthermore, we can safely assume Q to be non-
degenerate and, thus, the determinant in Eq. (11) would never be null
and Uk will be always well-defined. Note that we use a measure of
uncertainty change derived from the determinant of the covariance
matrix which is related to the entropy of p(rk|rk−1, uk, zkj), and
ultimately, to the uncertainty hyperellipsoid defined by this matrix.
A trace-based uncertainty measure [15] can be used as well, without
affecting the overall planning algorithm.

As said, this measure of uncertainty change is computed indepen-
dently of the estimation of the robot pose at each step and, thus, this
formulation saves us from actually implementing the EIF to track
the path. This does not imply that the robot must have an identical
belief to a pre-existing node in the optimized Pose SLAM graph.
What it implies is that the computation of the information gain is
independent of the current belief, as long as maximum likelihood
actions and measurements are considered. This is especially relevant
to marginalize the effects of the initial belief in the planning.
Moreover, as long as the graph does not change, the uncertainty
measure for all transitions can be precomputed from the Pose SLAM
graph and re-used to plan different paths. This is similar to what is
done in [15], factorizing the covariance update, but simplified thanks
to the use of the information form.

C. Minimum Uncertainty along a Path

Next, we propose a cost function that considers the cumulative
probability of becoming lost for a given path. Assuming that this
probability for a given path step is directly related with the increments
in uncertainty, determining optimal paths can be seen as searching
for a path of minimal mechanical work [38] in an uncertainty change
surface [39] over the space of robot poses, where the uncertainty
change of a path step is computed using the criterion described in
Section IV-B.

Given a discrete path p = r1:T , we define its mechanical work in
the uncertainty surface as the sum of positive increments of individual
step costs

W (r1:T ) =

T∑
k=2

∆U+
k , (12)

with

∆U+
k =

{
∆Uk ∆Uk > 0,

0 ∆Uk ≤ 0,
(13)

and
∆Uk = Uk − Uk−1 (14)

and where, by convention, U1 = 0, to include the uncertainty of the
first step of the path in W . Note that, the initial uncertainty of the
robot is not included in W since it would result in a constant offset
for the cost of all alternative paths. Moreover, since the costs are
non-negative, there is always an acyclic minimum cost path to each
reachable node in the map.

This strategy prefers short paths with possibly steep uncertainty
changes over longer paths with gentle oscillations of uncertainty, thus
avoiding the accumulation of small chances of becoming lost over
large trajectories.

Algorithm 1: Path planning with Pose SLAM.

PoseSLAMPathPlanning(M ,g)

input : M : The graph computed by Pose SLAM.
g: The goal pose.

output: p: The most reliable path to g.

1 Q← POSES(M)
2 forall the n ∈ Q do
3 W [n]←∞
4 V [n]← 0

5 s← CURRENTPOSE(M)
6 W [s]← 0
7 U [s]← 0
8 repeat
9 i← EXTRACTMIN(Q,W )

10 if i 6= g and W [i] 6=∞ then
11 N ← NEIGHBORS(M, i)
12 forall the j ∈ N do
13 (u,Q)← LOCALPLANNER(xi,xj)
14 if u 6= ∅ then
15 Σjj ← MARGINALCOVARIANCE(M, j)

16 U = 1/|Q−1 + Σ−1
jj |

17 ∆U = U − U [i]
18 if ∆U > 0 then
19 W ′ = W [i] + ∆U

20 else
21 W ′ = W [i]

22 if W ′ < W [j] then
23 W [j]←W ′

24 V [j]← i
25 U [j]← U

26 until i = g or W [i] =∞ or Q = ∅;
27 p← ∅
28 if i = g then
29 c← g
30 while c 6= 0 do
31 p← {c} ∪ p
32 c← V [c]

33 RETURN p

D. The Pose SLAM Path Planning Algorithm

The path planning algorithm introduced in this paper is formally
described in Algorithm 1. It searches for the path to the goal with
the least probability of becoming lost during path execution. The
algorithm takes as inputs the Pose SLAM graph M and the goal
pose, g, which is assumed in M . Should this not be the case, the
closest pose in the graph to g (in configuration space) is used as a
goal. We first initialize a set Q with all the nodes in the graph (Line 1)
and establish an initial cost W for the path to each node (Line 3) and
a fake predecessor V for each node (Line 4). Then, the cost to reach
the starting configuration is set to 0 (Lines 5 to 7). At this point the
algorithm enters in a loop until the goal is reached or the reachable
region from the start configuration is fully explored (Lines 8 to 26).
At each iteration of the loop, we extract the node i with minimum cost
from Q (Line 9). If this is not the goal (Line 10), we perform breadth
first search on the neighbor nodes to i (Line 11). The neighboring
nodes are determined using the procedure given in Section IV-A
that takes into account the uncertainty in the pose estimates. For
each one of the possible transitions to neighbors, we use the local
planner to determine if the transition is possible and to compute the
expected motion uncertainty (Line 13). Using this uncertainty and
the marginal covariance for the target pose (Line 15) we compute
the step uncertainty as described in Section IV-B (Line 16). Then,
Line 17 computes the uncertainty increment for a motion from node i
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(a) Pose SLAM map.
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(c) Plan in belief space.

Fig. 1. Path planning over the Intel dataset. (a) Pose SLAM map built with encoder odometry and laser scans. The blue arrow indicates the final pose of the
robot and the black ellipse the associated covariance at a 95% confidence level. (b) Planning in configuration space we obtain the shortest path to the goal
on the underlying Pose SLAM graph. (c) Planning in belief space we obtain the most reliable path to the goal.

to node j. If this increment is positive, it is added to the path cost
(Line 19). Otherwise, this step does not contribute to the overall path
cost. If the cost of the new path to j is lower than the best known
until that moment, the cost to reach j is updated (Line 23), we set i
as the predecessor of j (Line 24), and we store the cost for the step
reaching the node (Line 25). In the case of paths with equal cost,
shorter ones are preferred and, since the costs of individual steps are
non-negative, the considered paths never include cycles. If the goal
is reached, the most reliable path to the goal is reconstructed using
the chains to predecessor nodes stored in V (Lines 30 to 32). If the
goal is determined to be non-reachable from the start configuration,
an empty path is returned.

Without considering the cost of recovering the marginal covari-
ances, the asymptotic cost of the algorithm is O(e log2 n) with e
the number of edges in the graph (i.e., the number of neighboring
pose pairs) and n the number of nodes in the graph. This cost assumes
that the nodes in Q are organized into a heap where the extraction of
the minimum element is constant time and the update of the cost of
an element is logarithmic. Moreover, it also assumes that poses are
organized into a tree so that neighboring poses can be determined
logarithmically [17]. If this search is performed linearly the cost
increases to O(e n log n).

Note that, when planning we do not need to maintain a local-
ization estimate, but still we need to simulate registration with the
map, for which the diagonal blocks of the covariance matrix are
needed (Line 16). When using the Pose SLAM algorithm [17], these
diagonal blocks are directly available [36], but this is not the case
in other approaches [18]–[20]. In such cases, the most efficient
way to compute the marginals is to invert the whole information
matrix before starting to plan. One can efficiently invert it taking
advantage of its sparsity using, for instance, sparse supernodal
Cholesky decomposition [40]. For large-scale problems, however,
this strategy becomes prohibitively expensive and we have to resort
to approximations of the marginal covariances obtained using, for
instance, Markov blankets [41]. Finally, should the map change
significantly during path execution (i.e., a new highly informative
loop closure is found), the Pose SLAM algorithm performs a full
state update and re-planning is enforced.
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Fig. 2. Accumulated cost versus path length for the shortest path (red) and
the most reliable path (blue) in the Intel experiment.

V. EXPERIMENTAL RESULTS

In order to evaluate the planning strategy introduced in this paper
we show results with two data sets and in a real robot navigation
experiment. The results for the first two tests were obtained with
a Matlab implementation running on an Intel Core2 Quad system
at 3 GHz with 4 GB of memory. For the third case, the system
was implemented using the Robot Operating System (ROS) [42] on
our 4-wheel robot Teo, a Segway RMP 400 platform.

A. Indoor Experiment

To test the performance of the algorithm on a widely used data
set we choose data collected at the Intel Research Lab building
in Seattle [43]. The dataset includes 26915 odometry readings and
13631 laser scans. The laser readings were used to generate scan-
based odometry and to assert loop closures, by aligning them using
an incremental closest point (ICP) scan matching algorithm [18]. In
this case, only links between poses closer than ±1 m in x and y,
and ±0.35 rad in orientation were considered reliable. These are also
the thresholds used to determine neighboring poses when planning
with s = 0.1. The robot odometry and the relative motion computed
from laser scan matches were modeled with average noise covariances
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Fig. 3. Plots of execution time and memory footprint when planning
with different subsets of the Intel map and employing two different strate-
gies to recover marginals. (a) Execution time needed to recover only the
marginals (continuous line) and for the whole planning algorithm (dashed
line). (b) Memory footprint for marginal recovery.

Σu = diag(0.05 m, 0.05 m, 0.03 rad)2 and Σy = diag(0.05 m,
0.05 m, 0.009 rad)2, respectively and the minimum information gain
was γ =4.5 nats. Fig. 1(a) shows the path estimated by Pose SLAM
together with the laser scans associated to each of the stored poses
in light gray.

This map is the departing point of the planning algorithm and
the goal is to connect two poses on opposite sides of the building.
Frames (b) and (c) in Fig. 1 show the shortest and most reliable paths
between the two poses. The apparent overshoot of the shortest path to
the goal is due to the fact that the robot has to execute a 180 deg turn
at the end of the path to align with the goal. Since sudden changes
in orientation are not allowed by the kinematic constraints assumed
for the robot, this rotation is only possible few meters away of the
goal, in front of a door where many poses with the robot at different
orientations accumulate.

Figure 2 shows the accumulated cost along the two paths. We can
note that the accumulated increment in uncertainty of the shortest path
is larger than that for the most reliable path. Therefore, following this
second path the robot has lower probability of becoming lost at the
cost of following a slightly larger path.

To test the efficiency of the method, Fig. 3 shows the execution
time and memory footprint for planning, varying the number of poses
in the Intel map. Since the most expensive step of the algorithm is
the recovery of the marginal covariances, we applied two different
strategies to recover them: recovering the whole Σ and recovering
it column-wise as needed during planning. The continuous lines in
Fig. 3(a) show the execution time needed to recover the marginals
as a function of problem size, whereas the dashed lines show the
execution time of the whole planning algorithm. The figure shows
that recovering the whole matrix is computationally more efficient
at the expense of increased memory space. On the contrary, on-the-
fly computation of matrix columns results in repeated computations
slowing down planner performance. The execution cost of re-planning
when a graph edge is found to be non-traversable is reduced to
the small difference between the continuous and the dashed lines
in Fig. 3(a) since the map does not change and, thus, the marginal
covariances do not need to be re-computed.

B. Large Scale Experiment

To demonstrate scalability, we tested our approach with a much
larger map, for which memory space is a constraint. To this end,
we planned paths using the simulated Manhattan data set [44] that
includes over 10000 poses. In this experiment, average noise covari-
ances for the robot odometry and the relative-pose measurements
were set to Σu = Σy = diag(0.05 m, 0.05 m, 0.03 rad)2, the
threshold to detect neighboring poses was s = 0.1 searching in a

(a) Plan in configuration space

(b) Plan in belief space.

Fig. 4. Path planning over the Manhattan dataset. (a) Planning in configu-
ration space we obtain the shortest path to the goal on the underlying Pose
SLAM graph. (b) Planning in belief space we obtain the most reliable path
to the goal.
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Fig. 5. Accumulated cost along the shortest (red) and the most reliable (blue)
paths in the Manhattan experiment.

rectangle around the robot given by ±8 m in x, ±8 m in y, and ±1 rad
in orientation. We only incorporated links between poses with an
information gain above γ =9 nats.
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(a) Plan in configuration space.
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(b) Full covariance recovery.
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(c) Markov blanket approximation.

Fig. 6. Path planning over a section of the Manhattan dataset. (a) Planning in configuration space we obtain the shortest path to the goal on the underlying
Pose SLAM graph. (b) Planning in belief space we obtain the most reliable path to the goal. (c) The most reliable path to the goal computed when the
marginal covariances are recovered with Markov blankets.
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Fig. 7. Accumulated cost along the shortest (red) and along the most reliable
path computed with exact marginal covariances (blue) and with Markov
blankets (black).

Figure 4 shows the shortest and most reliable paths between the
chosen start and goal poses, with the corresponding accumulated costs
shown in Fig. 5.

With this dataset, full matrix recovery is not feasible with the
computing resources used, and column-wise marginal computation is
impractically slow. Therefore, marginal covariances are approximated
using Markov blankets [41]. In this method the marginal covariance
for a given pose is approximated considering only the subgraph of
poses directly connected to it, which is typically small. As expected,
the cost of the most reliable path obtained using Markov blankets is
significantly better than that of shortest path, with only a marginal
increase in path length. The planning time in this case is 122 s, which
is reasonable considering that the planner was implemented in Matlab
and that the problem includes more than 10000 poses. Thus, even
when computing resources are a constraint, the presented method can
still be used to plan a route for the robot to the best sensor registration
regions at the expense of a possible degradation in the quality of the
final path.

To analyze the effect of using approximated marginal covariances,
the experiment with the Manhattan dataset was repeated, but this
time using only a subset with the first 2700 poses, only to be able to
compare the Markov blanket approximation with the computation of

exact covariances. Fig. 6 shows path planning results over this section
of the Manhattan dataset. The use of the Markov blankets reduces
the planning time by 50% but it hardly changes the obtained path,
validating the approximation. Fig. 7 shows the accumulated cost in
this experiment. As expected, the path length and cost when using the
Markov blanket approximation are a compromise between the ones
obtained with exact covariances and those of the shortest path.

C. Real Robot Navigation

To validate the planner in realistic conditions, we performed an
experiment with a Segway RMP 400 robotic platform in an outdoor
scenario with uneven and sandy terrain. We first acquired data to build
a Pose SLAM map using dead-reckoning readings and laser scans
over 350 m. The laser readings were used to assert loop closures by
aligning them using an ICP algorithm. The Segway dead reckoning
readings and the laser pose constraints were modeled with average
noise covariances Σu = diag(0.0316 m, 0.0158 m, 0.1104 rad)2, and
Σy = diag(0.2 m, 0.2 m, 0.03 rad)2, respectively, the uncertainty
of the initial pose was set to Σ0 = diag(0.1 m, 0.1 m, 0.09 rad)2,
and the minimum information gain was set to γ =1.5 nats. The
local planner used was based on the dynamic window approach [45]
available in ROS. Fig. 8 shows the path estimated by Pose SLAM.
The red dots and lines represent the estimated path and the green lines
indicate loop closure constraints established by registering scans at
non-consecutive poses.

Using this map we computed the shortest and the most reliable
paths that connect two robot configurations on opposite sides of the
map, as shown in Fig. 9. For the planning, the thresholds to detect
nearby poses are set to ±4.5 m in x, ±4.5 m in y or ±1.04 rad in
orientation with s = 0.1.

The shortest path shown in Fig. 9(a), enters into an uneven and
sandy region. The rugged terrain caused the laser to occasionally
point to the soil which complicated the registration of the sensor
readings. Moreover, the sand caused some slip that affected wheel
odometry. Both effects contributed to produce a patch of the Pose
SLAM map with higher uncertainty. In contrast, the path computed
with our approach, shown in Fig. 9(b), avoids this region. This path
traverses an even region of the environment in which the map has
lower uncertainty, thanks to the better sensor registration and the
more reliable odometry.



IEEE TRANSACTIONS ON ROBOTICS 8

X(m)

Y
(m

)

−5 0 5 10 15 20 25 30 35 40 45
−5

0

5

10

15

20

Fig. 8. Pose SLAM map built with encoder odometry and laser data in an
outdoor scenario with a Segway RMP 400 robotic platform.

0 5 10 15 20 25 30 35 40

−5

0

5

10

15

X(m)

Y
(m

)

START

GOAL

(a) Shortest path to the goal.
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(b) Most reliable path to the goal.

Fig. 9. Path planning over the map built with our mobile robot using encoder
odometry and laser data.

Figure 10 shows the accumulated cost along the two paths. Note
that the cost evaluation along the shortest path is actually underesti-
mated since the motion uncertainty for the steps in this path is larger
than the average noise used in the planning. In this case, the most
reliable path is only 9 m longer than the shortest path and the total
time to compute the plan was 6.5 s, which is significantly smaller
than the 12 minutes required to execute it.

To verify that the assumptions taken in the planning hold in real
conditions, we executed both paths with the robot for five times and
the obtained trajectories are shown in Fig. 11. The supplementary
material associated with this paper includes a video of this navigation
experiment. The result of executing the shortest path are shown in
Fig. 11(a). In this case, the robot was not able to reach the goal for
any of the trials. On the contrary, the execution of the most reliable
path, shown in Fig. 11(b), resulted in the robot safely arriving to the
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Fig. 10. Accumulated cost along the shortest (red) and the most reliable
(blue) path in the real robot experiment.
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(a) 5 attempts to execute the shortest path.
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(b) 5 executions of the most reliable path.

Fig. 11. Real path execution of the shortest and most reliable paths to the goal
with our mobile robot. The green line shows the planned paths computed with
our method. The red lines represent the obtained trajectories when executing
each path five times. The execution is interrupted when the deviation with
respect to the intended plan is above a safety threshold.

goal in all trials, with an error in the interval of 0.5 m to 1.7 m.

VI. CONCLUSIONS

The work presented in this paper constitutes a step towards an
integrated framework for mapping and planning for autonomous
robots. We argue and show evidence that the poses of a Pose SLAM
map can be readily used as nodes of a belief roadmap and thus,
used for planning reliable routes. We also proposed a principled way
to evaluate the cost of a path taking into account the uncertainty
of traversing every edge in the map. The final path obtained is the
most reliable among all the possible paths to the goal, increasing
the chances to reach it. Three advantages of the proposed approach
are that it is defined in the belief space, that it considers only the



IEEE TRANSACTIONS ON ROBOTICS 9

uncertainty added when moving between poses, and that it scales
to large environments using approximated marginal covariances. The
presented approach is adequate for scenarios where a robot is initially
guided during map construction, but autonomous during execution.
For other scenarios in which more autonomy is required, the robot
should be able to explore the environment without any supervision.
We are currently working on this problem [34].
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